• Aucun résultat trouvé

Adaptive consensus for high-order unknown nonlinear multi-agent systems with unknown control directions and switching topologies

N/A
N/A
Protected

Academic year: 2021

Partager "Adaptive consensus for high-order unknown nonlinear multi-agent systems with unknown control directions and switching topologies"

Copied!
14
0
0

Texte intégral

(1)

Information Sciences 0 0 0 (2018) 1–14

ContentslistsavailableatScienceDirect

Information

Sciences

journalhomepage:www.elsevier.com/locate/ins

Adaptive

consensus

for

high-order

unknown

nonlinear

multi-agent

systems

with

unknown

control

directions

and

switching

topologies

Mohammad

Hadi

Rezaei

a,b

,

Meisam

Kabiri

a,b

,

Mohammad

Bagher

Menhaj

a,b,∗

a Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

b The Center of Excellence on Control and Robotics, Department of Electrical Engineering, Amirkabir University of Technology (Tehran

Polytechnic), Tehran, Iran

a

r

t

i

c

l

e

i

n

f

o

Article history: Received 7 January 2018 Revised 4 April 2018 Accepted 29 April 2018 Available online xxx Keywords: Consensus

High-order nonlinear multi-agent systems Unknown control directions

Input saturation Switching topologies Unknown dynamics

a

b

s

t

r

a

c

t

Inthis paper, we provide acomprehensive assessment of the consensusof high-order nonlinear multi-agentsystems with input saturationand time-varying disturbance un-derswitchingtopologies.Thecontroldirectionsandmodelparametersofagentsare sup-posedtobeunknown.Ourapproachisbasedontransformingtheproblemofconsensus foranetworkthatconsistsofhigh-ordernonlinearagentstothatofperturbedfirst-order multi-agentsystems.Theunknownpartofdynamicsiscancelledusingradialbasisneural networks.Nussbaumgainsand auxiliarysystemsarerespectivelyemployedtoovercome theunknown input directionand the saturation.Adaptivesliding mode controlis used tocompensateforthe time-varyingdisturbance andtheimperfectapproximationofthe developedneuralnetworkaswell.ThroughLyapunovanalysis,itisshownthatthe over-allclosed-loopsystemmaintainsasymptoticstability.Finally,ourapproachisappliedtoa groupofmultiplesingle-linkflexiblejointmanipulatorstohighlightbetteritsmerit.

© 2018PublishedbyElsevierInc.

1. Introduction

Advancesin networkedcyber-physicalsystems andembeddedsystems technologyhave createdan increasing interest amongthecontrolcommunitytostudymulti-agentsystems(MASs).ThecontroltechniquesdevelopedsofarforMASs en-ableustoapplyresilient,cheap,andflexiblemethodologiestodiversecooperativetasksinmanydomainsincluding main-tenance,surveillance,reconnaissance,searchandrescuemission,cooperativeconstruction,andmanipulation[6,18,28,31,47]. ConsensusisafundamentalcooperativetaskinMASswherealltheagentsinateamaresupposedtoagreeonacertain valueofinterestwhile eachagentupdatesits statesmerelyonthe basisofitsown statesandthelocalinformationfrom itsneighbors.Consensushasapplicationsina varietyofdomains,includingcooperationofnetworksensors [35],decision making[26],motioncoordinationofunmannedaerialvehicles(UAVs)[23,40] andautonomousunderwatervehicles(AUVs)

[2],attitudesynchronizationinspacecraft[48],flockingcontrol[33],andloadsharinginmicrogrids[12].

Early studies of consensus mainly focused on the cooperation of agents with first- and second-order dynamics

[20,27,29,34].In[34],the problemofaverageconsensus forfirst-order integratorsunder switchingtopologiesand

identi-cal time delayswas fullydeveloped. The authors in [20] fully discussed the consensus problemof second-order system ∗ Corresponding author.

E-mail addresses: hadi.rezaei@aut.ac.ir (M.H. Rezaei), mk13@aut.ac.ir (M. Kabiri), menhaj@aut.ac.ir (M.B. Menhaj). https://doi.org/10.1016/j.ins.2018.04.089

0020-0255/© 2018 Published by Elsevier Inc.

(2)

multi-2 M.H. Rezaei et al. / Information Sciences 0 0 0 (2018) 1–14

modelsunderjointly-connectedswitchingtopologiesbasedonaspacedecompositiontechnique.In[29],necessaryand suf-ficientconditionswerederivedtoguaranteeconsensusinanetworkofsecond-ordersystemsoverdirectedtopologywitha uniformconstantdelay.

However, first-and second-orderkinematics fail tomodel manypractical systemsdescribedby high-order differential equations.Hence,severalstudiesconcentratedontheconsensusproblemforlinearhigh-orderdynamics[4,11,39,41]. Tech-niques suchasfeedbacklinearizationcanbeused toconvertnonlinear systemstolinearones. Theperfectcancellationof the nonlinearities requireshaving an exactmodel forthe systemwhich isnot feasible inreality.Therefore, applyingthe resultsoflinearMASstounknownnonlinearMASsisnotstraightforward.However,despiteitsgreatimportance,thereare rather few studies dedicated to the consensus of high-order nonlinear systems [19,21,37,38,45,46]. For example, the au-thorsin[37] developeda consensusframework fora networkconsistingofuncertainhigh-ordernonlinearsystemsunder jointly-connected switchingtopologies.Theworkof[21],investigatesconsensus problemforhigh-order stochastic nonlin-ear systems underfixed topology. In[19], theleader-followingconsensus fornonlinear homogenousMASs withnetwork induceddelaysisstudied.

Cooperativecontrolofhigh-ordernonlinearMASscanbeevenmorechallenginginthepresenceofinputsaturation.This practical concernresultsfromthephysical constraintsofactuators.Thisissuehasbeen studiedin[7,36,43,44].The study of [36] wasdedicated to the semi-global bipartite consensus of generallinear MASs with switching topologies. In [43], leader-followingoutputconsensusoflineardiscrete-timeMASssubjecttoactuatorsaturationandexternaldisturbanceswas examined. Aleader-followerframework forconsensus ofagroup oflinearMASswithinputsaturation wasestablishedin

[44].

