• Aucun résultat trouvé

Band Gap [eV]

N/A
N/A
Protected

Academic year: 2022

Partager "Band Gap [eV]"

Copied!
97
0
0

Texte intégral

(1)

Thèse de doctorat

Soutenue publiquement le 26 novembre 2010

Etude de la conduction électrique dans les diélectriques à forte permittivité utilisés en

microélectronique

Jean Coignus

Directeur de thèse : M. Raphaël CLERC IMEP-LAHC

Co-encadrant :

M. Charles LEROUX CEA-LETI Minatec

(2)

Fundamental limits of SiO

2

thickness downscaling

• Conventional bulk MOSFET scaling

Source Drain

Gate

Source Drain

tSiO2 Gate

tSiO2

Lg Lg

(3)

Fundamental limits of SiO

2

thickness downscaling

• Conventional bulk MOSFET scaling

Source Drain

Gate

Source Drain

Gate

Ion

tSiO2

tSiO2

Ion

Ion ↑↑

Lg Ig ↑↑ Lg

(4)

Fundamental limits of SiO

2

thickness downscaling

• Conventional bulk MOSFET scaling

• High-κ dielectrics : mandatory for HP 45nm node and beyond

© Intel corp. ’07

Source Drain

Gate

Source Drain

Gate

Ion

tSiO2

tSiO2

Ion

Ion ↑↑

Lg Ig ↑↑ Lg

(5)

Fundamental limits of SiO

2

thickness downscaling

• Conventional bulk MOSFET scaling

• High-κ dielectrics : mandatory for HP 45nm node and beyond

© Intel corp. ’07

Source Drain

Gate

Source Drain

Gate

Ion

tSiO2

tSiO2

Ion

Ion ↑↑

Lg Ig ↑↑ Lg

Basics :

higher permittivity = higher tphys @constant Cox

MG High-κ PolySi

SiO2

(6)

High-κ dielectrics integration

• What about effective leakage reduction ?

(7)

High-κ dielectrics integration

• What about effective leakage reduction ?

– Dielectric parameters

Ig strongly correlated to m / Φ : high-κ dielectrics appear more conductive

0 10 20 30 40 50 60 70

2 3 4 5 6 7 8 9 10

TiO2 HfTiTaO HfBiON

HfTiON La2O3 Ta2O5

ZrO2 HfO2 Y2O3

Si3N4SrO ZrSiO4 HfSiO4

CaO MgO

Al2O3 SiO2

Band Gap [eV]

Relative Permittivity

Huang VLSI ’09

Silicon Gate

tox

Φox mox

(8)

High-κ dielectrics integration

• What about effective leakage reduction ?

– Dielectric parameters

Ig strongly correlated to m / Φ : high-κ dielectrics appear more conductive

– Transport mechanisms

SiO2 Direct Tunneling

high-κ Presence of Trap-Assisted mechanisms ?

0 10 20 30 40 50 60 70

2 3 4 5 6 7 8 9 10

TiO2 HfTiTaO HfBiON

HfTiON La2O3 Ta2O5

ZrO2 HfO2 Y2O3

Si3N4SrO ZrSiO4 HfSiO4

CaO MgO

Al2O3 SiO2

Band Gap [eV]

Relative Permittivity

Huang VLSI ’09

Silicon Gate

tox

Φox mox

(9)

High-κ dielectrics integration

• What about effective leakage reduction ?

– Dielectric parameters

Ig strongly correlated to m / Φ : high-κ dielectrics appear more conductive

– Transport mechanisms

SiO2 Direct Tunneling

high-κ Presence of Trap-Assisted mechanisms ?

