• Aucun résultat trouvé

Convolution in <span class="mathjax-formula">$(W^p_{M, \ a})^{\prime }$</span>-space

N/A
N/A
Protected

Academic year: 2022

Partager "Convolution in <span class="mathjax-formula">$(W^p_{M, \ a})^{\prime }$</span>-space"

Copied!
10
0
0

Texte intégral

(1)

R ENDICONTI

del

S EMINARIO M ATEMATICO

della

U NIVERSITÀ DI P ADOVA

R. S. P ATHAK

S. K. U PADHYAY

Convolution in (W

M,p a

)

0

-space

Rendiconti del Seminario Matematico della Università di Padova, tome 98 (1997), p. 57-65

<http://www.numdam.org/item?id=RSMUP_1997__98__57_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1997, tous droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions).

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

R. S. PATHAK - S. K.

UPADHYAY(*)

ABSTRACT - A characterization of convolutors in

(WL, a)’ -space

is

given using

the

properties

of the translate r :

WL, a

-

WL, a- Using

the

theory

of Fouri-

er transform in these spaces, the Fourier transform of convolution is studied.

1. - Introduction.

A characterization of convolution

operators

on the space was

given by

Swartz

[9] generalizing

the characterizations of the space

0~

of Schwartz

[8]

and of convolutors on the spaces of distributions of ex-

ponential growth by

Hausmi

[5].

This chracterization

naturally yields

a

characterization for

WM, a-space,

which is a

special

case space.

A similar characterization of convolution

operators

in

Kp

was

given by Sampson

and

Zielezny [10].

All these results are related to L °°-

norms.

In terms of L p norms the spaces

WD, P, WD, b, p

were de-

fined and their Fourier transforms were studied in

[6].

We recall the definition of the spaces

WL, WL, a’

Let

p(~)

be a contin-

uous

increasing

function on

[0, oo ]

such that

/~(0)==0,~(oo)= oo~

and

for x ~ 0 define an

increasing

convex continuous function M

by

(*) Indirizzo

degli

AA.:

Department

of Mathematics, Banaras Hindu Univer-

sity,

Varanasi 221005, India.

MSC (1991): 46F12.

(3)

58

Then

M( 0 )

=

0, M( OJ ) = OJ ,

and

Now the space is defined as the set of all

infinitely

differen-

tiable functions

lP(x) (- 00

x

oo) satisfying

for each

non-negative integer

k where the

positive

constants a and

Ck, p depend

upon 0.

Clearly WM

is a linear space. The space

WM

can be re-

garded

as the union of

countably

normed spaces

WM, a

of all

complex

valued Coo-functions O which for

any 6

&#x3E; 0

satisfy

Let Q be another

increasing, continuous,

convex function

possessing properties

similar to those of M. Then

WD, P

is defined to be the set of all entire

analytic

functions

Ø(z) ( z

= x +

iy ) satisfying

the

inequali-

ties

The space defined to be set of all those functions in

WQ, P

which

satisfy

the

inequalities

In this paper the translate T h:

WM, a

~

WM, a

defined

by

T h

= + is shown to be

continuous,

bounded and differentiable.

A characterization of convolutors in

WIt, a

is

given. Furthermore, by using

the

theory

of Fourier transform

of f E

E

1 /p

+

+ =

1,

we show that

(4)

2. - Characterization theorems.

THEOREM 2.1.

(i)

For each h E R the 7: h ø is continuous

from

WM,

a into

Wlt, a.

(ii)

For a bounded subset A

of WM,

a and E &#x3E;

0,

the set

~ ih ~: ~

E,

0 E=- A I

is bounded in

WM, a .

PROOF. For 0 E

WM,

a and we have

Now, using

the

convexity property (1),

we

get

so that

(i)

and

(ii)

follow from

inequality (6).

THEOREM 2.2. For each 0 E

WM, a

the translate

rh (P is differen-

tiable in 1.

PROOF. From

[6, p. 734]

we know that a function 0 E

WM, a

is dif-

ferentiable in

WM, a

space. Since E it follows that is dif- ferentiable in

WM,

a .

Now,

we recall the definition of a convolute

[3, p. 137].

(5)

60

DEFINITION 2.3. Let V be any test function space and V be its dual. A

generalized

function is said to be a convolute if for each

~ E E

V, and 0,

-~ 0

implies

- 0 in the

topology

of V.