Alltheaforementionedstudiessharedtheassumptionthatthecontroldirectionsareknown.Nevertheless,insome prac-tical situations, the controlling effect is not accessible. This issue is already addressed fora singlesystem by using the Nussbaum-typefunction initially introducedin[32].Tackling thisissueforcontrolofMASsis challengingdueto thefact thateachagentNussbaumgainparametermaymoveinadifferentdirectionwhichimpedesusingtheusualmethodof con-tradictionintheestablishmentofthestabilityoftheoverallsystem[13].Recentlysomestudieshaveappearedtoovercome thischallenge.Theauthorsin[3] investigatedadaptiveconsensusproblemoffirst-orderandsecond-orderlinearly parame-terizedsystemswherethecontroldirectionsareassumedtohaveknownlowerandupperbounds.Theproblemofadaptive output regulationinthepresence ofunknown identicalcontroldirectionwasaddressedin [13,30] inwhich theneed for priorknowledgeofthelowerandupperboundswasremoved.Researchersin[3,13,30] investigatedthespecialcasewhere allthecontroldirectionsofthesubsystemsareidentical.Althoughthisconditionwasrelaxedin[1],itstillreliesonknowing someofthecontroldirections.

Theabove-mentionedfactsmotivatedustoaddresstheproblemofconsensusforhigh-orderunknownnonlinearsystems withinputsaturation,time-varyingdisturbance,andunknowncontroldirectionunderswitchinginteractiontopologies.We developanapproachthatconvertstheproblemintotheconsensusoffirst-orderMASswithboundedperturbationtermsand thenemploysaproperlydevelopedstabilizingcontroller.Radialbasisfunctionneuralnetworksareusedtoapproximatethe unknown nonlinear part of the systemdynamics, while their update rules are derived based on the Lyapunov analysis. In orderto dealwiththe unknown control direction, theNussbaum-type functionis utilized.An auxiliary systemisalso implemented foreachagentto compensate fortheinput saturation whiletheeffect ofthetime-varyingdisturbance and theapproximationerroroftheneuralnetworkiscounteractedbyanadaptiveslidingmodecontrolscheme.

Comparedtothemostrelevantstudy[37],ourapproachtakesintoaccounttheeffectsofbothunknown control direc-tionandinputsaturation.Besides,intheworkof[37],thecontrolparametersweredeterminedinsuchawaythatalinear matrixinequality (LMI),whichisdependent onthenumberofagents,shouldhold.Hence,growing thenumberofagents inthenetworkwouldincreasethecomputationalburden.Tothebestofourknowledge,nostudieshaveyetconsideredthe problemathandinthepresenceoftheallaforementionedpracticalissues.Forexample,in[21,37,38,45],theunknown con-troldirectionwasnotaddressed.Existingapproachesthatcopewiththisdifficulty[1,3,13,30],notonlyneglectedtheeffects ofactuatorsaturationandswitchingtopologiesbutalsorequiredtheinputdirectionstosatisfysomelimitingconditions.As acaseinpoint,in[3],itwassupposedthat theupperandlower boundsofcontrol effectsareknown.In[3,13,30],itwas assumedthat allcontrol directionshavean identicalsignandin[1] somepartofthe controlcoefficientswasconsidered tobeknown.InTable1,thedifferencesofourmethodwiththosepresentedinother relevantstudiesarehighlighted.The contributionsofthispapercanbesummarizedasfollows:

• Consensus for a class of general complex high-order nonlinear MASs with unknown nonlinearity and disturbance is studied.

• Theconsensus isachievedasymptotically inthepresenceofjointlyconnectedtopology forundirectedgraphs and uni-formlyjointlyquasi-stronglyconnectedandbalancedtopologyfordirectedgraphs.

• TheimpactoftheactuatorsaturationinMASsiseffectivelyhandled.

• Theproposedapproachiscapableofcompletelytacklingunknowncontroleffectswhereitallowscontroleffectstohave non-identicalsignsandtheneedfortheknowledgeoftheboundariesofthecontrolcoefficientsisremoved.

(3)

M.H. Rezaei et al. / Information Sciences 0 0 0 (2018) 1–14 3

Table 1

Comparisons between our approach and those proposed in the other existing relevant studies in the literature

2. Preliminaries

Inthissection,weintroducethenotationsandthegraphtheoryterminologywhichwillbeusedthroughoutthepaper. 2.1. Notations

Throughoutthispaper, symbolsRandR+ denotethe set ofreals andpositive reals,respectively. sgn(.)expresses the

signfunction.1N isacolumnvectorofNelementsallequaltoone.0N denotesacolumnvectorofNwithzeroentries.L presentsthespaceofboundedsignals.x(t)L1meansthat0∞

|

x

(

t

)

|

dt<∞.

2.2.Graphtheory

The interaction among N agents is represented by an undirected or directed graph G

(

V,E,A

)

with a node set V=

{

1,...,n

}

,edgesetE

{

V× V

}

,andadjacencymatrixA=[ai j ]Rn×n.Theadjacencymatrixisdefinedsuchthatthe

diago-nalentriesareequaltozero(aii =0)andtheoff-diagonalentriesareaij >0if

(

i,j

)

E andai j =0,otherwise.Forundirected graphs,wealsohaveaij =aji .Thesetofneighborsofnodevi isNi =

{

v

j V

|

(

v

j ,

v

i

)

E

}

.TheLaplacianmatrixL=



li j



is definedas

li j =



N

j =1, j =i ai j i=j

−ai j i=j. (1)

The in-degreeand out-degreeof node vi are defined asdin

(

v

i

)

=Nj=1ai j and dout

(

v

i

)

=Nj=1aji , respectively. Agraph isbalanced if andonly ifdin

(

v

i

)

=dout

(

v

i

)

,

v

i V. It isclear that an undirectedgraph is balanced.

(

1/N

)

1N andwT 1

(

(

1/N

)

1N wT 1=1)aretherightandlefteigenvectorsassociatedwiththezeroeigenvalueofL,respectively.w1T is

(

1/N

)

1T N if the digraph D is balanced. A class of piecewise right-continuous switching function

σ

(

t

)

(

inshort

σ

)

:[0,∞]→P=

{

1,2,...,nv

}

isusedtodescribetheswitchingtopologieswherenv isthetotalnumberofallpossiblecommunicationgraphs. Weuse(t )todenotethecommunicationgraphattimet.Anundirectedgraphissaidtobeconnectedifeverytwodistinct

nodescanbeconnectedbyapathwhereapathisasequenceofadjacentedgesoftheform

(

v

i 1,

v

i 2

)

,

(

v

i 2,

v

i 3

)

,...,

(

v

i j−1,

v

i j

)

inwhichij V.Adirectedgraphissaidtocontainadirectedspanningtreeifithasatleastonenodefromwhichthereexist directedpathstoallothernodes.TheunionofacollectionofgraphsG1,...,Gm withthenodesetV isagraphdenotedby

G1−mwiththesamenodesetwhoseedgesetistheunionoftheedgesetsofallgraphs.Acollectionofswitchingundirected

ordirectedgraphsiscalledjointlyconnectedoruniformlyjointlyquasi-stronglyconnected[5] if,respectively,theunionof thegraphs isconnected orhas adirected spanningtree.We assume that there exists an infinitesequence ofnonempty, boundedandcontiguoustime intervals [tr ,tr+1],r=0,1,.... witht0=0andtr+1− tr ≤ T1 forsome constant T1>0 such

(4)

4 M.H. Rezaei et al. / Information Sciences 0 0 0 (2018) 1–14

wheretr =tr 0,tr+1=tr mr andtr j+1− tr j≥ T2,0≤ j<mr − 1forsomeintegermr andgivenconstantT2.Thecommunication

topologyissupposedtobefixedoneachtimesubintervalandswitchesattr j.