– Integration limitations (HfO2 case) : presence of an Interfacial Layer

0 10 20 30 40 50 60 70

2 3 4 5 6 7 8 9 10

TiO2 HfTiTaO HfBiON

HfTiON La2O3 Ta2O5

ZrO2 HfO2 Y2O3

Si3N4SrO ZrSiO4 HfSiO4

CaO MgO

Al2O3 SiO2

Band Gap [eV]

Relative Permittivity

Huang VLSI ’09

Silicon Gate

tox

Φox mox

(10)

State of the art

• Gate leakage current modeling has already been studied

[Lo EDL ‘97, Li TED ‘06, Palestri TED ‘07…]

(11)

State of the art

• Gate leakage current modeling has already been studied

[Lo EDL ‘97, Li TED ‘06, Palestri TED ‘07…]

• However, this topic remains controversial

– Ig @300K

• Direct Tunneling ?

[Hou EDL ‘03, Govoreanu SSE ‘04]

• Additional transport mechanisms ?

[Xu APL 2002, Blank JAP 2005, Houssa JAP 2000]

– Interfacial Layer may differ from pure SiO2

[Damlencourt SSE ’03]

– Effective Mass Approximation in high-κ ?

[Sacconi TED ’09]

(12)

State of the art

• Gate leakage current modeling has already been studied

[Lo EDL ‘97, Li TED ‘06, Palestri TED ‘07…]

• However, this topic remains controversial

– Ig @300K

• Direct Tunneling ?

[Hou EDL ‘03, Govoreanu SSE ‘04]

• Additional transport mechanisms ?

[Xu APL 2002, Blank JAP 2005, Houssa JAP 2000]

– Interfacial Layer may differ from pure SiO2

[Damlencourt SSE ’03]

– Effective Mass Approximation in high-κ ?

[Sacconi TED ’09] 0,00,0 0,1 0,2 0,3 0,4

0,5 1,0 1,5 2,0 2,5 3,0

[11]

[9] [10]

[8]

[7]

[5] [6]

[4]

[3]

[2]

[1]

Si-HfO 2 Cond. Band Offset [eV]

Electron Tunneling Mass in HfO2 [units of m0]

[1] Palestri TED 2007, [2-3] Kar TED 2005, [4] Buckley ESSDERC 2005, [5] Zhu EDL 2002, [6] Govoreanu SSE 2003, [7] Zhao SSE 2004, [8] Wu SSE 2006, [9] Campera TED 2007, [10] Hou EDL 2003, [11] Garros PhD 2004

Lack of complete experimental studies

me,HfO2[units of m0] Φe,HfO2[eV]

(13)

State of the art

• Gate leakage current modeling has already been studied

[Lo EDL ‘97, Li TED ‘06, Palestri TED ‘07…]

• However, this topic remains controversial

– Ig @300K

• Direct Tunneling ?

[Hou EDL ‘03, Govoreanu SSE ‘04]

• Additional transport mechanisms ?

[Xu APL 2002, Blank JAP 2005, Houssa JAP 2000]

– Interfacial Layer may differ from pure SiO2

[Damlencourt SSE ’03]

– Effective Mass Approximation in high-κ ?

[Sacconi TED ’09] 0,00,0 0,1 0,2 0,3 0,4

0,5 1,0 1,5 2,0 2,5 3,0

[11]

[9] [10]

[8]

[7]

[5] [6]

[4]

[3]

[2]

[1]

Si-HfO 2 Cond. Band Offset [eV]

Electron Tunneling Mass in HfO2 [units of m0]

[1] Palestri TED 2007, [2-3] Kar TED 2005, [4] Buckley ESSDERC 2005, [5] Zhu EDL 2002, [6] Govoreanu SSE 2003, [7] Zhao SSE 2004, [8] Wu SSE 2006, [9] Campera TED 2007, [10] Hou EDL 2003, [11] Garros PhD 2004

Aim of this work :

Re-investigate transport mechanisms in high-κ gate stacks by mean of a complete experimental study performed :

- at low temperature (transport mechanisms)

- on various HKGS showing thickness variants (IL nature investigation, EMA validity)

