• Aucun résultat trouvé

Phase transition and symmetry breaking

N/A
N/A
Protected

Academic year: 2022

Partager "Phase transition and symmetry breaking"

Copied!
61
0
0

Texte intégral

(1)

Jean Dolbeault

http://www.ceremade.dauphine.fr/∼dolbeaul Ceremade, Universit´e Paris-Dauphine

November 6, 2019 FLACAM 2019

French Latin - American Conference on New Trends in Applied Mathematics

5 - 8 November 2019, Santiago, Chile

(2)

Outline

Phase transitionandsymmetry breaking, a warning Preliminaries: two observations

BPhase transition and asymptotic behaviour in aflockingmodel with a mean field term

BMoving planes and eigenvalues

Symmetry and symmetry breaking in interpolation inequalities BGagliardo-Nirenberg-Sobolev inequalities on the sphere B[Keller-Lieb-Thirring inequalities on the sphere]

BCaffarelli-Kohn-Nirenberg inequalities Ground states with magnetic fields

BMagnetic rings, a one-dimensional magnetic interpolation inequality BInterpolation inequalities in dimensions2and3, spectral estimates

Aharonov-Bohm magnetic fields inR2

(3)

Phase transition and symmetry breaking

The notion ofphase transition in physics

BEhrenfest’s classification and more recent definitions Symmetry breaking

BThe principles of Pierre Curie

BA mathematical point of view: the symmetry of the ground state Bifurcations, interpolation inequalities and evolution equations BSubcritical interpolation inequalities depending on a single parameter

BThe non-linear problemversusthe linearized spectral problem BNonlinear flows as a tool: generalized Bakry-Emery method BEnergy and relaxation

(4)

Preliminaries

Phase transition and asymptotic behaviour in aflockingmodel with a mean field term:

thehomogeneous Cucker-Smale / McKean-Vlasov model PhD thesis of Xingyu Li, https://arxiv.org/abs/1906.07517 Moving planes and eigenvalues

(Old) joint work with P. Felmer

(5)

A simple version of the Cucker-Smale model

A model for bird flocking (simplified version)

∂f

∂t =D∆vf +∇v·(∇vφ(v)f −uf f) whereuf

v f dv is the average velocity f is a probability measure

left:φ(v) =1

4|v|4−1

2|v|2 right:φ(v)−uf ·v

-2 -1 1 2

-1.0 -0.5 0.5 1.0 1.5 2.0

-2 -1 1 2

-2 2 4 6

[J. Tugaut, 2014]

[A. Barbaro, J. Ca˜nizo, J.A. Carrillo, and P. Degond, 2016]

(6)

Stationary solutions: phase transition in dimension d = 1

0.1 0.2 0.3 0.4 0.5 0.6

-1.0 -0.5 0.5 1.0

d = 1: there exists a bifurcation pointD=D such that the only stationary solution corresponds touf = 0 ifD>D and there are three solutions corresponding touf = 0,±u(D)ifD<D

(7)

Phase transition in dimension d = 2

0.1 0.2 0.3 0.4

-1.0 -0.5 0.5 1.0

(8)

Dynamics and free energy

Thefree energy F[f] :=D

ˆ

Rd

f logf dv+ ˆ

Rd

fφdv−1 2|uf|2 decays according to

d

dtF[f(t,·)] =− ˆ

Rd

D∇vf

f +∇vφ−uf

2

f dv d = 1: ifF[f(t = 0,·)]<F[f?(0)] andD<D, then

F[f(t,·)]− Fh f?(±)i

≤C e−λt

d = 1: λis the eigenvalue of the linearized problem atf?(±) in the weighted space L2

(f?(±))−1

with scalar product

(9)

High and low noise regimes

∂f

∂t =D∆f +∇ ·

(v−uf)f +αv |v|2−1 f

Heret≥0 denotes the time variable,v∈Rd is the velocity variable uf(t) =

´

Rdv f(t,v)dv

´

Rdf(t,v)dv is themean velocity [J. Tugaut],[A. Barbaro, J. Canizo, J. Carrillo, P. Degond]

Theorem (X. Li)

Let d≥1andα >0. There exists a critical D>0 such that (i) D>D: only one stable stationary distribution withuf =0 (ii) D<D: one instable isotropic stationary distribution withuf =0 and a continuum of stable non-negative non-symmetric polarized stationary distributions (unique up to a rotation)