3. Problemstatement

ConsiderateamofNhigh-ordernonlinearagentswhichthedynamicsoftheithoneisasfollows:

x(i n )=fi

(

Xi

)

+bi ui +di

(

t

)

(2)

where Xi =[xi ,x˙i ,...,x(i n −1)]TRn,u

i ∈Rare systemstates and the control input, respectively. xi (h )∈Ris the hth-order stateoftheithagentandxi denotestheposition. fi

(

Xi

)

∈Risan unknownnonlinearfunction.bi isanunknownnonzero constant gain withan unknown sign. di (t) isan external boundeddisturbance.In the sequel,we make thefollowing as-sumptions:

Assumption1. ui isgainedbypassingthedesignedinputvi throughanon-symmetricsaturationconstraintdefinedas

ui =

umaxi if

v

i >umaxi

v

i if umin i

v

i≤ umaxi umin i if

v

i <umini (3)

whereumaxi andumin

i areknownboundsofsaturationnonlinearity.

Assumption2. |di |≤ Di whereDi isanunknownconstant.

Inordertotackletheunknowncontroldirection,theNussbaum-typefunctiontechniqueisexploitedinthispaper.Nm

(

ξ

)

isaNussbaumfunctionsatisfiesthetwo-sidedproperties[22]

lim θ→±∞sup 1

θ

θ 0 Nm

(

ξ

)

d

ξ

=∞ lim θ→±∞inf 1

θ

θ 0 Nm

(

ξ

)

d

ξ

=−∞. (4)

Inourframework,weutilizeNm

(

ξ

)

=

ξ

2cos

(

π

/2

)

ξ

asanexampleofanevenNussbaum-typefunction.

Inthispaper,weaimatdesigningaprotocolforagroupofagentswithdynamicsgivenin(2) suchthatallagentsreach consensusonthepositionwhilethehigher-orderstatesconvergetozero.

Lemma1. Letusconsiderthefirst-orderintegralMAS.Thedynamicsofeachagentis

˙ zi =−

j∈Ni(G σ (t))

ai j

(

t

)(

zi − zj

)

+ wi

wherezi ∈Risthestateoftheithagentandwi ∈Riscontinuousfunctionon[0,∞)exceptforatmostasetwithmeasurezero. For

zi(0)and

wisatisfyingwiL1,thenziLandlimt→∞

zi

(

t

)

− zj

(

t

)

=0ifGσ(t )isjointlyconnectedoruniformlyjointly quasi-stronglyconnectedforrespectivelytheundirectedordirectedgraphs[5 ,43] .

4. Consensusforhigh-ordernonlinearMASs

Consensusforhigh-order nonlinearMASsisdiscussedinthissection andthemainresultispresentedintheformofa theorem.

Letusdefinethevariablesi fortheithagentas: si =

γ

1

n

x(i n −1)+

γ

2xi (n −2)+...+

γ

n −1x˙i +

γ

n xi

(5)

wherethepolynomialsn −1+

γ

2s(n −2)+...+

γ

n −1s+

γ

n hasrootsintheopen-lefthalfplane. Todealwiththeeffectofthesaturationconstraint,theauxiliarysystemisdefinedas:

˙

τ

i =−

βτ

i +ki

γ

(

t

)

n sgn

(

ei

)

|

ui

|

(6)

where

β

R+,ei =s˜i − zi ,withs˜i =si

τ

i ,and

ui =ui

v

i ,i.e.,

(5)

M.H. Rezaei et al. / Information Sciences 0 0 0 (2018) 1–14 5 where

α

i 1R+andanauxiliarystatezi isdefinedas

˙

zi =− j∈Ni(G σ (t))

ai j

(

t

)(

s˜i − ˜sj

)

(9)

withtheinitialconditionzi

(

0

)

=xi

(

0

)

.Based onuniversal approximationtheorem[14,24],anycontinuousfunction canbe estimatedwitharbitrarilysmallerror.Havingthispropertyinmindandexploitingthefactthat fi

(

Xi

)

+

i iscontinuous, wecansay

fi

(

Xi

)

+

i =Wi T

ψ

i

(

i

)

+



i

(

i

)

(10)

where

i =n −1

i =1

γ

i +1xi(n −i)+

βγ

n

τ

i ,

i =[Xi T ,

i ]T ,



i isaboundedapproximation error,i.e.,|



i |≤

ε

i where

ε

i isan un-knownconstant,Wi istheboundedidealweightvectorwithli neurons,and

ψ

i =[

ψ

i 1,...,

ψ

il i]

T isdefinedby

ψ

i j

(

i

)

=exp



(

i − ¯

i j

)

T

(

i − ¯

i j

)

ν

2 i j



forj=1,...,li inwhich

¯i j and

ν

ij denotethecenterofthereceptivefieldandthewidthoftheGaussianfunction, respec-tively.Sincetheidealweightsareunknown,wecanapproximate fi

(

Xi

)

+

i by

ˆ

fi

(

Xi

)

+

ˆi =Wˆi T

ψ

i

(

i

)

. (11)

Exploitingthe above structure,ourproblemis convertedto theconsensus ofa networkof first-ordersystems(9) witha boundedperturbationandthestabilizationproblemofei .Theideabehindsucha structureistofirsttheerrorvariableei foreachagentisdriventozero.Tothisend,weusetheauxiliarysystem(6) tocounteractthesaturationeffect,andneural network to approximate the unknown part of each agentdynamics. The Nussbaum gain parameter is also exploited to handletheunknown signofthecontrol direction.Todealwiththetime-varyingdisturbanceandtheapproximationerror ofthe developedneural network, we use adaptivesliding mode control.Since we have noknowledge about thebounds onthe disturbanceandapproximation error,we make useofadaptive gainstoestimate thesebounds. After the variable ei goes to zero,we can show that the state of the auxiliary system

τ

i is driven to zeroforeach agent whileconsensus on a commonvalue for the variables zi is achieved, i.e., zi →N

i=1zi

(

0

)

/N. This impliesthat s˜i =si andhence si zi → N

i =1zi

(

0

)

/N. Afterward,weprovethatchoosingtheinitialconditionsaszi

(

0

)

=xi

(

0

)

fortheauxiliarysystem(9),onecan havexi →N i xi

(

0

)

/N.Nowweputourmainresultinthefollowingtheorem.