Φe,HfO2[eV]

me,HfO2[units of m0]

(14)

Outline

Tunneling current modeling

– Self-consistent Poisson-Schrödinger simulation – Transmission probability

Experimental investigation of leakage current in HfO2 gate stacks

– Transport mechanisms

– Dielectric thicknesses extraction – Tunneling parameters extraction

– Dipole effect in Mg-capped HfO2 gate stacks

Conclusions

(15)

Outline

Tunneling current modeling

– Self-consistent Poisson-Schrödinger simulation – Transmission probability

Experimental investigation of leakage current in HfO2 gate stacks

– Transport mechanisms

– Dielectric thicknesses extraction – Tunneling parameters extraction

– Dipole effect in Mg-capped HfO2 gate stacks

Conclusions

(16)

Tunneling current modeling

Silicon substrate

IL

high-κ

metal gate

-2 -1 0 1 2

10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4

8Å IL - 20Å HfO2 - TiN

Gate current Ig [A.m-2 ]

Gate bias Vg [V]

nMOS

(17)

Tunneling current modeling

Silicon substrate

IL

high-κ

metal gate

Silicon substrate

IL

high-κ metal gate

-2 -1 0 1 2

10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4

8Å IL - 20Å HfO2 - TiN

Gate current Ig [A.m-2 ]

Gate bias Vg [V]

nMOS

(18)

Tunneling current modeling

• Tunneling current from 2D gas :

I

g

= Σ Q

i

(E

i

) . f

i

(E

i

) . T

i

(E

i

)

Silicon substrate

IL

high-κ

metal gate

Silicon substrate

IL

high-κ metal gate

-2 -1 0 1 2

10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4

8Å IL - 20Å HfO2 - TiN

Gate current Ig [A.m-2 ]

Gate bias Vg [V]

i

nMOS

(19)

Tunneling current modeling

• Tunneling current from 2D gas :

I

g

= Σ Q

i

(E

i

) . f

i

(E

i

) . T

i

(E

i

)

1. Qi(Vg) and Ei(Vg) : Poisson-Schrödinger simulation

Silicon substrate

IL

high-κ

metal gate

Silicon substrate

IL

high-κ metal gate

-2 -1 0 1 2

10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4

8Å IL - 20Å HfO2 - TiN

Gate current Ig [A.m-2 ]

Gate bias Vg [V]

i

nMOS

(20)

Tunneling current modeling

• Tunneling current from 2D gas :

I

g

= Σ Q

i

(E

i

) . f

i

(E

i

) . T

i

(E

i

)

1. Qi(Vg) and Ei(Vg) : Poisson-Schrödinger simulation 2. Ti(Ei) : transmission probability modeling

= fct ( mIL / ΦIL / mhigh-κ / Φhigh-κ )

Silicon substrate

IL

high-κ

metal gate

Silicon substrate

IL

high-κ metal gate

-2 -1 0 1 2

10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4

8Å IL - 20Å HfO2 - TiN

Gate current Ig [A.m-2 ]

Gate bias Vg [V]

i

nMOS

(21)

Outline

Tunneling current modeling

– Self-consistent Poisson-Schrödinger simulation – Transmission probability

Experimental investigation of leakage current in HfO2 gate stacks

– Transport mechanisms

– Dielectric thicknesses extraction – Tunneling parameters extraction

– Dipole effect in Mg-capped HfO2 gate stacks

Conclusions

(22)

Poisson-Schrödinger simulation

• Principle

Schrödinger equation

Poisson equation Charge

ρi(z)

Potential Vi(z) Potential

Vi-1(z)

|Vi-Vi-1| < ε? YES NO

0 2 4 6 8 10

0 1 2 3

0 1x107 2x107 3x107 4x107

Energy [eV]

Position [nm]

Si IL

HfO2

Charge [C.m -3] eg. : nMOS, 0.8nm IL – 2nm HfO2@Vg = 3V

(23)