(10)

Relative entropy and related quantities

Free energy F[f] :=D

ˆ

Rd

f logf dv+ ˆ

Rd

αdv−1 2|uf|2 Relative entropy with respect to a stationary solutionfu

F[f]− F[fu] =D ˆ

Rd

f log f

fu

dv−1

2|uf −u|2 Relative Fisher information

I[f] :=

ˆ

Rd

D ∇f

f +αv|v|2+ (1−α)v−uf

2

f dv Thelocal Gibbs state

1(1|v−u|2+α|v|4α|v|2)

(11)

Gibbs state versus stationary solution

F[f]is a Lyapunov function in the sense that d

dtF[f(t,·)] =− I[f(t,·)]

whereF[f]− F[fu] =D ˆ

Rd

f log f

fu

dv−1

2|uf −u|2and

I[f] =D2 ˆ

Rd

∇log

f Gf

2

f dv

d

dtF[f(t,·)] = 0if and only iff =Gf is a stationary solution

(12)

Stability and coercivity

Q1,u[g] := lim

ε→0

2 ε2F

fu(1 +εg)

=D ˆ

Rd

g2fudv−D2|vg|2 wherevg := D1 ´

Rdv g fudv Q2,u[g] := lim

ε→0

1 ε2I

fu(1 +εg)

=D2 ˆ

Rd

|∇g−vg|2fudv Stability: Q1,u≥0 ?

Coercivity: Q2,u≥λQ1,u for someλ >0 ?

(13)

Stability of the isotropic stationary solution

Q1,0[g] =D ˆ

Rd

g2f0dv−D2|vg|2

We consider the space of the functionsg ∈L2(f0dv)such that ˆ

Rd

g f0dv = 0

Lemma (X. Li)

Q1,0is a nonnegative quadratic form if and only if D≥D and Q1,0[g]≥η(D)

ˆ

Rd

g2f0dv for some explicitη(D)>0 if D>D

(14)

Stability of the polarized stationary solution

Corollary (X. Li)

F has a unique nonnegative minimizer with unit mass, f0, if D ≥D. Otherwise, if D<D, we have

minF[f] =F[fu]<F[f0] for any u∈Rd such that|u|=u(D).

The minimum is taken on L1+ Rd,(1 +|v|4)dv

such that´

Rdf dv= 1 Corollary (X. Li)

Let D<D,|u|=u(D)6= 0. Then

(15)

A coercivity result

Poincar´e inequality: if´

Rdh fudv= 0 ˆ

Rd

|∇h|2fudv≥ΛD

ˆ

Rd

|h|2fudv Letf ∈L1(Rd)with´

Rdf dv = 1,g = (f −fu)/fu and let u[f] = u(D)|uf| uf ifD <D anduf 6=0. Otherwise takeu[f] =0 Proposition (X. Li)

Let d≥1,α >0, D >0. Ifu=0, then Q2,u[g]≥ CDQ1,u[g]

Otherwise, if|u|=u(D)6= 0 for some D∈(0,D), then Q2,u[g]≥ CD 1−κ(D) (vg·u)2

|vg|2|u|2Q1,u[g]

(16)

High noise: convergence to the isotropic solution

Theorem (X. Li)

For any d≥1and anyα >0, if D >D, then for any solution f with nonnegative initial datum fin of mass1 such thatF[fin]<∞, there is a positive constant C such that, for any time t>0,

0≤ F[f(t,·)]− F[f0]≤C e−CDt

(17)

Non-local scalar product and linearized evolution operator

In terms off =f0(1 +g)the evolution equation is f0

∂g

∂t =D∇ ·

(∇g−vg)f0−vgg f0

withvg =D1´

Rdv g f0dv,Q1,0[g] =hg,gi=D´

Rdg g f0dv−D2vg·vg

h·,·iis a scalar productonX :=

g ∈L2(f0dv) : ´

Rdg f0dv= 0

∂g

∂t =Lg−vg·

D∇g−(v+∇φα)g

, Lg :=D∆g−(v+∇φα)·(∇g−vg)

Lemma (X. Li)