Theorem1. ConsidertheMASthatisdefinedby(2) .Providedthattime-varyingtopologyforgraphGσ(t )isjointlyconnectedor uniformlyjointlyquasi-strongly connectedfortheundirected orbalanceddirectedgraphs,respectively,theagentsreachaverage consensusunderthefollowingprotocol:

v

i =Nm

(

ξ

i

)

Wˆi

(

t

)

T

ψ

i

(

i

)

+



i

(12) where ˙

ξ

i =

γ

1 n

ˆ Wi

(

t

)

T

ψ

i

(

i

)

+



i

ei , (13) ˙ ˆ Wi =Pi

ψ

i

(

i

)

ei , (14)



i =

κ

i

(

t

)

sgn

(

ei

)

+

γ

n j∈Ni(G σ (t)) ai j

(

t

)(

s˜i − ˜sj

)

, (15)

inwhichtheadaptivegainmatrixPiissymmetricpositivedefiniteand ˙

κ

i =

α

i 2

|

ei

|

. (16)

where

α

i 2∈R+.

Proof.Thefirsttimederivativeof(5) isobtainedby ˙

si =

γ

1 n

xi (n )+

γ

2x(i n −1)+...+

γ

n −1¨xi +

γ

n x˙i

whichbyusing(2) andui =

v

i +

ui ,itcanbewrittenby

(6)

6 M.H. Rezaei et al. / Information Sciences 0 0 0 (2018) 1–14 Bysubstitutingvi from(12) into(17),onecanget

˙ si =

γ

1 n



fi

(

Xi

)

+ n −1 i =1

γ

i +1x(i n −i)+bi

ui +di



+bi N

γ

m

(

ξ

i

)

n



ˆ Wi

(

t

)

T

ψ

i

(

Xi

)

+



i



. (18)

Bytakingderivativeofei =si

τ

i − zi andusing(6),(9),and(18),onecanobtain ˙ ei =

γ

1 n



fi

(

Xi

)

+ n−1 i =1

γ

i +1x(i n −i)+

βγ

n

τ

i +bi

ui +di



+bi N

γ

m

(

ξ

i

)

n



ˆ Wi

(

t

)

T

ψ

i

(

Xi

)

+



i



ki

γ

n sgn

(

ei

)

|

ui

|

+ j∈Ni(G σ (t)) ai j

(

t

)(

s˜i − ˜sj

)

. (19)

Bysubstituting(10) into(19),onecanget ˙ ei =1

γ

n



WT i

ψ

i

(

i

)

+bi

ui +di +



i



+bi Nm

(

ξ

i

)

γ

n



ˆ Wi

(

t

)

T

ψ

i

(

Xi

)

+



i



ki

γ

n sgn

(

ei

)

|

ui

|

+ j∈Ni(G σ (t)) ai j

(

t

)(

s˜i − ˜sj

)

. (20)

Now,letusconsiderthepositivedefinitefunctionasVi =Vi 1+Vi 2with Vi 1= 1 2e 2 i , Vi 2= 1 2

γ

n



˜ Wi T Pi −1W˜i + 1

α

i 1 ˜ k2 i + 1

α

i 2 ˜

κ

2 i



, (21)

whereW˜i

(

t

)

=Wˆi

(

t

)

− Wi ,k˜i

(

t

)

=ki

(

t

)

|

bi

|

,and

κ

˜i

(

t

)

=

κ

i

(

t

)

(

Di +

ε

i +

βγ

n

)

.ThereasonforconsideringVi 2asapartof

theoverallLyapunovfunctionistoderivetheadaptivelawsforneuralnetworkweightsandestimatorski and

κ

i .Sincethe boundsonthesignals|bi | andDi+

ε

i+

βγ

n arenot known,theadaptivegainski and

κ

i are respectivelyimplementedto estimatethesebounds.

Byusing(13) andtakingthetimederivativeofVi 1along(20),onecanconcludethat

˙ Vi 1= 1

γ

n



Wi T

ψ

i

(

i

)

+

γ

n j∈Ni(G σ (t)) ai j

(

t

)(

s˜i − ˜sj

)



ei +bi Nm

(

ξ

i

)

ξ

˙i

γ

ki n

|

ei

ui

|

+ bi

γ

n ei

ui + di +



i

γ

n ei . (22)

Bysubtractingandadding

ξ

˙i totheright-handsideof(22) andusing(13) and(15),itcanbeconcludedthat ˙ Vi 1= 1

γ

n



Wi T

ψ

i

(

i

)

+

γ

n j∈Ni(G σ (t)) ai j

(

t

)(

s˜i − ˜sj

)



ei +

ξ

˙i 1

γ

n



ˆ Wi

(

t

)

T

ψ

i

(

i

)

+

κ

i

(

t

)

sgn

(

ei

)

+

γ

n j∈Ni(G σ (t)) ai j

(

t

)(

s˜i − ˜sj

)



ei +bi Nm

(

ξ

i

)

ξ

˙i ki

γ

n

|

ei

ui

|

+ bi

γ

n ei

ui + di +



i

γ

n ei =−

γ

1 n ˜ Wi T

ψ

i

(

i

)

ei +

bi Nm

(

ξ

i

)

+1

ξ

˙i

γ

ki n

|

ei

ui

|

+ bi

γ

n ei

ui

κ

i

γ

n

|

ei

|

+ di +



i

γ

n ei .

