• Aucun résultat trouvé

Experimental determination of the Z-transfer function coefficients for houses

N/A
N/A
Protected

Academic year: 2021

Partager "Experimental determination of the Z-transfer function coefficients for houses"

Copied!
19
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

ASHRAE Transactions, 93, 1, pp. 146-160, 1987

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Experimental determination of the Z-transfer function coefficients for

houses

Barakat, S. A.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=bada7af5-7730-4765-ac20-c428333fbdf2 https://publications-cnrc.canada.ca/fra/voir/objet/?id=bada7af5-7730-4765-ac20-c428333fbdf2

(2)

Ser

TH1

I T A T 2

L l L Z I U

National Research

Conseil national

no.

1506

b l

c .

2

ouncil Canada

de recherches Canada

BLDG

--

Research in

Institute for

lnstitut de

recherche en

Construction

construction

J '

Experimental Determination of the

Z- Transfer Function Coefficients

for Houses

by S.A. Barakat

A!'!

A i ' f

ZED

NRC

-

ClSTl

L I B R A R Y

Appeared in

ASHRAE Transactions 1987

Part

I,

p. 146-160

(IRC Paper No. 1506)

Reprinted by permission of the

American Society of Heating, Refrigerating and

Air-Conditioning Engineers, Inc., Atlanta, GA

Price $3.00

NRCC 28659

B ~ B L I O T H ~ Q U E

I

R

C

CNRC

-

C I S T

I

I

(3)

Des experiences conpes @ialement en vue de d6-er

les coefficients de fonction de

transfert

z

charge cdorifique dus awc apports solaires, ainsi que les coefficients de fonction

de transfert air de pi&ce, ont

CtC

r6alistks sur un site d'essai. Trois series de coefficients ont

CtC

obtenus pour differents niveaux de masse de maisons B ossature de bois. Ces niveaux,

qui couvrent une plage inferieure

B

celle du

ASHRAE

Handbook, sont particuli6rement

utiles pour les calculs CnergCtiques visant les maisons. Les niveaux de masse examinks

sont bases sur

46, 130

et

535

kg/m2 (9,4,26,6 et

110

IbIpi2) d'aire de plancher.

-- - -S e r N a t i o n a l Research Council

TH1

Canada. I n s t i t u t e f o r

N21d

Research i n C o n s t r u c t i o n no.

1506

Paper c . 2 Barakat

,

S. A.

BLDG

J r n ~ r i m e v m d e + p m i

&<

fir! nf- +.W .-

(4)

I

I

I

EXPERIMENTAL DETERMINATION OF THE Z-TRANSFER

FUNCTION COEFFICIENTS FOR HOUSES

!

S.A.

B a r a k a t , Ph.D.,

P.E.

I

S p e c i a l l y designed e x p e r i m e n t s were performed a t an o u t d o o r t e s t f a c i l i t y t o determi.ne t h e c o o l t n g - l o a d z-trii11sEer f u n c t i o n c o e f f i c i e n t s due t o s o l a r g a i n i n p u t , as w e l l a s t h e room-air t r a n s f e r f u n c t i o n c o e f f i c i e n t s . Three s e t s of c o e f f i c i e n t s were o b t a i n e d f o r d i f f e r e n t mass l e v e l s i n wood-f rame h o u s e s . ' h e s e l e v e l s , which c o v e r a r a n g e lower t h a n t h o s e c o v e r e d i n t h e ASHRAE Handbook, a r e p a r t i c u l a r l y u s e f u l f o r e n e r g y c a l c u l a t i o n s f o r h o u s e s . The mass l e v e l s examined a r e based on 4 6 , 130, and 535 kg/& (9.4, 26.6, and 110 l b / f t 2 ) of f l o o r a r e a .

I

INTRODUCTION

The z - t r a n s f e r f u n c t i o n t e c h n i q u e ( a l s o c a l l e d t h e t h e r m a l r e s p o n s e f a c t o r o r t h e w e i g h t i n g f a c t o r method), i n t r o d u c e d by S t e p h e n s o n and M i t a l a s (1967; M i t a l a s 1972, 1978; ASHRAE 1985), i s a well-known method f o r e n e r g y a n a l y s i s of b u i l d i n g s . With t h i s t e c h n i q u e , h o u r l y t h e r m a l l o a d s can be c a l c u l a t e d based on t h e p h y s i c a l d e s c r i p t i o n of t h e b u i l d i n g and t h e ambient w e a t h e r c o n d i t i o n . These l o a d s a r e t h e n u s e d , t o g e t h e r w i t h i n f o r m a t i o n a b o u t t h e

h e a t i n g / c o o l i n g s y s t e m , t o c a l c u l a t e t h e s p a c e a i r t e m p e r a t u r e and h e a t a d d i t i o n / e x t r a c t i o n r a t e s . To perform t h e s e c a l c u l a t i o n s , t h e method u t i l i z e s s e t s of p r e c a l c u l a t e d t r a n s f e r f u n c t i o n c o e f f i c i e n t s . These a r e g i v e n i n t h e ASHRAE p r o c e d u r e s (ASHRAE 1975) f o r t h r e e room mass l e v e l s ; namely, l i g h t , medium, and heavy, c h a r a c t e r i z e d r e s p e c t i v e l y by 146, 341, and 6 3 5 kg/m2 ( 3 0 , 70, and 130 l b / f t 2 ) of f l o o r a r e a .