Assume that D>D andα >0. The norm g7→p

hg,giis equivalent to the standard norm onL2(f0dv)

The linearized operatorLis self-adjoint onX and

− hg,Lgi=Q2,0[g]

(18)

The scalar producth·,·iis well adapted to the linearized evolution operator in the sense that a solution of thelinearized equation

∂g

∂t =Lg with initial datumg0∈ X is such that

1 2

d

dtQ1,0[g] = 1 2

d

dthg,gi=hg,Lgi=−Q2,0[g] and has exponential decay. We know that

hg(t,·),g(t,·)i=hg0,g0ie−2CDt ∀t ≥0

(19)

Low noise and partially symmetric solutions

Proposition (X. Li)

Letα >0, D>0and consider a solution f ∈C0 R+,L1(Rd) with initial datum fin∈L1+(Rd)such that F[fin]<F[f0] and

ufin = (u,0. . .0)for some u6= 0. We further assume that

fin(v1,v2, . . .vi−1,vi, . . .) =fin(v1,v2, . . .vi−1,−vi, . . .)for any i = 2, 3,. . . d . Then

lim sup

t→+∞

etkf(t,·)−fukL1(Rd)<∞ 0≤ F[f(t,·)]− F[fu]≤C eλt ∀t ≥0 holds withλ=CD 1−κ(D)

>0

Without symmetry assumption, the question of the rate of convergence to a solution / to the set of polarized solutions is still open

(20)

Moving planes and eigenvalues

(Old) joint work with P. Felmer

(21)

The theorem of Gidas, Ni and Nirenberg

Theorem

[Gidas, Ni and Nirenberg, 1979 and 1980]Let u∈C2(B), B=B(0,1)⊂Rd, be a solution of

∆u+f(u) = 0in B, u= 0on∂B

and assume that f isLipschitz. If u ispositive, then it isradially symmetric and decreasingalong any radius: u0(r)<0for any r ∈(0,1]

Extension: ∆u+f(r,u) = 0,r =|x|if ∂f∂r ≤0... a “cooperative” case

(22)

An extension of the theorem of Gidas, Ni and Nirenberg

Theorem (JD, P. Felmer, 1999)

∆u+λf(r,u) = 0in B, u= 0on∂B

and assume that f ∈C1(R+×R+)(no assumption on the sign of ∂f∂r) There existsλ12with0< λ1≤λ2such that

(i)Monotonicity: ifλ∈(0, λ1), then drd(u−λu0)<0where u0is the solution of∆u0+λf(r,0) = 0

(ii)Symmetry: ifλ∈(0, λ2), then u is radially symmetric

(23)

Symmetry and symmetry breaking in interpolation inequalities

without magnetic field

Gagliardo-Nirenberg-Sobolev inequalities on the sphere [Keller-Lieb-Thirring inequalities on the sphere]

Caffarelli-Kohn-Nirenberg inequalities

Joint work with M.J. Esteban, M. Loss, M. Kowalczyk,...

(24)

A result of uniqueness on a classical example

On the sphereSd, let us consider the positive solutions of

−∆u+λu=up−1 p∈[1,2)∪(2,2]ifd≥3,2=d−22d

p∈[1,2)∪(2,+∞)ifd = 1,2 Theorem

Ifλ≤d , u≡λ1/(p−2)is the unique solution

[Gidas & Spruck, 1981],[Bidaut-V´eron & V´eron, 1991]

(25)

Bifurcation point of view and symmetry breaking

2 4 6 8 10

2 4 6 8

Figure:(p−2)λ7→(p−2)µ(λ)with d= 3

k∇uk2L2(Sd)+λkuk2L2(Sd)≥µ(λ)kuk2Lp(Sd)

Taylor expansion ofu= 1 +ε ϕ1as ε→0with−∆ϕ1=dϕ1

µ(λ)< λ if and only if λ > p−2d

BThe inequality holds withµ(λ) =λ= p−2d [Bakry & Emery, 1985]

[Beckner, 1993],[Bidaut-V´eron & V´eron, 1991, Corollary 6.1]

(26)