(7)

M.H. Rezaei et al. / Information Sciences 0 0 0 (2018) 1–14 7 NowwecanobtainthetimederivativeofVi as

˙ Vi

γ

1 n ˜ Wi T Pi −1



W˜˙i − Pi

ψ

i

(

i

)

ei



+

bi Nm

(

ξ

i

)

+1

ξ

˙i + ˜ ki

γ

n

α

i 1

˜˙ ki

α

i 1

|

ei

ui

|

+

γ

κ

˜i n

α

i 2

˙ ˜

κ

i

α

i 2

|

ei

|

β|

ei

|

. (23)

BecauseWi ,

θ

i ,|bi |,andDi +

ε

i +

βγ

n areconstant,wehaveW˜˙i =Wˆ˙i ,

θ

˜˙i =

θ

ˆ˙i ,k˜˙=k˙i ,

κ

˜˙ =

κ

˙i ,andhence,substituting(8),(14), and(16) into(23) yields

˙

Vi ≤ −

β|

ei

|

+

bi Nm

(

ξ

i

)

+1

ξ

˙i . (24)

Hence,from(24),itfollowsthat: ˙

Vi

bi Nm

(

ξ

i

)

+1

ξ

˙i . (25)

Bytakingthetimeintegralofbothsidesof(25),onecanget 0≤ Vi

(

t

)

≤ Vi

(

0

)

+ t 0 bi Nm

ξ

i

(

τ

)

ξ

˙i

(

τ

)

d

τ

+

ξ

i

(

t

)

where

ξ

i

(

0

)

=0.Since t 0 Nm

ξ

i

(

τ

)

ξ

˙i

(

τ

)

d

τ

= ξi(t) 0 Nm

(

ξ

i

)

d

ξ

i , wehave 0≤ Vi

(

t

)

≤ Vi

(

0

)

+ ξi(t) 0 bi Nm

(

ξ

i

)

d

ξ

i +

ξ

i

(

t

)

(26) orequivalently −

ξ

i

(

t

)

− Vi

(

0

)

ξi(t) 0 bi Nm

(

ξ

i

)

d

ξ

i . (27)

Accordingto(4),Nm

(

ξ

i

)

hasthefollowingproperties: lim ξi(t)→±∞ sup 1

ξ

i

(

t

)

ξi(t) 0 bi Nm

(

ξ

i

)

d

ξ

i =∞ (28) and lim ξi(t)→±∞ inf 1

ξ

i

(

t

)

ξi(t) 0 bi Nm

(

ξ

i

)

d

ξ

i =−∞. (29)

Bythemethodofcontradiction,itcanbeprovedthat

ξ

i (t)∈L.Supposethat

ξ

i (t)becomesunbounded,thentherearetwo cases.

1.If

ξ

i (t)→∞,thenbyutilizing(27),onecanget lim ξi(t)→∞ −

ξ

i

(

t

)

+Vi

(

0

)

ξ

i

(

t

)

≤ 1

ξ

i

(

t

)

ξi(t) 0 bi Nm

(

ξ

i

)

d

ξ

i anditcanbeobtainedthat

−1≤ lim ξi(t)→∞ 1

ξ

i

(

t

)

ξi(t) 0 bi Nm

(

ξ

i

)

d

ξ

i . (30)

Easilyobservedthat(30) contradictswith(29). 2.If

ξ

i

(

t

)

→−∞,thenbyusing(27),onecanobtain

lim ξi(t)→−∞ −

ξ

i

(

t

)

ξ

+Vi

(

0

)

i

(

t

)

≥ 1

ξ

i

(

t

)

ξi(t) 0 bi Nm

(

ξ

i

)

d

ξ

i anditcanbeconcludedthat

−1≥ lim ξi(t)→−∞ 1

ξ

i

(

t

)

ξi(t) 0 bi Nm

(

ξ

i

)

d

ξ

i . (31)

(8)

8 M.H. Rezaei et al. / Information Sciences 0 0 0 (2018) 1–14 Therefore,

ξ

i (t) isbounded,andξi(t)

0 biNm

(

ξ

i

)

d

ξ

i is alsobounded.By exploiting(26),Vi is bounded.Accordingto Vi=

Vi 1+Vi 2,where Vi 1and Vi 2defined in(21), one can conclude that ei , ˜Wi ,Wˆi ,k˜i ,ki ,

κ

˜i ,and

κ

i arebounded. From(24),onecanget

˙

Vi ≤ −

β|

ei

|

+

bi Nm

(

ξ

i

)

+1

ξ

˙i . (32)

Then,thetimeintegrationof(32) over[0,)becomes

0

|

ei

|

β

1



Vi

(

0

)

− Vi

(

)

+ ξi() 0 bi Nm

(

ξ

i

)

d

ξ

i +

ξ

i

(

)



. (33)

Sincetherightsideof(33) isbounded,wecanconcludethatei L1.

From(9) andei =s˜i − zi ,onecanget ˙ zi =− j∈Ni(G σ (t)) ai j

(

t

)(

zi − zj

)

+ wi (34) where wi=− j∈Ni(G σ (t)) ai j

(

t

)(

ei− ej

)

. (35)

Since ei L1 for i=1,...,N, the equation (35) implies that wi L1. According to Lemma 1, one can conclude that zi is bounded and limt→∞

zi

(

t

)

− zj

(

t

)

=0. Based on the facts that zi L∞, ei L∞, and ei =s˜i − zi , the boundedness of s˜i can be concluded. According to s˜i L for i=1,...,N, Wˆi ,

κ

i ,

ξ

i L, 0<

ψ

ij (

i )≤ 1, and (12), it can be said that vi is bounded.Sincevi L and(7),

ui isbounded.Based ons˜i L fori=1,...,N,

ui ,

ξ

i ,Wˆi ,

κ

i ,ei ,ki L,|di |≤ Di ,|



i |≤

ε

i , 0<

ψ

ij (

i )≤ 1,and(20),one canconcludethate˙i isbounded.Barbalat’slemmacanalsobeappliedinthiscasebecauseei ande˙i areboundedandei L1.Therefore,onecanconcludethat

lim

t→∞ei

(

t

)

=0.

Toprooftheboundednessof

τ

i ,letusrewrite(6) as ˙

τ

i =−

βτ

i +hi (36)

where hi=

(

ki/

γ

n

)

sgn

(

ei

)

|

ui

|

. Since ki,

uiL∞, hi is bounded. Hence, (36) can be regarded as a linear systems with bounded input hi . It is obvious that

τ

i L since input hi is bounded. Based on limt→∞ei

(

t

)

=0 and hi =

(

ki /

γ

n

)

sgn

(

ei

)

|

ui

|

,onecan conclude thatlimt→∞hi

(

t

)

=0,whichresultsinlimt→∞

τ

i

(

t

)

=0.Basedon limt→∞

τ

i

(

t

)

=0, limt→∞ei

(

t

)

=0,andei=si

τ

i− zi,onecanget

lim

t→∞si

(

t

)

=tlim→∞zi

(

t

)

.