An e x a m i n a t i o n of c o n v e n t i o n a l wood-frame h o u s e s y i e l d s a room s p e c i f i c mass v a l u e as low a s 50-60 kg/& (10-12 l b / f t 2 ), which i s much lower t h a n ASHRAE v a l u e s f o r l i g h t w e i g h t

b u i l d i n g s . The p r e c a l c u l a t e d r e s p o n s e f a c t o r s g i v e n i n ASHRAE (1975) a r e , t h e r e f o r e , n o t a p p r o p r i a t e f o r most h o u s e s . T h i s is c o n f i r m e d by t h e l a c k of agreement between measured and p r e d i c t e d e n e r g y consumption when ASHRAE v a l u e s were used i n a n e n e r g y a n a l y s i s program

(Konrad and L a r s e n 1 9 7 8 ) t o s i m u l a t e t h e p e r f o r m a n c e of a wood-f rame s t r u c t u r e . F i g u r e 1 shows t h e r e s u l t s of one s u c h c a l c u l a t i o n . T h i s l a c k of agreement i n d i c a t e s t h a t t h e s i m u l a t e d p e r f o r m a n c e c o n s i s t e n t l y i m p l i e s a much h e a v i e r b u i l d i n g .

I n t h i s s t u d y , e x p e r i m e n t s were c a r r i e d o u t t o d e t e r m i n e t h e c o o l i n g - l o a d t r a n s f e r f u n c t i o n c o e f f i c i e n t s f o r s o l a r h e a t g a i n i n p u t and t h e room-air t r a n s f e r f u n c t i o i l

c o e f f i c i e n t s f o r t h r e e d i f f e r e n t mass l e v e l s of houses c o r r e s p o n d i n g t o 46, 130, and 535 kg/m2 (9.4, 26.6, and 110 l b / f t 2 ) of f l o o r a r e a .

I

THE Z-TRANSFER FUNC'PION METHOD

I

For a dynamic h e a t t r a n s f e r s y s t e m , dependent and i n d e p e n d e n t v a r i a b l e s can be r e l a t e d by

I d i f f e r e n t i a l e q u a t i o n s . The s o l u t i o n of t h e s e e q u a t i o n s may t a k e s e v e r a l forms. I n t h i s

1

c a s e , t h e i n p r ~ t and o u t p u t z - t r a n s f orms ( i .e., t r a n s f orms of i n d e p e n d e n t and d e p e n d e n t v a r i a b l e s ) a r e r e l a t e d by a z - t r a n s f e r f u n c t i o n as f o l l o w s :

S.A. Harakat is a R e s e a r c h O f f i c e r , I n s t i t u t e f o r R e s e a t c h i n C o n s t r u c t i o n , N a t i o n a l R e s e a r c h C o u n c i l of Canada, Ottawa, Canada, K1A OR6.

(5)

where O(z) = z-transform of t h e o u t p u t I ( z ) = z - t r a n s f o r m of t h e i n p u t

G(z) = system t r a n s f e r f u n c t i o n

The z - t r a n s f o r m a t i o n of a time-dependent f u n c t i o n (e.g., s o l a r r a d i a t i o n , o u t s i d e a i r t e m p e r a t u r e ) is a sequence of v a l u e s of t h e f u n c t i o n a t e q u a l time i n t e r v a l s ( u s u a l l y one h o u r ) ; t h a t is, i t i s a time s e r i e s r e p r e s e n t a t i o n of t h e f u n c t i o n .

The most i m p o r t a n t c h a r a c t e r i s t i c of t h e z - t r a n s f e r f u n c t i o n method, a s compared w i t h o t h e r c a l c u l a t i o n methods, is t h a t t h e i n p u t s and t h e o u t p u t s a r e sequences of v a l u e s e q u a l l y spaced i n time. Thus, t h e weather r e c o r d s of o u t s i d e a i r t e m p e r a t u r e and s o l a r r a d i a t i o n , which a r e given on ar? h o u r l y b a s i s , can be used a s i n p u t w i t h l i t t l e o r no p r e p r o c e s s i n g . The main l i m i t a t i o n of t h e z - t r a n s f e r method i s t h a t t h e system under c o n s i d e r a t i o n must be

c o n s t a n t with time and l i n e a r ; ( i n o t h e r words, t h e thermal p r o p e r t i e s and h e a t t r a n s f e r c o e f f i c i e n t s used i n t h e system must be c o n s t a n t , and independent of t e m p e r a t u r e ) .

The z - t r a n s f e r f u n c t i o n method f o r energy c a l c u l a t i o n s is e x p l a i n e d i n C h a p t e r 26 of t h e 1985 e d i t i o n of ASHRAE Fundamentals (ASHRAE 1985). The c a l c u l a t i o n c o n s i s t s of two s t e p s . I n t h e f i r s t s t e p , t h e space a i r t e m p e r a t u r e is assumed t o be c o n s t a n t a t some r e f e r e n c e v a l u e and t h e i n s t a n t a n e o u s h e a t g a i n s / l o s s e s f o r t h e room a r e c a l c u l a t e d . These i n c l u d e s o l a r and i n t e r n a l h e a t g a i n s and envelope conduction and i n f i l t r a t i o n l o s s e s . A c o o l i n g l h e a t i n g l o a d f o r t h e room ( d e f i n e d a s t h e r a t e a t which h e a t must be removedladded t o maintain t h e a i r t e m p e r a t u r e i n the room a t t h e c o n s t a n t r e f e r e n c e v a l u e ) is c a l c u l a t e d f o r each component of i n s t a n t a n e o u s h e a t g a i n l l o s s .