The Bakry-Emery method on the sphere

Entropy functional Ep[ρ] := p−21

Sdρ2p dµ− ´

Sdρdµ2pi

if p6= 2 E2[ρ] :=´

Sdρlog

ρ kρkL1 (Sd)

dµ Fisher informationfunctional

Ip[ρ] :=´

Sd|∇ρ1p|2

[Bakry & Emery, 1985]carr´e du champmethod: use the heat flow

∂ρ

∂t = ∆ρ and observe that dtdEp[ρ] =− Ip[ρ]

d

(27)

The evolution under the fast diffusion flow

To overcome the limitationp≤2#, one can consider a nonlinear diffusion of fast diffusion / porous medium type

∂ρ

∂t = ∆ρm

[Demange],[JD, Esteban, Kowalczyk, Loss]: for anyp∈[1,2] Kp[ρ] := d

dt

Ip[ρ]−dEp[ρ]

≤0

1.0 1.5 2.5 3.0

0.0 0.5 1.5 2.0

(p,m)admissible region,d = 5

(28)

References

JD, M. J. Esteban, M. Kowalczyk, and M. Loss. Improved interpolation inequalities on the sphere. Discrete and Continuous Dynamical Systems Series S, 7 (4): 695-724, 2014.

JD, M.J. Esteban, and M. Loss. Interpolation inequalities on the sphere: linearversusnonlinear flows. Annales de la facult´e des sciences de Toulouse S´er. 6, 26 (2): 351-379, 2017

JD, M.J. Esteban. Improved interpolation inequalities and stability. Preprint, 2019 arXiv:1908.08235

(29)

Optimal inequalities

Withµ(λ) =λ= p−2d : [Bakry & Emery, 1985]

[Beckner, 1993],[Bidaut-V´eron & V´eron, 1991, Corollary 6.1]

k∇uk2L2(Sd)≥ d p−2

kuk2Lp(Sd)− kuk2L2(Sd)

∀u∈H1(Sd)

d ≥3,p∈[1,2)orp∈(2,d−22d ) d = 1ord= 2,p∈[1,2)orp∈(2,∞)

p=−2 = 2d/(d−2) =−2withd= 1 [Exner, Harrell, Loss, 1998]

k∇uk2L2(S1)+1 4

ˆ

S1

1 u2

−1

≥ 1

4kuk2L2(S1) ∀u∈H1+(S1)

(30)

Caffarelli-Kohn-Nirenberg, symmetry and symmetry breaking results, and weighted nonlinear flows

Joint work with M.J. Esteban and M. Loss

(31)

Critical Caffarelli-Kohn-Nirenberg inequality

LetDa,b:=n

v ∈Lp Rd,|x|−bdx

: |x|−a|∇v| ∈L2 Rd,dxo ˆ

Rd

|v|p

|x|b p dx 2/p

≤ Ca,b

ˆ

Rd

|∇v|2

|x|2a dx ∀v ∈ Da,b holds under conditions ona andb

p= 2d

d−2 + 2 (b−a) (critical case) BAn optimal function among radial functions:

v?(x) =

1 +|x|(p−2) (ac−a)p−22

and C?a,b= k |x|−bv?k2p

k |x|−a∇v?k22

Question: Ca,b= C?a,b (symmetry) orCa,b>C?a,b (symmetry breaking) ?

(32)

Critical CKN: range of the parameters

Figure: d = 3 ˆ

Rd

|v|p

|x|b p dx 2/p

≤ Ca,b

ˆ

Rd

|∇v|2

|x|2a dx

a b

0 1

1

b=a

b=a+ 1

a=d−22 p

p= 2d

d−2 + 2 (b−a) a<ac := (d−2)/2

a≤b≤a+ 1ifd≥3, [Il’in (1961)]

[Glaser, Martin, Grosse, Thirring (1976)]

(33)

Linear instability of radial minimizers:

the Felli-Schneider curve

The Felli & Schneider curve bFS(a) := d(ac−a)

2p

(ac−a)2+d−1 +a−ac

a b

0

[Smets],[Smets, Willem],[Catrina, Wang],[Felli, Schneider]

v 7→C?a,b ˆ

Rd

|∇v|2

|x|2a dx− ˆ

Rd

|v|p

|x|b p dx 2/p

is linearly instable atv =v?