Poisson-Schrödinger simulation

• Principle

• Dedicated to…

– … gate current modeling

Schrödinger equation

Poisson equation Charge

ρi(z)

Potential Vi(z) Potential

Vi-1(z)

|Vi-Vi-1| < ε? YES NO

0 2 4 6 8 10

0 1 2 3

0 1x107 2x107 3x107 4x107

Energy [eV]

Position [nm]

Si IL

HfO2

Charge [C.m -3] eg. : nMOS, 0.8nm IL – 2nm HfO2@Vg = 3V

(24)

Poisson-Schrödinger simulation

• Principle

• Dedicated to…

– … gate current modeling

– … parameter extraction from C(Vg) measurements

Schrödinger equation

Poisson equation Charge

ρi(z)

Potential Vi(z) Potential

Vi-1(z)

|Vi-Vi-1| < ε? YES NO

0 2 4 6 8 10

0 1 2 3

0 1x107 2x107 3x107 4x107

Energy [eV]

Position [nm]

Si IL

HfO2

Charge [C.m -3]

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 0.000

0.005 0.010 0.015 0.020 0.025

EOT = 1.16nm VFB = -0.35V Na = 2.1023m-3

Experiment PS simulation

Gate capacitance [F.m-2 ]

Gate bias Vg [V]

eg. : nMOS, 0.8nm IL – 2nm HfO2@Vg = 3V

(25)

Poisson-Schrödinger simulation

• Main features

– 1D simulation with closed boundaries

(26)

Poisson-Schrödinger simulation

• Main features

– 1D simulation with closed boundaries

– Simulation of dielectrics + whole substrate

high-κ

Quantum box

(Schrödinger equation) Classic

ρ(z)

20nm

IL

0 5 10 15 20 25 30

0 1 2 3 4 5 6 7 8 9 10

101 102 103 104 105 106 107 108 109

Energy [eV]

Position [nm]

quantum / classical treatment connection

VS = 0,7 eV

quantum box limit

ρe(z) (quantum)

ρe(z) (classical) Charge [C.m] -3

(27)

Poisson-Schrödinger simulation

• Main features

– 1D simulation with closed boundaries

– Simulation of dielectrics + whole substrate – Newton-Raphson convergence procedure

high-κ

Quantum box

(Schrödinger equation) Classic

ρ(z)

20nm

IL

0 5 10 15 20 25 30

0 1 2 3 4 5 6 7 8 9 10

101 102 103 104 105 106 107 108 109

Energy [eV]

Position [nm]

quantum / classical treatment connection

VS = 0,7 eV

quantum box limit

ρe(z) (quantum)

ρe(z) (classical) Charge [C.m] -3

(28)

Poisson-Schrödinger simulation

• Main features

– 1D simulation with closed boundaries

– Simulation of dielectrics + whole substrate – Newton-Raphson convergence procedure – Non-uniform mesh

high-κ

Quantum box

(Schrödinger equation) Classic

ρ(z)

20nm

IL

0 5 10 15 20 25 30

0 1 2 3 4 5 6 7 8 9 10

101 102 103 104 105 106 107 108 109

Energy [eV]

Position [nm]

quantum / classical treatment connection

VS = 0,7 eV

quantum box limit

ρe(z) (quantum)

ρe(z) (classical) Charge [C.m] -3

(29)

Poisson-Schrödinger simulation

• Main features

– 1D simulation with closed boundaries

– Simulation of dielectrics + whole substrate – Newton-Raphson convergence procedure – Non-uniform mesh

– Electrons + holes both considered

high-κ

Quantum box

(Schrödinger equation) Classic

ρ(z)

20nm

IL

0 5 10 15 20 25 30

0 1 2 3 4 5 6 7 8 9 10

101 102 103 104 105 106 107 108 109

Energy [eV]