The z - t r a n s f e r f u n c t i o n t h a t r e l a t e s t h e z-transforms of t h e room h e a t g a i n , I ( z ) , t o t h e room c o o l i n g + l o a d , Q ( z ) , may be e x p r e s s e d a s

where v o , vl

,

and wl a r e t h e z - t r a n s f e r f u n c t i o n c o e f f i c i e n t s . While v,, and vl a r e d i f f e r e n t f o r each type of heat g a i n , wl is t h e same f o r a l l types and depends only on t h e thermal s t o r a g e c h a r a c t e r i s t i c s of t h e room. I n t h e time domain, t h e room c o o l i n g load is given by

where t i s t h e t i m e and A i s t h e t i m e i n t e r v a l between s u c c e s s i v e v a l u e s , u s u a l l y one hour.

A t t h e end of t h e f i r s t s t e p , t h e c o o l i n g l o a d s from v a r i o u s h e a t g a i n s a r e added t o g e t t h e t o t a l c o o l i n g load f o r t h e room.

I n t h e second s t e p , t h e n e t h e a t i n p u t t o t h e room ( t o t a l c o o l i n g load l e s s any h e a t e x t r a c t i o n o r a d d i t i o n provided by t h e HVAC system) i s used t o c a l c u l a t e t h e d e v i a t i o n of t h e space a i r t e m p e r a t u r e from t h e r e f e r e n c e v a l u e s e t d u r i n g t h e c o o l i n g load c a l c u l a t i o n .

' 1 ' 1 1 ~ z-Lt-;i~l?tLer l r ~ t ~ c t i o r i tlliit r e l a t e s ttlc z-transfotmtl of t h e ~ p t l c e tt?~nl)t!rature d e v i n t i o n from t h e r e f e r e n c e , 8 ( z ) , t o t h e n e t h e a t i n p u t t o t h e s p a c e , QN(z), is termed t h e room-air ( o r a i r - t e m p e r a t u r e ) t r a n s f e r f u n c t i o n and is given by

where g o , g l , g2 and pl a r e t h e t r a n s f e r f u n c t i o n c o e f f i c i e n t s . The v a l u e of t h e c o e f f i c i e n t

p, is e q u a l t o w1 f o r t h e same room mass. The n e t h e a t i n p u t and space t e m p e r a t u r e a r e r e l a t e d by

+TO avoid r e p e t i t i o n , r e f e r e n c e s t o h e a t i n g l o a d s w i l l be e l i m i n a t e d ; t h e s e loads can always be c o n s i d e r e d a s n e g a t i v e c o o l i n g l o a d s .

(6)

Some i n t e r e s t i n g p r o p e r t i e s of t h e t r a n s f e r f u n c t i o n c o e f f i c i e n t s can be o b t a i n e d by a p p l y i n g t h e s t e a d y - s t a t e c o n d i t i o n s . For t h e cooling-load t r a n s f e r f u n c t i o n c o e f f i c i e n t s , i t can be shown t h a t

where f r e p r e s e n t s t h e f r a c t i o n of t h e s t e a d y - s t a t e h e a t g a i n t h a t a p p e a r s a s a c o o l i n g l o a d . The c o e f f i c i e n t s given i n ASHKAE Fundamentals a r e such t h a t f = 1. An e s t i m a t e of f can be made u s i n g t h e procedure i n C h a p t e r 26 of t h e Handbook. The v c o e f f i c i e n t s can be a d j u s t e d a c c o r d i n g l y .

S i m i l a r l y , under s t e a d y - s t a t e c o n d i t i o n s , E q u a t i o n 4 can be r e a r r a n g e d t o g i v e

where KT i s t h e thermal conductance of t h e room, i n c l u d i n g a l l h e a t flow p a t h s .

I n ASHRAE l i t e r a t u r e , t h e a i r - t e m p e r a t u r e c o e f f i c i e n t s a r e p r e s e n t e d a s normalized

f a c t o r s t o remove t h e e f f e c t of v a r i a t i o n s i n room thermal conductance, and t h e e f f e c t of room s i z e . The normalized t r a n s f e r f u n c t i o n c o e f f i c i e n t s a r e c a l c u l a t e d a s

where A f is t h e f l o o r a r e a . E q u a t i o n 7 becomes

Another p r o p e r t y i n h e r e n t i n t h e a i r t e m p e r a t u r e c o e f f i c i e n t s is a measure of t h e h e a t c a p a c i t y of t h e room. It can be shown t h a t t h e h e a t c a p a c i t y , C , i s g i v e n by

THE OUTDOOR TEST FACILITY

The t e s t f a c i l i t y , d e s c r i b e d i n d e t a i l i n Barakat (19841, c o n s i s t s of t h r e e one-story

i n s u l a t e d wood-frame b u i l d i n g s w i t h basements. They a r e d i v i d e d i n t o f o u r two-room u n i t s and f o u r single-room u n i t s . Three of t h e f o u r two-room u n i t s ( U n i t s 1 t o 3 ) were used f o r t h e experiments. C o n s t r u c t i o n d e t a i l s and thermal r e s i s t a n c e v a l u e s of t h e w a l l s and c e i l i n g s a r e given i n T a b l e s 1 and 2.