(34)

Symmetry versus symmetry breaking:

the sharp result in the critical case

[JD, Esteban, Loss (2016)]

a b

0

Theorem

Let d≥2and p<2. If either a∈[0,ac)and b>0, or a<0 and

(35)

The symmetry proof in one slide

Achange of variables: v(|x|α−1x) =w(x),Dαv= α∂v∂s,1sωv kvkL2p,d−n(Rd) ≤Kα,n,pkDαvkϑL2,d−n(Rd)kvk1−ϑLp+1,d−n(Rd) ∀v ∈Hpd−n,d−n(Rd)

Concavity of the R´enyi entropy power: with Lα=−DαDα2 u00+n−1s u0

+s12ωuand ∂u∂t =Lαum

dtd G[u(t,·)] ´

Rdum1−σ

≥(1−m) (σ−1)´

Rdum LαP−

´

Rd´u|DαP|2

Rdum

2

dµ + 2´

Rd

α4 1−1n

P00Ps0α2(n−1)ωPs2

2

+s22

ωP0ωsP

2 umdµ + 2´

Rd

(n−2) α2FS−α2

|∇ωP|2+c(n,m,d)|∇Pω2P|4

umdµ Elliptic regularity and the Emden-Fowler transformation: justifying theintegrations by parts

(36)

The variational problem on the cylinder

BWith the Emden-Fowler transformation

v(r, ω) =ra−acϕ(s, ω) with r =|x|, s=−logr and ω= x r the variational problem becomes

Λ7→µ(Λ) := min

ϕ∈H1(C)

k∂sϕk2L2(C)+k∇ωϕk2L2(C)+ Λkϕk2L2(C)

kϕk2Lp(C)

is a concave increasing function Restricted to symmetric functions, the variational problem becomes

µ?(Λ) := min

ϕ∈H1( )

k∂sϕk2L2(Rd)+ Λkϕk2L2(Rd)

kϕk2?(1) Λα

(37)

Numerical results

20 40 60 80 100

10 20 30 40 50

symmetric non-symmetric asymptotic

bifurcation µ

Λα µ(Λ)

(Λ) =µ(1) Λα

Parametric plot of the branch of optimal functions forp= 2.8, d= 5.

Non-symmetric solutions bifurcate from symmetric ones at a bifurcation pointΛ1computed by V. Felli and M. Schneider. The branch behaves for large values ofΛ as shown by F. Catrina and Z.-Q. Wang

(38)

Three references

Lecture notes onSymmetry and nonlinear diffusion flows...

a course on entropy methods (see webpage)

[JD, Maria J. Esteban, and Michael Loss]Symmetry and symmetry breaking: rigidity and flows in elliptic PDEs

... the elliptic point of view: Proc. Int. Cong. of Math., Rio de Janeiro, 3: 2279-2304, 2018.

[JD, Maria J. Esteban, and Michael Loss]Interpolation inequalities, nonlinear flows, boundary terms, optimality and linearization... the parabolic point of view

Journal of elliptic and parabolic equations, 2: 267-295, 2016.

(39)

With magnetic fields (1/3) in dimensions 2 and 3

Interpolation inequalities and spectral estimates

Estimates, numerics; an open question on constant magnetic fields

(40)

Magnetic interpolation inequalities in the Euclidean space

BThree interpolation inequalities and their dual forms BEstimates in dimensiond = 2for constant magnetic fields

Lower estimates

Upper estimates and numerical results

A linear stability result (numerical) and an open question

Assumptions are not detailed: A∈Ld+εloc (Rd),ε >0+ integral conditions as in[Esteban, Lions, 1989]

Estimates are given (almost) only in the casep>2 but similar estimates hold in the other cases

(41)

Magnetic Laplacian and spectral gap

In dimensionsd= 2andd = 3: themagnetic Laplacianis

−∆Aψ=−∆ψ−2iA· ∇ψ+|A|2ψ−i(divA)ψ

where the magnetic potential (resp. field) isA(resp.B=curlA) and H1A(Rd) :=

ψ∈L2(Rd) : ∇Aψ∈L2(Rd) , ∇A:=∇+iA Spectral gap inequality

k∇Aψk2L2(Rd)≥Λ[B]kψk2L2(Rd) ∀ψ∈H1A(Rd) Λdepends only on B=curlA

Assumption: equality holds for someψ∈H1A(Rd) IfBis a constant magnetic field,Λ[B] =|B|