Position [nm]

quantum / classical treatment connection

VS = 0,7 eV

quantum box limit

ρe(z) (quantum)

ρe(z) (classical) Charge [C.m] -3

0 25 50 75 100 125 150

0.0 0.4 0.8 1.2 1.6 2.0

0 1x104 2x104 3x104 4x104

Energy [eV]

Position [nm]

Depletion profile Approximated

profile Charge [C.m] -3

(30)

Poisson-Schrödinger simulation : WFP

• Conventional PS resolution : simulation of Silicon substrate only

-2 -1 0 1 2 3 4 5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0 1 2 3 4

Energy [eV]

Position [nm]

without WFP

Wavefunction L0 [u.a.]

Vg= 2V

(31)

Poisson-Schrödinger simulation : WFP

• Conventional PS resolution : simulation of Silicon substrate only

• This work : Silicon substrate + gate dielectrics both included

-2 -1 0 1 2 3 4 5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0 1 2 3 4

Energy [eV]

Position [nm]

high-κ IL

with WFP without WFP

Wavefunction L0 [u.a.]

Vg= 2V

(32)

Poisson-Schrödinger simulation : WFP

• Conventional PS resolution : simulation of Silicon substrate only

• This work : Silicon substrate + gate dielectrics both included

Without WFP : 1Å error in EOT extraction

-2 -1 0 1 2 3 4 5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0 1 2 3 4

Energy [eV]

Position [nm]

high-κ IL

with WFP without WFP

Wavefunction L0 [u.a.]

-4 -3 -2 -1 0 1 2 3

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Simulation with WFP

without WFP

Cox = εSiO2 / EOT

Gate capacitance [F.m-2 ]

Gate bias Vg [V]

EOT = 1.23nm Vg= 2V nMOS

(33)

Poisson-Schrödinger simulation : VB description

• Conduction band description : Effective Mass Approximation OK

(34)

Poisson-Schrödinger simulation : VB description

• Conduction band description : Effective Mass Approximation OK

• Holes description : bands centered around k=0

degeneracy anisotropy

non-parabolicity

k

E

(split-off band)

0 EHH(k) ELH(k)

ESO(k)

HH LH [Guillaume PhD ’05]

(35)

Poisson-Schrödinger simulation : VB description

• Conduction band description : Effective Mass Approximation OK

• Holes description : bands centered around k=0

degeneracy anisotropy

non-parabolicity

k

E

(split-off band)

0 EHH(k) ELH(k)

ESO(k)

HH LH [Guillaume PhD ’05]

VB non-parabolicity

integrated in PS simulation

(36)

Poisson-Schrödinger simulation : VB description

• Conduction band description : Effective Mass Approximation OK

• Holes description : bands centered around k=0

degeneracy anisotropy

non-parabolicity

• Main idea: advanced 2D-holes description using analytical E-k fitted on 6x6 k.p results

[DeMichielis et al., IEEE TED 54, 2008]

Analytical 2D-holes Density-of-States

k

E

(split-off band)

0 EHH(k) ELH(k)

ESO(k)

HH LH [Guillaume PhD ’05]

VB non-parabolicity

integrated in PS simulation

(37)

Poisson-Schrödinger simulation : VB description

• Impact on EOT extraction ?

-0.02 -0.01 0.00 0.01 0.02 0.03

0.1 0.2 0.3 0.4 0.5 0.6 0.7

WFP WFP

Effective Mass Approximation Advanced VB description

accumulation inversion

Darkspace [nm]

Charge [C.m-2]

13% difference

nMOS

Coignus et al., SISC ’09

(38)

Poisson-Schrödinger simulation : VB description

• Impact on EOT extraction ?

-0.02 -0.01 0.00 0.01 0.02 0.03

0.1 0.2 0.3 0.4 0.5 0.6 0.7

WFP WFP

Effective Mass Approximation Advanced VB description

accumulation inversion

Darkspace [nm]

Charge [C.m-2]

5% difference

nMOS

Coignus et al., SISC ’09

(39)

Poisson-Schrödinger simulation : VB description

• Impact on EOT extraction ?