Each of t h e two-room u n i t s c o n s i s t s of a s o u t h and a n o r t h room w i t h a c o n n e c t i n g door. Each s o u t h room has a s o u t h - f a c i n g window with a n e t g l a s s a r e a of 2.6 m 2 ; each n o r t h room has a 1

d

window f a c i n g n o r t h . The t h r e e u n i t s d i f f e r only i n t h e type and amount of thermal mass used a s i n t e r i o r f i n i s h of t h e w a l l s , a s given i n Table 2. A l l rooms i n t h e f a c i l i t y a r e h e a t e d t o 20°C w i t h an e l e c t r i c baseboard h e a t e r c o n t r o l l e d by a p r e c i s i o n c o n t r o l l e r t o w i t h i n O.l°C. To e l i m i n a t e any h e a t i n g load due t o outdoor a i r i n f i l t r a t i o n , a s l i g h t p o s i t i v e p r e s s u r e is maintained i n a l l rooms, u s i n g a i r p r e h e a t e d t o t h e same t e m p e r a t u r e a s

t h e a i r t n t h e t e s t room.

! Measurements were t a k e n of t h e f o l l o w i n g : t h e a v e r a g e i n d o o r a i r t e m p e r a t u r e a t mid-height of each room (1.2 m above t h e f l o o r ) ; t h e t e m p e r a t u r e of t h e a t t i c a i r and t h e c o r r i d o r a i r ; t h e s o l a r r a d i a t i o n i n c i d e n t on a h o r i z o n t a l s u r f a c e , and on a s o u t h - and a n o r t h - f a c i n g v e r t i c a l s u r f a c e ; t h e d i r e c t normal component of t h e s o l a r r a d i a t i o n ; t h e e l e c t r i c space-heating energy consumption of each room; and t h e wind speed and d i r e c t i o n .

(7)

A d a t a logger was used t o s c a n and r e c o r d t h e d a t a on magnetic t a p e . Wind d a t a ,

r a d i a t i o n rind t e ~ n p e r a t ~ r r e v a l u e s were scanned e v e r y minute, averaged over n s p e c i f i c p e r i o d , and recorded. Energy consumption v a l u e s were accumulated and recorded f o r t h e same p e r i o d .

EXPERIMENTAL PROCEDURE

111 p r i n c i p l e , the experiments were based on measuring t h e room response (heating-system power o u t p u t o r room-air t e m p e r a t u r e ) t o a known i n p u t ( s o l a r g a i n o r p e r t u r b a t i o n i n t h e system i n p u t t o t h e room). A p p l i c a t i o n of t h e t r a n s f e r f u n c t i o n r e l a t i o n s h i p s of E q u a t i o n 2 o r 4

u s i n g t h e measured i n p u t and o u t p u t d a t a would t h e n y i e l d t h e v a l u e s of t h e c o e f f i c i e n t s . Since t h e t e s t u n i t s a r e l o c a t e d o u t d o o r s , t h e o v e r a l l measured o u t p u t c o n t a i n e d a second s i g n i f i c a n t component, which is t h e o v e r a l l r e s p o n s e of t h e room t o t h e outdoor weather parameters. This component had t o be s u b t r a c t e d b e f o r e t h e t r a n s f e r f u n c t i o n could be o b t a i n e d .

To e l i m i n a t e t h e dynamic e f f e c t of s o l a r g a i n through windows and t h e a s s o c i a t e d o v e r h e a t i n g of t h e space on sunny days, both windows of each u n i t were shaded from s o l a r r a d i a t i o n by an e x t e r n a l , v e r t i c a l shade a b o u t 40 cm i n f r o n t of t h e window.

For t h e s o l a r t r a n s f e r f u n c t i o n e x p e r i m e n t s , t h e shade on t h e s o u t h window was t o t a l l y o r p a r t i a l l y removed on a sunny day t o a l l o w s o l a r g a i n through t h e window f o r 1 hour. T h i s c r e a t e d a 1-hour s o l a r i n p u t p u l s e on t h e room. The magnitude of t h e p u l s e ( s i z e of o p e n i n g ) was chosen s o t h a t t h e room-air t e m p e r a t u r e would not exceed t h e s e t p o i n t ( r e f e r e n c e )

t e m p e r a t u r e . A l l t h e p a r a m e t e r s , i n c l u d i n g t h e e l e c t r i c h e a t i n g power consumption f o r t h e room, were measured e v e r y f i v e minutes. Mid-hour v a l u e s were then used f o r t h e a n a l y s i s .

For t h e room-air t r a n s f e r f u n c t i o n e x p e r i m e n t s , t h e window remained f u l l y shaded and an a d d i t i o n a l e l e c t r i c h e a t e r , placed i n t h e c e n t e r of t h e u n i t , was s t a r t e d a t a p r e s c r i b e d time driring the n i g h t , and k e p t on f o r t h r e e o r f o u r h o u r s , c a u s i n g t h e room t o o v e r h e a t . The t e m p e r a t u r e r i s e above t h e r e f e r e n c e v a l u e ( s e t p o i n t ) is t h e o u t p u t response f o r Equation 5 ( o r i n p u t for E q u a t i o n 4 ) .