Ifd= 2, spec(−∆A) ={(2j+ 1)|B| : j∈N} is generated by the Landau levels. TheLowest Landau Levelcorresponds to j= 0

(42)

Magnetic interpolation inequalities

k∇Aψk2L2(Rd)+αkψk2L2(Rd)≥µB(α)kψk2Lp(Rd) ∀ψ∈H1A(Rd) for anyα∈(−Λ[B],+∞)and anyp∈(2,2),

k∇Aψk2L2(Rd)+βkψk2Lp(Rd)≥νB(β)kψk2L2(Rd) ∀ψ∈H1A(Rd) for anyβ∈(0,+∞)and any p∈(1,2)

k∇Aψk2L2(Rd)≥γ ˆ

Rd

|ψ|2log |ψ|2 kψk2L2(Rd)

!

dx+ξB(γ)kψk2L2(Rd)

(limit case corresponding top= 2) for anyγ∈(0,+∞)

Cp:=

 minu∈H1(Rd)\{0}

k∇uk2L2 (Rd

)+kuk2L2 (Rd

)

kuk2

Lp(Rd)

if p∈(2,2)

min k∇uk

2

L2 (Rd)+kuk2

Lp(Rd) if ∈(1,2)

(43)

A statement

Theorem

p∈(2,2): µBis monotone increasing on(−Λ[B],+∞), concave and

α→(−Λ[B])lim +

µB(α) = 0 and lim

α→+∞µB(α)αd−22 dp = Cp

p∈(1,2): νB is monotone increasing on(0,+∞), concave and

β→0lim+νB(β) = Λ[B] and lim

β→+∞νB(β)β2p+d2(2−p)p = Cp

ξBis continuous on(0,+∞), concave, ξB(0) = Λ[B] and ξB(γ) =d2γ log πγe2

(1 +o(1)) as γ→+∞ Constant magnetic fields: equality is achieved

Nonconstant magnetic fields: only partial answers are known

(44)

2 4 6 8 10 2

4 6 8

(45)

Numerical results

and the symmetry issue

(46)

2 4 6 8 10

-1 1 2 3

0.004 0.003 0.002 0.001 0.001 0.002 0.003

-0.02

-0.04

-0.06

-0.08

2 4

-1

6

Figure: Cased= 2,p= 3,B= 1

(47)

An open question of symmetry

[Bonheure, Nys, Van Schaftingen, 2016]for a fixed α >0 and forBsmall enough, the optimal functions are radially symmetric functions,i.e., belong toC0

This regime is equivalent to the regime asα→+∞for a givenB, at least if the magnetic field is constant

Numerically our upper and lower bounds are (in dimensiond = 2, for a constant magnetic field) numerically extremely close

The optimal function in C0is linearly stable with respect to perturbations inC1

A reference: JD, M.J. Esteban, A. Laptev, M. Loss. Interpolation inequalities and spectral estimates for magnetic operators. Annales Henri Poincar´e, 19 (5): 1439-1463, May 2018

BProve that the optimality case is achieved among radial function if d= 2andB is a constant magnetic field

(48)

With magnetic fields (2/3) Magnetic rings: the case of S 1

BA magnetic interpolation inequality onS1: withp>2 kψ0+i aψk2L2(S1)+αkψk2L2(S1) ≥µa,p(α)kψk2Lp(S1)

BConsequences

[A Keller-Lieb-Thirring inequality]

A new Hardy inequality for Aharonov-Bohm magnetic fields inR2

(49)

Magnetic flux, a reduction

Assume thata:R→Ris a2π-periodic function such that its restriction to(−π, π]≈S1is in L1(S1)and define the space

Xa :=

ψ∈Cper(R) : ψ0+i aψ∈L2(S1)

A standard change of gauge (see e.g.[Ilyin, Laptev, Loss, Zelik, 2016])

ψ(s)7→ei

´s

−π(a(s)−¯a)

ψ(s) wherea¯:=´π

−πa(s)dσis themagnetic flux, reduces the problem to ais a constant function

For anyk ∈Z,ψbys7→eiksψ(s)shows thatµa,p(α) =µk+a,p(α) a∈[0,1]

µa,p(α) =µ1−a,p(α)because

0+i aψ|2=|χ0+i(1−a)χ|2=

ψ0−i aψ

2ifχ(s) =e−isψ(s) a∈[0,1/2]