Now,(34) canbedescribedforthewholeMASas: ˙

z=−LG σ (t)z− LG σ (t)e (37)

wherez=[z1,z2,...,zN ]T ande=[e1,e2,...,eN ]T .Since(t )isbalancedatanytimeinstant,onehave1T N LG σ (t) =0T N .Based

onthisandbymultiplyingbothsidesof(37) by1T N ,onecanconcludethat1N T z˙=0T N .Then,takingintegrationyields1T N z

(

t

)

= 1T Nz

(

0

)

.Sincelimt→∞si

(

t

)

=limt→∞zi

(

t

)

,limt→∞z1

(

t

)

=z2

(

t

)

=...=zN

(

t

)

,andzi

(

0

)

=xi

(

0

)

,onecanconcludethat

lim t→∞si

(

t

)

=tlim→∞zi

(

t

)

= 1 N N i =1 xi

(

0

)

.

BytakingtheLaplacetransformof(5) andaftersomemathematicalmanipulations,onecanobtain

Xi

(

s

)

= 1 sn −1+

γ

2sn −2+...+

γ

n ×



γ

n Si

(

s

)

+ n −1 k =1 sn −1−kx(i k −1)

(

0

)

+ n −1 h =2 n −h k =1

γ

h sn −h−kx(i k −1)

(

0

)



(38) whereXi (s)andSi (s)denoteLaplacetransformofxi (t)andsi (t),respectively.Byusing(38),limt→∞si

(

t

)

=

(

1/N

)

N i =1xi

(

0

)

, thefinal valuetheorem,i.e.,limt→∞xi

(

t

)

=lims →0sXi

(

s

)

andlims →0sSi

(

s

)

=limt→∞si

(

t

)

,andthefact thatthepolynomial

sn −1+

γ

2sn −2+...+

γ

n hasrootsintheopen-lefthalfplane,onecanconcludethat

lim t→∞xi

(

t

)

= 1 N N i =1 xi

(

0

)

andtherefore,limt→∞xi (k )

(

t

)

=0,k

{

1,...,n− 1

}

,andtheproofiscompleted. 

(9)

M.H. Rezaei et al. / Information Sciences 0 0 0 (2018) 1–14 9

Table 2

Initial states of the agents .

Agent φi1 , φi2 , φi3 , φi4 Agent φi1 , φi2 , φi3 , φi4 1 1, 0.5, 1, 0.8 4 0, 0.2, 0.5, 0.2 2 0.5, 0.5, 0.2, 0.1 5 0.2, 5, 0.2, 0, -0.5, 1 3 1, 0, 2, 0.5 6 -0.5, 0.8, 0.5, -0.4

controldirectionisdecoupled tothetwo tasks:consensus ofthefirst-orderMASs(9) andthestabilizationcontrol ofthe unknownnonlinearsystemwithinputsaturationandexternaldisturbanceforei withthedynamicsobtainedin(19).Asit isdiscussed in[1,3,13,30],extendingconventionalNussbaumgain techniquetothecooperativetaskisquiteinvolved. Hav-ingintroducedtheproposedstructure,wefacilitateextendingtheNussbaum-typefunctionforanindividualsystemtothe cooperativecaseandalsorelax all the limitingconditions.Ourmethodjustrequiresthe control effectsto havenon-zero values.

Remark2. Intheproposedframework,eachagentissupposedtotransmitthesignals˜itoitsneighbors.Thissignalcanbe calculatedonlineoneachagent.

Remark 3. It is noteworthy that an important issue, which is very important and crucial especially in MASs is event-triggered control. In this approach,the sensors andcontrollers are updated when a specific eventhappens. This frame-workcomes up withseveraladvantagessuch asreducing the communicationbandwidth andthecontrol effort. Because, inpractice,thecontrolsystemsandembeddedsensorsare resourceconstrained,theeventtriggeredcontrolholds promis-ingpotentialinpractical implementationofdistributedcontrolsystemsandhence,worthtobetakenintoaccountinthis context.Thereadersarereferredto[8–10,15–17] for more information.

Remark 4. The final value of the agreement is dependent on the initial conditions of the auxiliary systems (9), i.e., xi →N i =1zi

(

0

)

/N.Therefore,theaverageconsensusisaccomplishedbylettingzi

(

0

)

=xi

(

0

)

.Inthedirectedcase,thegraph shouldbeuniformlyjointlyquasi-stronglyconnectedandbalancedinordertoaverageconsensusisachieved.Ifthenetwork topologyisonly uniformlyjointlyquasi-stronglyconnectedandnot balanced,thenthe consensusisstill acquiredbutthe finalvalueoftheagreementisnottheaverageoftheinitialconditions.

5. Simulationresults

Cooperationofthemanipulatorsplaysakey roleintheassemblyautomationandproductionprocesseswithhigh flex-ibility.One ofthe typicaltask inforce control is thegrasping taskvia robotmanipulatorsin whichall manipulators are requiredtoreachacommonconfiguration.Tostudytheeffectivenessofthepresentedcontrol,weconductnumerical simu-lationsforconsensusofmultiplesingle-linkflexiblejointmanipulators.Thisisdonebyapplyingbothourmethodandthat of[37].Consider agroupofsixsingle-linkflexible jointmanipulatorswithDCmotoractuatorswhichthedynamicsofthe ithoneisgovernedbythefollowingequations[37]

Motor



˙

φ

1i =

φ

2i ˙

φ

2i = gi

(

φ

1i ,

φ

2i ,

φ

3i

)

+

ρ

i ui +di

(10)

10 M.H. Rezaei et al. / Information Sciences 0 0 0 (2018) 1–14

Fig. 2. Trajectories of the six joints angular rotations.

Joint



˙

φ

3i =

φ

4i ˙

φ

4i = 19.5

(

φ

1i

φ

3i

)

− 3.33sin

(

φ

3i

)

where

φ

1i and

φ

2i denote,respectively,theangularrotationandangularvelocityofthemanipulatormotor,

φ

3i and

φ

4i de-notetheangularrotationandangularvelocityofthemanipulatorjoint,respectively,ui isthecontrolinput,gi

(

φ

1i ,

φ

2i ,

φ

3i

)

= 48.6

(

φ

3i

φ

1i

)

− 1.25

φ

2i , and

ρ

i =21.6.Intheprocess ofcontrol design,in[37],

ρ

i issupposed to bean unknown posi-tiveconstantwhileinourmethoditisassumedthat

ρ

i isanunknown constant.Asanotherdifference,in[37],gi (

φ

1i ,

φ

2i ,

φ

3i )isdescribedbyaknownnonlinearregressorvectormultipliedbyanunknownconstantparametervector.However,in ourframework, thisnonlinear functionisconsideredto becompletelyunknown. di ischosento be0.1isin(t). Considering xi =

φ

3i ,onecanhave

xi =

φ

3i ˙ xi =

φ

4i ¨xi =19.5

φ

1i − 19.5

φ

3i − 3.33sin

(

φ

3i

)

... xi =19.5

φ

2i − 19.5

φ

4i − 3.33

φ

4i cos

(

φ

3i

)

.