If

f

is a convolute and g E

V,

the convolution of

f

and g is

given by

THEOREM 2.4. Let

f E (WM, a)’

and ø E then E

WM,

b ,

where

~,r~l

and

PROOF. From

[6, p. 734]

we have

Therefore for 0 E

WM, a

we have

So that for

1/p

+

1/g

=

1,

we have

(6)

Therefore,

for

( b

&#x3E; a &#x3E;

0),

we have

Hence for

In

particular, taking r

= p we

have f*

ø E

WIt, b,

b &#x3E; a. Therefore

f

is a

convolute in

THEOREM 2.5. Assume that b &#x3E; a &#x3E; 0. Then

WM, b

is a dense sub- space

of WM,

a

for 1 ~ ~

00.

PROOF. Let 1

.)

such that I

. Defme

Set uv

u.

Then uv

E

D(R).

It can be

easily

seen that uv - u in

WL, a.

Therefore D is dense in

WL, a.

Since D c

(WM, b),

it follows that

WM, b

is dense in

WL, a. Consequently

3. - Fourier transform.

PROOF. From

[6, p. 734]

we

again

have

and

(7)

62

Now,

which is known to be an element in Since

is an element of

( WM, b )’ , ( a ~ b). Also,

since

(WM, b)’

is closed with

respect

to

differentiation,

hence the distributional derivative

]

is also an ele-

ment of

( WM, b)’.

Furthermore

b)’ implies

that

E

(Wll, lib)’ by

Gel’fand and Shilov

[4].

Now, Then,

(8)

DEFINITION 3.1. is said to

belong

1

THEOREM 3.2.

If f E (0:)’

and then

. F(g)

in the sense

of equality

in

PROOF. Let O E

WQ, 1/a, p,

then we have

Since

belongs

to

WL,

b

by

Theorem

2.4,

then

right-hand

side is

meaningful. Now, using

(8)

we have

(9)

64

where Then the last

expression

equals

Therefore,

Acknowledgement.

The work was

supported by

the N.B.H.M.

Grant No.

48/1/94-R&#x26;D-II.

REFERENCES

[1] R. D. CARMICHAEL, Generalized

Cauchy

and Poisson

integrals

and distri-

butional

boundary

values, SIAM J. Math. Anal., 4 (1) (1973), pp. 198- 219.

[2] A. FRIEDMAN, Generalized Functions and Partial

Differential Equations,

Prentice-Hall, New

Jersey

(1963).

[3] I. M. GEL’FAND - G. E. SHILOV, Generalized Functions, Vol. 2, Academic Press, New York (1968).

(10)

[4] I. M. GEL’FAND - G. E. SHILOV, Generalized Functions, Vol. 3, Academic Press, New York (1969).

[5] M. HAUSMI, Note on n-dimensional

tempered

ultradistributions, Tôhoku Math. J., (2), 13 (1961), pp. 94-104.

[6] R. S. PATHAK - S. K. UPADHYAY, Wp spaces and Fourier

transform,

Proc.

Amer. Math. Soc., 121 (3) (1994), pp. 733-738.

[7] S. PILIPOVIC,

Multipliers,

convolutors and

hypoelliptic

convolutors

of

tem-

pered

ultradistributions, in

Proceedings of

International

Symposium

on

Generalized Functions and their

Application

held in Varanasi, Dec. 23-26 (1991), edited

by

R. S. PATHAK, Plenum Press, New York (1992), pp.

183-195.

[8] L. SCHWARTZ, Théorie des distributions, Hermann, Paris (1966).

[9] C.

SWARTZ,

Convolution in

K{Mp}

spaces,

Rocky

Mountain J. Math., 2 (1972), pp. 259-163.

[10] G. SAMPSON - Z. ZIELEZNY,

Hypoelliptic

convolution

equations in K’p ,

p &#x3E; 1, Trans. Amer. Math.

Soc.,

223 (1976), pp. 133-154.

[11] Z. ZIELEZNY, On spaces

of

convolutor operators in

K’1,

Studia Math., 31 (1968), pp. 111-124.

Manoscritto pervenuto in redazione il 9 novembre 1995.

Références

Documents relatifs

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les