(50)

Optimal interpolation

We want to characterize theoptimal constant in the inequality kψ0+i aψk2L2(S1)+αkψk2L2(S1) ≥µa,p(α)kψk2Lp(S1)

written for anyp>2,a∈(0,1/2],α∈(−a2,+∞),ψ∈Xa

µa,p(α) := inf

ψ∈Xa\{0}

´π

−π0+i aψ|2+α|ψ|2 dσ kψk2Lp(S1)

p=−2 = 2d/(d−2)withd = 1[Exner, Harrell, Loss, 1998]

p= +∞[Galunov, Olienik, 1995] [Ilyin, Laptev, Loss, Zelik, 2016]

limα→−a2µa,p(α) = 0[JD, Esteban, Laptev, Loss, 2016]

Using a Fourier seriesψ(s) =P

kZψkeiks, we obtain that

0 X

(51)

An interpolation result for the magnetic ring

Theorem

For any p>2, a∈R, andα >−a2a,p(α)is achieved and

(i) if a∈[0,1/2]and a2(p+ 2) +α(p−2)≤1, thenµa,p(α) =a2+α and equality is achieved only by the constant functions

(ii) if a∈[0,1/2]and a2(p+ 2) +α(p−2)>1, thenµa,p(α)<a2+α and equality is not achieved among the constant functions

Ifα >−a2, a7→µa,p(α)is monotone increasing on(0,1/2)

-0.2 -0.1 0.1 0.2 0.3 0.4

0.1 0.2 0.3 0.4 0.5

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2 0.4 0.6 0.8 1.0 1.2

Figure:α7→µa,p(α) withp= 4 and (left)a= 0.45 or (right)a= 0.2

(52)

Elimination of the phase

Let us define

Qa,p,α[u] := ku0k2L2(S1)+a2ku−1k−2L2(S1)+αkuk2L2(S1)

kuk2Lp(S1)

Lemma

For any a∈(0,1/2), p>2,α >−a2, µa,p(α) = min

u∈H1(S1)\{0}Qa,p,α[u]

is achieved by a function u>0

(53)

A new Hardy inequality

ˆ

R2

|(i∇+a) Ψ|2dx≥τ ˆ

R2

ϕ(x/|x|)

|x|2 |Ψ|2dx ∀ϕ∈Lq(S1), q∈(1,+∞) Corollary

Let p>2, a∈[0,1/2], q=p/(p−2)and assume thatϕis a

non-negative function inLq(S1). Then the inequality holds with τ >0 given by

αa,p τkϕkLq(S1)

= 0

Moreover,τ=a2/kϕkLq(S1) if4a2+kϕkLq(S1)(p−2)≤1

For anya∈(0,1/2), by takingϕconstant, small enough in order that 4a2+kϕkLq(S1)(p−2)≤1, we recover the inequality

ˆ

R2

|(i∇+a) Ψ|2dx≥a2 ˆ

R2

|Ψ|2

|x|2 dx

[Laptev, Weidl, 1999]constant magnetic fields;[Hoffmann-Ostenhof, Laptev, 2015]in Rd,d≥3

(54)

With magnetic fields (3/3) Aharonov-Bohm magnetic fields

in R 2

Aharonov-Bohm effect

[Interpolation and Keller-Lieb-Thirring inequalities inR2] Aharonov-Symmetry and symmetry breaking

(55)

Aharonov-Bohm effect

A major difference between classical mechanics and quantum mechanics is that particles are described by a non-local object, the wave function. In 1959 Y. Aharonov and D. Bohm proposed a series of experiments intended to put in evidence such phenomena which are nowadays calledAharonov-Bohm effects

One of the proposed experiments relies on a long, thin solenoid which produces a magnetic field such that the region in which the magnetic field is non-zero can be approximated by a line in dimensiond= 3 and by a point in dimensiond= 2

B[Physics today, 2009]“The notion, introduced 50 years ago, that electrons could be affected by electromagnetic potentials without coming in contact with actual force fields was received with a skepticism that has spawned a flourishing of experimental tests and expansions of the original idea.” Problem solved by considering appropriate weak solutions !