This advanced approach does not significantly impact EOT extraction

-0.02 -0.01 0.00 0.01 0.02 0.03

0.1 0.2 0.3 0.4 0.5 0.6 0.7

WFP WFP

Effective Mass Approximation Advanced VB description

accumulation inversion

Darkspace [nm]

Charge [C.m-2]

nMOS

Coignus et al., SISC ’09

(40)

Outline

Tunneling current modeling

– Self-consistent Poisson-Schrödinger simulation – Transmission probability

Experimental investigation of leakage current in HfO2 gate stacks

– Transport mechanisms

– Dielectric thicknesses extraction – Tunneling parameters extraction

– Dipole effect in Mg-capped HfO2 gate stacks

Conclusions

(41)

Transmission probability modeling

• Transmission probability parameters :

• Several approaches in literature, differing by their accuracy and nature (analytical or numerical)

p-Silicon

Metal High-κ IL BC

thigh-k tIL

ΦIL Φhigh-k

me,IL me,high-k

Vg = VFB

p-Silicon High-κ IL

BC

Vox,IL

Vg > VFB

E [eV]

0

Vox,high-k

(42)

Transmission probability modeling

• Airy formalism [Allen JAP ’96]

– Exact solution of Schrödinger equation in a triangular barrier

– Solving wavefunction continuity at each triangular barrier transition provides T

↑↑ exact solution

↓↓ use of Airy function, inadequate to standard compact model libraries

x

Airy formalism

« Exact » solution Analytical

approach ?

IL high-κ

0 1 2 3

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101

Airy

Transmission probability

E

0

(43)

Transmission probability modeling

x WKB

x

Airy formalism

« Exact » solution Analytical

approach ?

IL high-κ

0 1 2 3

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101

Airy WKB

Transmission probability

Energy [eV]

• WKB (1926)

– Analytical method

– Valid only for smoothly varying potential barriers

↑↑ analytical approach

↓↓ poor accuracy (reflections on potential discontinuities at interfaces not included)

eg. : 0.8nm SiO2 2nm HfO

E

0

(44)

Transmission probability modeling

• Transfer matrix [Ando JAP ’87]

– Computational method: discretization

of an arbitrary barrier by N square barriers – Solving wavefunction continuity at each

square barrier transition provides T

↑↑ accuracy (N > 20)

↓↓ numerical approach, computational time

x

Transfer matrix

x WKB

x

Airy formalism

« Exact » solution Analytical

approach ?

IL high-κ

0 1 2 3

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101

Airy WKB

Transfer matrix Advanced WKB

Transmission probability

E

0

(45)

Transmission probability modeling

• Advanced WKB

– Extended from WKB analytical formula – Provides multiplicative factor correcting for

potential discontinuities

↑↑ analytical approach

↑↑ accuracy

↓↓ validity : Direct Tunneling only

x

Transfer matrix

Advanced WKB

x WKB

x

Airy formalism

« Exact » solution Analytical

approach ?

IL high-κ

0 1 2 3

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101

Airy WKB

Transfer matrix Advanced WKB

Transmission probability

Energy [eV]

eg. : 0.8nm SiO2 2nm HfO

E

0

(46)

Transmission probability modeling

• Effective barrier height approximation

– Exact solution of Schrödinger equation in a squares barriers

– Solving wavefunction continuity at each triangular barrier transition provides T

↑↑ analytical approach

↑↑ accuracy in DT regime

↓↓ may lead to important error around TD – FN transitions

x

Transfer matrix

x WKB

Effective barrier

Advanced WKB

x

Airy formalism

« Exact » solution Analytical

approach ?