Nowtheequationofeachmanipulatorcanbetransformedtothefollowingfourth-orderdynamics x(i 4)=fi

(

Xi

)

+biui+19.5di

withbi =19.5

ρ

i ,Xi =[xi ,x˙i ,¨xi ,...xi ]T.In[37], f

i

(

Xi

)

isdescribedbyaknownnonlinearregressorvector

ϕ

T

i =



˙

xi ¨xi ...xi sin

(

xi

)

x˙2

i sin

(

xi

)

x˙i cos

(

xi

)

¨xi cos

(

xi

)



multipliedbyanunknownconstantparametervector

ψ

i R7 as f

i

(

Xi

)

=

ϕ

i T

ψ

i .However,inourframework, fi

(

Xi

)

is com-pletelyunknownfunctionas:

fi

(

Xi

)

=19.5gi − 19.5¨xi +3.33x˙2i sin

(

xi

)

− 3.33¨xi cos

(

xi

)

.

The interaction topology of the manipulators via which the agents exchange their informationis jointly connected. The network topology switches between the four graphs shown in Fig. 1.

σ

(

t

)

=fix

mod

(

2t,4

)

+1

. The initial conditions, (

φ

i 1(0),

φ

i 2(0),

φ

i 3(0),

φ

i 4(0)),aregiveninTable2.Thecontrollerparameters oftheproposed controlschemeareselected

as



=0.02,s3+

γ

(11)

M.H. Rezaei et al. / Information Sciences 0 0 0 (2018) 1–14 11

Fig. 3. Trajectories of the six motors angular rotations.

Fig. 4. Trajectories of the six joints angular velocities.

Toconduct simulationsforthe approachof [37],thecontrol parameters are selectedthesame asthosein thenumerical exampleofthatpaper.

(12)

12 M.H. Rezaei et al. / Information Sciences 0 0 0 (2018) 1–14

Fig. 5. Trajectories of the six motors angular velocities.

Fig. 6. Control input signals.

6. Conclusion

(13)

M.H. Rezaei et al. / Information Sciences 0 0 0 (2018) 1–14 13 References

[1] C. Chen , C. Wen , Z. Liu , K. Xie , Y. Zhang , C.P. Chen , Adaptive consensus of nonlinear multiagent systems with non-identical partially unknown control directions and bounded modelling errors, IEEE Trans. Autom. Control 62 (9) (2017) 4654–4659 .

[2] S. Chen , D.W. Ho , Consensus control for multiple auvs under imperfect information caused by communication faults, Inf. Sci. 370 (2016) 565–577 . [3] W. Chen , X. Li , W. Ren , C. Wen , Adaptive consensus of multiagent systems with unknown identical control directions based on a novel nussbaum-type

function, IEEE Trans. Autom. Control 59 (7) (2014) 1887–1892 .

[4] Y. Chen , Y. Shi , Consensus for linear multiagent systems with time-varying delays: a frequency domain perspective, IEEE Trans. Cybern. 47 (8) (2017) 2143–2150 .

[5] L. Cheng , H. Wang , Z.G. Hou , M. Tan , Reaching a consensus in networks of high-order integral agents under switching directed topologies, Int. J. Syst. Sci. 47 (8) (2016) 1966–1981 .

[6] M.A. Dehghani , M.B. Menhaj , Communication free leader–follower formation control of unmanned aircraft systems, Robot. Auton. Syst. 80 (2016) 69–75 .

[7] C. Deng , G.H. Yang , Consensus of linear multiagent systems with actuator saturation and external disturbances, IEEE Trans. Circuits Syst. II, Exp. Briefs. 64 (3) (2017) 284–288 .

[8] D. Ding , Z. Wang , D.W. Ho , G. Wei , Observer-based event-triggering consensus control for multiagent systems with lossy sensors and cyber-attacks, IEEE Trans. Cybern. 47 (8) (2017) 1936–1947 .

[9] D. Ding , Z. Wang , B. Shen , G. Wei , Event-triggered consensus control for discrete-time stochastic multi-agent systems: the input-to-state stability in probability, Automatica 62 (2015) 284–291 .

[10] L. Ding , Q.L. Han , X. Ge , X.M. Zhang , An overview of recent advances in event-triggered consensus of multiagent systems, IEEE Trans. Cybern. 48 (4) (2018) 2168–2267 .

[11] L. Ding , Q.L. Han , G. Guo , Network-based leader-following consensus for distributed multi-agent systems, Automatica 49 (7) (2013) 2281–2286 . [12] L. Ding, Q.L. Han, L.Y. Wang, E. Sindi, Distributed cooperative optimal control of dc microgrids with communication delays, IEEE Trans. Ind. Informat

(2018), doi: 10.1109/TII.2018.2799239 .

[13] Z. Ding , Adaptive consensus output regulation of a class of nonlinear systems with unknown high-frequency gain, Automatica 51 (2015) 348–355 . [14] S.S. Ge , C.C. Hang , T.H. Lee , T. Zhang , Stable Adaptive Neural Network Control, 13, Springer Science & Business Media, 2013 .

[15] X. Ge , Q.L. Han , D. Ding , X.M. Zhang , B. Ning , A survey on recent advances in distributed sampled-data cooperative control of multi-agent systems, Neurocomputing 275 (2018) 1684–1701 .

[16] X. Ge , Q.L. Han , F. Yang , Event-based set-membership leader-following consensus of networked multi-agent systems subject to limited communication resources and unknown-but-bounded noise, IEEE Trans. Ind. Electron. 64 (6) (2017) 5045–5054 .

[17] X. Ge , F. Yang , Q.L. Han , Distributed networked control systems: a brief overview, Inf. Sci. 380 (2017) 117–131 .

[18] Y. Guan , Q.L. Han , X. Ge , On asynchronous event-triggered control of decentralized networked systems, Inf. Sci. 425 (2018) 127–139 .

[19] W. He , G. Chen , Q.L. Han , F. Qian , Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control, Inf. Sci. 380 (2017) 145–158 .