F i g u r e s 2 and 3 r e p r e s e n t examples of the measured parameters and outdoor weather c o n d i t i o n s d u r i n g a s o l a r p u l s e experiment, and d u r i n g a h e a t - a d d i t i o n p u l s e experiment, r e s p e c t i v e l y . F u r t h e r d e t a i l s of both t y p e s of experiments a r e given i n a companion p u b l i c a t i o n (Barakat 1985).

DATA ANALYSIS

I n both p u l s e e x p e r i m e n t s , t h e t o t a l o u t p u t , t h a t is, t h e change i n power consumption f o r t h e s o l a r g a i n e x p e r i m e n t s , and t h e r i s e i n room temperature f o r t h e h e a t a d d i t i o n e x p e r i m e n t s , was the r e s u l t of two simultaneous i n p u t s : t h e i n t e n t i o n a l l y g e n e r a t e d p e r t u r b a t i o n and t h e outdoor weather parameters (ambient t e m p e r a t u r e , wind and s o l a r r a d i a t i o n on t h e b u i l d i n g s u r f a c e s ) . To s e p a r a t e t h e n e t o u t p u t due t o t h e p u l s e , t h e component due t o outdoor w e a t h e r v a r i a t i o n was f i r s t s u b t r a c t e d from t h e t o t a l o u t p u t . A t r a n s f e r f u n c t i o n r e l a t i o n s h i p was then e s t a b l i s h e d between t h e i n p u t p u l s e and t h e c o r r e s p o n d i n g n e t o u t p u t , and t h e

c o e f f i c i e n t s were determined. The procedure is d e s c r i b e d i n d e t a i l i n t h e f o l l o w i n g paragraphs.

S t e p 1. Measuring Room Response t o Outdoor Weather P a r a m e t e r s

A number of p e r i o d s were chosen d u r i n g which no p u l s e s were a p p l i e d and t h e room

t e m p e r a t u r e remained a t a sei: p o i n t . The measured power consumption, t h e r e f o r e , r e p r e s e n t e d the response t o t h e outdoor weather parameters. Using m u l t i p l e l i n e a r r e g r e s s i o n , a t r a n s f e r f u n c t i o n was o b t a i n e d l i n k i n g t h e i n p u t parameters and t h e room power c o n s u m ~ t i o n , Ea* T h i s f u n c t i o n has t h e form

E,(z) a. + a l z m l

=, ( 1 1 )

-

1

+

bl

z-'

I n t h e time domain t h i s t r a n s l a t e s i n t o

E a ( t ) = a,,AT*(t)

+

alAT*(t-1)

-

blEa(t-1) ( 1 2 )

(8)

where A P i s a weighted t e m p e r a t u r e d i f f e r e n c e d e f i n e d a s and UA = o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t f o r a p a r t i c u l a r w a l l , windaw o r c e i l i n g AT a Ts

-

Tr, f o r o u t s i d e w a l l s = Ta

-

Tr, f o r p a r t i t i o n w a l l s and c e i l i n g = To

-

Tr, f o r windows Ts = s o l - a i r t e m p e r a t u r e of t h e o u t s i d e s u r f a c e Ta = a i r temperature of t h e a d j a c e n t room o r a t t i c To = o u t d o o r a i r t e m p e r a t u r e Tr = room t e m p e r a t u r e ( s e t a t 20°C).

The o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t s , UA, were c a l c u l a t e d based on t h e c o n s t r u c t i o n d e t a i l s . S o l - a i r t e m p e r a t u r e s were c a l c u l a t e d u s i n g t h e f o l l o w i n g d a t a : s u r f a c e a b s o r p t a n c e ; s o l a r r a d i a t i o n i n c i d e n t on t h e s u r f a c e (measured f o r s o u t h and n o r t h w a l l s and c a l c u l a t e d from h o r i z o n t a l measurements For e a s t and west w a l l s [Barakat 19801); and t h e outdoor f i l m heat t r a n s f e r c o e f f i c i e n t c a l c u l a t e d h o u r l y a s a f u n c t i o n of wind speed (ASHRAE 1985).

The c o e f f i c i e n t s ( a o , al

,

and b l ) of E q u a t i o n 12 were determined u s i n g m u l t i p l e l i n e a r r e g r e s s i o n . The adequacy of t h e s e c o e f f i c i e n t s was checked by u s i n g them t o p r e d i c t t h e power consumption d u r i n g o t h e r p e r i o d s . F i g u r e 4a shows measured power consumption f o r a four-day p e r i o d i n J a n u a r y 1983; i t a l s o shows t h e p r e d i c t e d power u s i n g t h e t r a n s f e r f u n c t i o n

c o e f f i c i e n t s c a l c u l a t e d f o r t h e same d a t a , w i t h t h e f i r s t v a l u e a s an i n i t i a l c o n d i t i o n . F i g u r e 4b shows t h e measured power v a l u e s f o r a d i f f e r e n t p e r i o d i n March 1983 compared w i t h t h e v a l u e s p r e d i c t e d u s i n g the c o e f f i c i e n t s produced f o r t h e d a t a i n F i g u r e 4a. The

p r e d i c t l o n , which has an rms e r r o r of l e a s than 25 W (compared with an a v e r a g e powor of 380 W over t h e p e r i o d ) , is good.