BIs the wave function a physical object or is its modulus ? Decisive experiments have been done only 20 years ago

(56)

The interpolation inequality

Let us consider an Aharonov-Bohm vector potential A(x) = a

|x|2(x2,−x1), x= (x1,x2)∈R2\ {0}, a∈R Magnetic Hardy inequality[Laptev, Weidl, 1999]

ˆ

R2

|∇Aψ|2dx≥min

k∈Z(a−k)2 ˆ

R2

|ψ|2

|x|2dx where∇Aψ:=∇ψ+ iAψ, so that, withψ=|ψ|eiS

ˆ

R2

|∇Aψ|2dx= ˆ

R2

(∂r|ψ|)2+ (∂rS)2|ψ|2+ 1

r2(∂θS+A)2|ψ|2

dx Magnetic interpolation inequality

ˆ

|∇ |2

ˆ |ψ|2

ˆ |ψ|p 2/p

(57)

A magnetic Hardy-Sobolev inequality

Theorem

Let a∈[0,1/2]and p>2. For anyλ >−a2, there is an optimal, monotone increasing, concave functionλ7→µ(λ)which is such that

ˆ

R2

|∇Aψ|2dx+λ ˆ

R2

|ψ|2

|x|2 dx≥µ(λ) ˆ

R2

|ψ|p

|x|2 dx 2/p

Ifλ≤λ?= 41−4p2−4a2 −a2equality is achieved by

ψ(x) = (|x|α+|x|−α)p−22 ∀x ∈R2, with α=p−22 √ λ+a2 Ifλ > λwith

λ:= 8

p4

−a2(p−2)2(p+2) (3p−2)+2

−4p(p+4)

(p−2)3(p+2) −a2

there is symmetry breaking: optimal functions are not radially symmetric

(58)

0.1 0.2 0.3 0.4 0.5

-0.2 -0.1 0.1 0.2 0.3

Figure: Casep= 4

Symmetry breaking region:λ > λ(a) Symmetry breaking region:λ < λ?

0.001 0.002 0.003 0.004 0.005

(59)

References

D. Bonheure, J. Dolbeault, M.J. Esteban, A. Laptev, M. Loss.

Inequalities involving Aharonov-Bohm magnetic potentials in dimensions 2 and 3. Preprint arXiv:1902.06454

D. Bonheure, J. Dolbeault, M.J. Esteban, A. Laptev, M. Loss.

Symmetry results in two-dimensional inequalities for Aharonov-Bohm magnetic fields. Communications in Mathematical Physics, (2019).

J. Dolbeault, M. J. Esteban, A. Laptev, and M. Loss. Magnetic rings. Journal of Mathematical Physics, 59 (5): 051504, 2018.

J. Dolbeault, M. J. Esteban, A. Laptev, and M. Loss. Interpolation inequalities and spectral estimates for magnetic operators. Annales Henri Poincar, 19 (5): 1439-1463, May 2018.

(60)

These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Conferences/

BLectures The papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/list/

BPreprints / papers

For final versions, useDolbeaultas login andJeanas password

Thank you for your attention !

(61)

Références

Documents relatifs

Bonforte, M., Dolbeault, J., Muratori, M., Nazaret, B.: Weighted fast diffusion equations (Part I): Sharp asymptotic rates without symmetry and symmetry breaking in

Abstract — The purpose of this paper is to explain the phenomenon of symmetry breaking for optimal functions in functional inequalities by the numerical computations of some well

Key words: Caffarelli-Kohn-Nirenberg inequality; Gagliardo-Nirenberg in- equality; logarithmic Hardy inequality; logarithmic Sobolev inequality; ex- tremal functions; radial

We propose a general framework to build full symmetry-breaking inequalities in order to handle sub-symmetries arising from solution subsets whose symmetry groups contain the

We show that the proposed sub-symmetry-breaking inequalities outperform state-of-the-art symmetry-breaking formulations, such as the aggregated interval MUCP formulation [22] as well

10 – Specific energy consumption and membrane area as a function of recovery rate for DCMD assuming no temperature polarization and operating with Accurel membrane when an external

Bodies with sufficient heat flux to create a core dynamo assuming instantaneous 4. accretion are shown

Object model creation from multiple range images: acquisition, calibration, model building and verification, Proceedings of the International Conference on Recent Advances in