IL high-κ

0 1 2 3

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101

Airy WKB

Transfer matrix Advanced WKB Effective barrier

Transmission probability

E

0 Coignus et al., JVST B ’09

(47)

Outline

Tunneling current modeling

– Self-consistent Poisson-Schrödinger simulation – Transmission probability

Experimental investigation of leakage current in HfO2 gate stacks

– Transport mechanisms

– Dielectric thicknesses extraction – Tunneling parameters extraction

– Dipole effect in Mg-capped HfO2 gate stacks

Conclusions

(48)

Gate leakage mecanisms in HfO

2

gate stacks

metal

high-κ

p-type Silicon

e-

(49)

Gate leakage mecanisms in HfO

2

gate stacks

metal

high-κ

p-type Silicon

e-

TAT / PF T)

(50)

Gate leakage mecanisms in HfO

2

gate stacks

metal

high-κ

p-type Silicon

e- IL and high-k properties : unknown

(m, ε, Φ, tox)

TAT / PF T)

(51)

Gate leakage mecanisms in HfO

2

gate stacks

Issue 1 : Identification of transport mechanisms

current assisted

trap e temperatur current

tunneling direct

total

J J

J = +

/

Depends on T only via Qsc(T)

Qsc(T) dependant + temperature assisted metal

high-κ

p-type Silicon

e- IL and high-k properties : unknown

(m, ε, Φ, tox)

TAT / PF T)

(52)

Gate leakage mecanisms in HfO

2

gate stacks

Issue 1 : Identification of transport mechanisms

current assisted

trap e temperatur current

tunneling direct

total

J J

J = +

/

Depends on T only via Qsc(T)

Qsc(T) dependant + temperature assisted

low / high temperature measurements at constant Qsc (i.e. field)

metal

high-κ

p-type Silicon

e- IL and high-k properties : unknown

(m, ε, Φ, tox)

TAT / PF T)

(53)

Transport mechanisms : methodology

1. Several nMOS transistors tested

p Silicon / RTO SiO2 / n+ Polysilicon (ref. samples)

tSiO2 = 1.5 / 2.5 nm

Poly Si SiO2

p-Si

Poly Si SiO2

p-Si

(54)

Transport mechanisms : methodology

1. Several nMOS transistors tested

p Silicon / RTO SiO2 / n+ Polysilicon (ref. samples)

tSiO2 = 1.5 / 2.5 nm

p Silicon / IL / ALD HfO2 / CVD TiN

Poly Si SiO2

p-Si

Poly Si SiO2

p-Si

TiN HfO2

IL

p-Si

TiN HfO2

IL p-Si

TiN HfO2

IL p-Si

tIL (RTO) = 1.2 / 1.5 / 2.0 nm tHfO2 = cte = 3 nm

Références

Documents relatifs

Different routes have been envisaged for the synthesis of the target 3D systems using two types of materials: 3,3',5,5'-tetrabromo-2,2'-bithiophene (1)

A new two-dimensional self-consistent Monte Carlo simulator including multi sub-band transport in 2D electron gas is described and applied to thin-film SOI double gate MOSFETs..

In this paper, with the purpose of system-level modeling of the UWB-IR transmitter, SCIENCE framework is being used as a consecutive model of pulse generator, low-pass

L'analyse de cette catégorie grammaticale, nous a permis de constater que plus de 50% du groupe classe ont employé des indicateurs spatio-temporels dans leurs

The offset to lower energies of the PL peak position with respect to the direct and indirect band gaps of approx- imately 100 and 70 meV, respectively, can be associated with heating

The high temperature PV approach requires operating solar cells at very high temperatures. Such temperature range is not sufficiently large for the selected

For example, V ∗ (LN ) is the expected value of attacking LN ; V (C, pr) is the outcome of running 4AL Level 2 on component C and pivoting reward function pr.. Proposition 1 Let LN be

Let us consider a structure composed of multiple periodic cylindrical surfaces of infinite long metallic wires, excited by an infinite long line source in its center