S t e p 2. G e n e r a t i n g an I n p u t P u l s e

For a p e r i o d w i t h an i n p u t p u l s e , t h e c o e f f i c i e n t s g e n e r a t e d i n S t e p 1 were used t o p r e d i c t t h e room response due t o ambient weather, E a ( t ) , u s i n g E q u a t i o n 12. The n e t o u t p u t response due t o t h e p u l s e , E ( t ) was then c a l c u l a t e d a s

P

where E ( t ) r e p r e s e n t s Q f o r t h e s o l a r g a i n experiments ( E q u a t i o n 2) and QNt f o r t h e room-air temperaeure e x p e r i m e n t s [ ~ ~ u a t i o n 4 ) , and E ( t ) is t h e t o t a l power consumption of t h e room ( i n c l u d i n g a d d i t i o n a l h e a t e r i n p u t i n t h e room-air t e m p e r a t u r e e x p e r i m e n t s ) . S t e p 2 i s

i l l u s t r a t e d i n F i g u r e 5 f o r a s o l a r p u l s e a t noon i n t h e s o u t h room of U n i t 2 and i n F i g u r e 6 f o r a h e a t - a d d i t i o n p u l s e i n Unit 1. I n t h e s e f i g u r e s and a l l t h o s e t h a t f o l l o w , t h e h o u r l y d i s c r e t e d a t a p o i n t s a r e j o i n e d by s t r a i g h t l i n e s f o r both measured and p r e d i c t e d r e s u l t s . Data used t o produce t h e response f a c t o r s t a r t only a t t h e p u l s e time.

For t h e s o l a r p u l s e , t h e i n p u t i s c a l c u l a t e d a s

where I is t h e a v e r a g e s o l a r r a d i a t i o n i n t e n s i t y over t h e 1-hour p u l s e p e r i o d , F i s t h e s o l a r g a i n f a c t o r f o r double g l a z i n g c a l c u l a t e d f o r t h a t hour (Barakat 1980); and A i s t h e n e t g l a z i n g a r e a exposed d u r i n g t h e p e r i o d .

S t e p 3. C a l c u l a t i n g t h e T r a n s f e r Function C o e f f i c i e n t s

M u l t i p l e l i n e a r r e g r e s s i o n a n a l y s i s was used t o produce a f i r s t approximation t o t h e t r a n s f e r f u n c t i o n c o e f f i c i e n t s i n Equations 2 and 4. These c o e f f i c i e n t s were t h e n used a s i n i t i a l assumptions f o r a s o p h i s t i c a t e d p r e d i c t i o n program t o g e n e r a t e more a c c u r a t e v a l u e s of t h e c o e f f i c i e n t s . A p r e d i c t i o n program was used (DFMF'P 1968), which c a l c u l a t e s t h e l o c a l minimum of a f u n c t i o n ( t h e e r r o r v a l u e ) of s e v e r a l v a r i a b l e s ( t h e c o e f f i c i e n t s ) u s i n g t h e

(9)

method of F l e t c h e r and Powell (1963). This is t h e same method commonly used f o r t h e d e s i g n of r e c u r s i v e d i g i t a l f i l t e r s ( S t e i g l i t z 1970). The minimized f u n c t i o n was t h e square of t h e d i f f e r e n c e between t h e measured and p r e d i c t e d responses. The method s u b s t i t u t e s t h e p r e d i c t e d value f o r t h e previous hour i n Equation 2 o r 4 t o c a l c u l a t e t h e v a l u e and e r r o r f o r t h e

p r e s e n t hour, r a t h e r than t h e measured v a l u e f o r t h e previous hour, as i n r e g r e s s i o n

c a l c u l a t i o n s . a

RESULTS

S o l a r Responae F a c t o r s

A t o t a l . of 11 experiments were performed during t h e 1980181 h e a t i n g season i n t h e s o u t h rooms of IJnlts 1 , 2 , and 3 of t h e t e s t F a c i l i t y . Table 3 g i v e s t h e average c a l c u l a t e d values of the t r a n s f e r f u n c t i o n c o e f f i c i e n t s f o r a l l experiments and t h e average f o r each room

( l i g h t , medium, heavy). The t a b l e a l s o g i v e s values of t h e nus d i f f e r e n c e between t h e measured and p r e d i c t e d responses. I n a d d i t i o n , F i g u r e 7a t o c shows examples of both t h e measured and p r e d i c t e d c o o l i n g load response t o a s o l a r p u l s e f o r each of t h e l i g h t , medium and heavy rooms.

A s with t h e response f a c t o r s i n t h e t h e c o e f f i c i e n t s p r e s e n t e d i n Table 3 a r e normalized, a s explained e a r l i e r i n t h i s Note, t o g i v e an f value ( i n Equation 6 ) of 1. Before n o r m a l i z a t i o n , average c a l c u l a t e d values of f were 0.7, 0.89, and 0.86 f o r t h e t h r e e room mass l e v e l s , r e s p e c t i v e l y .