[20] Y. Hong , L. Gao , D. Cheng , J. Hu , Lyapunov-based approach to multiagent systems with switching jointly connected interconnection, IEEE Trans. Autom. Control 52 (5) (2007) 943–948 .

[21] C. Hua , Y. Li , X. Guan , Leader-following consensus for high-order nonlinear stochastic multiagent systems, IEEE Trans. Cybern. 47 (8) (2017) 1882–1891 . [22] A. Ilchmann , Non-identifier-Based High-Gain Adaptive Control, Springer, London, 1993 .

[23] M. Kabiri , H. Atrianfar , M.B. Menhaj , Formation control of vtol uav vehicles under switching directed interaction topologies with disturbance rejection, Int. J. Control 91 (1) (2018) 33–44 .

[24] B. Karimi , M.B. Menhaj , Non-affine nonlinear adaptive control of decentralized large-scale systems using neural networks, Inf. Sci. 180 (17) (2010) 3335–3347 .

[25] H.K. Khalil , J. Grizzle , Nonlinear Systems, Vol. 3, Prentice Hall, Upper Saddle River, 2002 .

[26] F. Li, Y. Wu, W. Pedrycz, A modified consensus model in group decision making with an allocation of information granularity, IEEE Trans. Fuzzy Syst. (2018), doi: 10.1109/TFUZZ.2018.2793885 .

[27] H. Li , X. Liao , T. Huang , Y. Wang , Q. Han , T. Dong , Algebraic criteria for second-order global consensus in multi-agent networks with intrinsic nonlinear dynamics and directed topologies, Inf. Sci. 259 (2014) 25–35 .

[28] H. Liu , H.R. Karimi , S. Du , W. Xia , C. Zhong , Leader-following consensus of discrete-time multiagent systems with time-varying delay based on large delay theory, Inf. Sci. 417 (2017) 236–246 .

[29] K. Liu , Z. Ji , W. Ren , Necessary and sufficient conditions for consensus of second-order multiagent systems under directed topologies without global gain dependency, IEEE Trans. Cybern. 47 (8) (2017) 2089–2098 .

[30] L. Liu , Adaptive cooperative output regulation for a class of nonlinear multiagent systems, IEEE Trans. Autom. Control 60 (6) (2015) 1677–1682 . [31] X. Ma , F. Sun , H. Li , B. He , Neural-network-based sliding-mode control for multiple rigid-body attitude tracking with inertial information completely

unknown, Inf. Sci. 400 (2017) 91–104 .

[32] R.D. Nussbaum , Some remarks on a conjecture in parameter adaptive control, Syst. Control Lett. 3 (5) (1983) 243–246 .

[33] R. Olfati-Saber , Flocking for multiagent dynamic systems: algorithms and theory, IEEE Trans. Autom. Control 51 (3) (2006) 401–420 .

[34] R. Olfati-Saber , R.M. Murray , Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control 49 (9) (2004) 1520–1533 .

[35] J. Qin , W. Fu , H. Gao , W.X. Zheng , Distributed k -means algorithm and fuzzy c -means algorithm for sensor networks based on multiagent consensus theory, IEEE Trans. Cybern. 47 (3) (2017) 772–783 .

[36] J. Qin , W. Fu , W.X. Zheng , H. Gao , On the bipartite consensus for generic linear multiagent systems with input saturation, IEEE Trans. Cybern. 47 (8) (2017) 1948–1958 .

[37] H. Rezaee , F. Abdollahi ,Adaptive stationary consensus protocol for a class of high-order nonlinear multiagent systems with jointly connected topolo- gies, Int. J. Robust Nonlin. Control 27 (9) (2017) 1677–1689 .

[38] H. Rezaee , F. Abdollahi , Consensus problem over high-order multiagent systems with uncertain nonlinearities under deterministic and stochastic topologies, IEEE Trans. Cybern. 47 (8) (2017) 2079–2088 .

[39] M.H. Rezaei , M.B. Menhaj , Stationary average consensus for high-order multi-agent systems, IET Control Theory Appl. 11 (5) (2017) 723–731 . [40] M.H. Rezaei , M.B. Menhaj , Stationary average consensus protocol for a class of heterogeneous high-order multi-agent systems with application for

aircraft, Int. J. Syst. Sci. 49 (2) (2018) 284–298 .

[41] M.H. Rezaei, M.B. Menhaj, Adaptive output stationary average consensus for heterogeneous unknown linear multi-agent systems, IET Control Theory Appl. (2018), doi: 10.1049/iet-cta.2017.0877 .

[42] G. Shi , K.H. Johansson , Robust consensus for continuous-time multiagent dynamics, SIAM J. Control Optim. 51 (5) (2013) 3673–3691 .

[43] H. Su , Y. Qiu , L. Wang , Semi-global output consensus of discrete-time multi-agent systems with input saturation and external disturbances, ISA Trans. 67 (2017) 131–139 .

[44] B. Wang , J. Wang , B. Zhang , X. Li , Global cooperative control framework for multiagent systems subject to actuator saturation with industrial applica- tions, IEEE Trans. Syst. Man Cybern. Syst. 47 (7) (2017) 1270–1283 .

(14)

14 M.H. Rezaei et al. / Information Sciences 0 0 0 (2018) 1–14

[46] Y. Yang , D. Yue , C. Dou , Distributed adaptive output consensus control of a class of heterogeneous multiagent systems under switching directed topologies, Inf. Sci. 345 (2016) 294–312 .

[47] G. Zhang , J. Qin , W.X. Zheng , Y. Kang , Fault-tolerant coordination control for second-order multi-agent systems with partial actuator effectiveness, Inf. Sci. 423 (2018) 115–127 .

Références

Documents relatifs

A new predictive scheme is proposed for the control of Linear Time Invariant (LTI) systems with a constant and known delay in the input and unknown disturbances.. It has been

Then, observers with linearizable error dynamics (see e.g. Few works deal with the design of unknown input observers for nonlinear systems. Some of them are concerned with

Robust observers for nonlinear systems subject to unknown inputs, such as high gain [11, 19] or sliding mode observers [2, 20], are usually designed under the assumptions that

After having defined the relative degree and observability indices via the extended Lie derivative for nonlinear time- delay systems in the framework of non-commutative rings, we

Based on the algebraic framework proposed in [19], the problem of causal and non-causal observability of the states and unknown inputs for nonlinear time-delay systems has been

Abstract: This paper deals with the design of observers for linear systems with unknown, time-varying, but bounded delays (on the state and on the input).. In this work, the problem

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des