Room-Air Response F a c t o r s

Experiments were performed i n two h e a t i n g seasons, 1980181 and 1982183. Between t h e two p e r i o d s , an a d d i t i o n a l e x t e r n a l l a y e r of i n s u l a t i o n was a p p l i e d t o t h e w a l l s and c e i l i n g s of a l l t e s t u n i t s . The change i n thermal c h a r a c t e r i s t i c s i s r e f l e c t e d i n t h e d a t a i n Table 1. I n 1980181, experiments were performed i n a l l t h r e e 2-room u n i t s f o r both rooms simultaneously ( p a r t i t i o n door open). I n 1982183, the medium-weight u n i t was not a v a i l a b l e f o r f u r t h e r experiments. D e t a i l s of t h e experiments performed during both h e a t i n g seasons (19 i n a l l ) a r e given i n Table 4. F i g u r e 8a t o c shows examples of the measured and p r e d i c t e d net h e a t i n p u t t o t h e room ( o u t p u t ) corresponding t o t h e measured v a r i a t i o n i n room temperature ( i n p u t ) f o r each of t h e t h r e e room mass values. The r e s u l t i n g average response f a c t o r s f o r a l l t h e experiments a r e l i s t e d i n Table 4. R e s u l t s of i n d i v i d u a l t e s t s a r e a l s o given by Barakat

( 1985).

Due t o measurement e r r o r s , the t r a n s f e r f u n c t i o n c o e f f i c i e n t s o b t a i n e d d i d not e x a c t l y s a t i s f y t h e s t e a d y - s t a t e c o n d i t i o n given by Equation 7. To s a t i s f y t h i s c o n d i t i o n , t h e g2

coef € i c i e n t was c a l c u l a t e d from t h i s equation. The o v e r a l l thermal conductance of t h e u n i t ,

KT, was obtained by adding t h e c o r r i d o r - w a l l conductance t o t h e indoor-outdoor UA v a l u e of t h e u n i t obtained i n a previous i n v e s t i g a t i o n (Barakat 1984). The maximum change i n any v a l u e was l e s s t h a n 10%.

In a d d i t i o n , t o be c o n s i s t e n t with t h e ASHRAE p r e s e n t a t i o n , t h e room-air response f a c t o r s were normalized u s i n g Equation 8. These a d j u s t e d and normalized f a c t o r s a r e p r e s e n t e d i n Table 5 f o r t h e t h r e e mass l e v e l s .

A s i n d i c a t e d e a r l i e r , t h e thermal c a p a c i t y of a b u i l d i n g can be determined u s i n g Equation 10. Table 5 g i v e s t h e r e s u l t i n g values f o r t h e t h r e e u n i t s , a s w e l l a s t h e values c a l c u l a t e d from the c o n s t r u c t i o n d e t a i l s , t h e b u i l d i n g elements, and t h e s p e c i f i c h e a t of each element ( t a k e n from Table 2). The d a t a i n t h e t a b l e show good agreement between t h e two s e t s of thermal c a p a c i t y values.

DISCUSSION

The response f a c t o r s obtained i n t h i s s t u d y , t o g e t h e r with t h e values i n t h e ASHRAE Handbook, a r e summarized i n Table 6. Examination of t h e decay c o e f f i c i e n t s (wl and p l ) shows t h a t t h e new values a r e c o n s i s t e n t with t h e mass l e v e l s of t h e b u i l d i n g . The new response f a c t o r v a l u e s , t h e r e f o r e , f i l l t h e gap t h a t e x i s t e d f o r wood-frame houses, A d d i t i o n a l work i s

needed, however, t o produce t h e remaining s e t s of c o o l i n g load response f a c t o r s (conduction, l i g h t s , e t c . ) .

(10)

Work is underway t o c a l c u l a t e t h e z - t r a n s f e r f u n c t i o n c o e f f i c i e n t s a n a l y t i c a l l y , f o r t h e same mass l e v e l s r e p o r t e d i n t h i s s t u d y , u s i n g t h e procedure developed by M i t a l a s (1983).

P r e l i m i n a r y r e s u l t s of t h e s e c a l c u l a t i o n s (Sander 1985) a r e r e p o r t e d i n Table 7. C a l c u l a t e d

v a l u e s f o r t h e s o l a r c o o l i n g load and t h e room-air t r a n s f e r f u n c t i o n c o e f f i c i e n t s show f a i r l y

good agreement with e x p e r i m e n t a l v a l u e s . The l a r g e v a l u e s of t h e new g c o e f f i c i e n t s of t h e

room-air t r a n s f e r f u n c t i o n a r e probably due t o t h e l o c a t i o n s of h e a t i n p u t and t e m p e r a t u r e

measurement. A s mentioned p r e v i o u s l y , t e m p e r a t u r e was measured a s t h e a v e r a g e (of 12

l o c a t i o n s ) a t room mid-height. However, i f t h e measured a v e r a g e t e m p e r a t u r e is l e s s t h a n t h e

t r u e mixed average assumed i n any c a l c u l a t i o n , t h i s w i l l r e s u l t i n higher values of t h e g

coef F i c i e n t s compared with t h o s e c a l c u l a t e d a n a l y t i c a l l y . I n a d d i t i o n , euch d i f Eerencea may

account f o r t h e d i s c r e p a n c y between t h e assumed l i n e a r indoor c o n v e c t i v e f i l m c o e f f i c i e n t s used i n t h e c a l c u l a t i o n , and t h e a c t u a l c o n v e c t i v e c o e f f i c i e n t s f o r t h e w a l l s of t h e t e s t u n i t s .

The response f a c t o r s i n T a b l e 7 were used i n t h e ENCORE Program (Konrad and L a r s e n 1978) t o s i m u l a t e t h e performance of Unit 1 of t h e t e s t f a c i l i t y f o r t h e same p e r i o d shown i n

F i g u r e 1. Room t e m p e r a t u r e and power consumption a r e compared w i t h measured v a l u e s i n

F i g u r e 9. The new response f a c t o r v a l u e s gave r e s u l t s t h a t corresponded much b e t t e r t o a c t u a l

monitored performance f o r such l i g h t w e i g h t b u i l d i n g s . F u r t h e r improvement i n t h e s i m u l a t i o n

r e s u l t s , p a r t i c u l a r l y f o r heavyweight b u i l d i n g s , can be expected i f more c o e f f i c i e n t s a r e used t o e x p r e s s t h e z - t r a n s f e r f u n c t i o n .

SUMMARY

New s e t s of z - t r a n s f e r f u n c t i o n c o e f f i c i e n t s were g e n e r a t e d e x p e r i m e n t a l l y f o r t h e s o l a r

c o o l i n g l o a d and t h e room-air temperature. The c o e f f i c i e n t s were o b t a i n e d f o r wood-frame

houses with t h r e e d i f f e r e n t s p e c i f i c mass l e v e l s : 46, 130, and 535 kg/m2 of f l o o r a r e a .

These c o e f f i c i e n t s improved t h e thermal performance p r e d i c t i o n c a p a b i l i t y of energy a n a l y s i s

programs based on the response f a c t o r p r i n c i p l e . The response f a c t o r s r e p o r t e d i n t h i s Note

complement t h o s e i n t h e ASHRAE Handbook and i n c r e a s e t h e scope of t h e response f a c t o r method.

1

ASHRAE. 1975. "Procedure f o r d e t e r m i n i n g h e a t i n g and c o o l i n g l o a d s f o r computerizing e n e r g y

I c a l c u l a t i o n s . Algorithms f o r b u i l d i n g h e a t t r a n s f e r s u b r o u t i n e s " , ASHRAE Task Group on

I

Energy Requirements f o r Heating and Cooling of B u i l d i n g s , American S o c i e t y of H e a t i n g ,

I R e f r i g e r a t i n g and A i r C o n d i t i o n i n g E n g i n e e r s , Inc.

ASHRAE. 1985. ASHRAE handbook

-

1985 Fundamentals American S o c i e t y of Heating, R e f r i g e r a t i n g

I and A i r C o n d i t i o n i n g E n g i n e e r s , Chapters 23 and 26.

B a r a k a t , S.A. 1980. "Solar h e a t g a i n s through windows i n Canada". DBR Paper No. 944,

NKCC 18674, D i v i s i o n of B u i l d i n g Research, N a t i o n a l Research Council of Canada, Ottawa.

B a r a k a t , S.A. 1984. "NRCC p a s s i v e s o l a r t e s t f a c i l i t y , d e s c r i p t i o n and d a t a r e d u c t i o n " .

B u i l d i n g Research Note 214, D i v i s i o n of B u i l d i n g Research, N a t i o n a l Research Council of Canada. Ottawa.

B a r a k a t , S.A. 1985. "Experimental i n v e s t i g a t i o n of t h e dynamic thermal response of houses".

B u i l d i n g Research Note 214, D i v i s i o n of B u i l d i n g R e s e a r c h , N a t i o n a l Research Council of Canada, Ottawa.

DFMFP. 1968. "IBM System 360, s c i e n t i f i c s u b r o u t i n e package, v e r s i o n 111, programmers

manual". I B M Data P r o c e s s i n g D i v i s i o n , White P l a i n s , NY.

F l e t c h e r , K., and Powell, M.J.D. 1963. "A r a p i d d e s c e n t method f o r minimization". Computer

J o u r n a l , Vol. 6 , pp. 163-168.

Konrad, A., and Larsen, B.T. 1978. "ENCORE-CANADA: Computer program f o r t h e s t u d y of e n e r g y

consumption of r e s i d e n t i a l b u i l d i n g s i n Canada". Proceedings of t h e 3 r d I n t e r n a t i o n a l

Symposium on t h e Use of Computers f o r Environmental E n g i n e e r i n g R e l a t e d t o B u i l d i n g s , pp. 439-450, Banff, Alta.

(11)

M i t a l a s , G.P. 1972. "Transfer f u n c t i o n m t h o d of c a l c u l a t i n g c o o l i n g l o a d s , h e a t e x t r a c t i o n and space temperature". ASHRAE J o u r n a l , Vol. 14, No. 12, (Dec.) pp. 54-56.

M i t a l a s , G.P. 1978. "Comments on t h e z - t r a n s f e r f u n c t i o n method f o r c a l c u l a t i n g h e a t t r a n s f e r i n b u i l d i n g s " . ASHRAE T r a n s a c t i o n s , Vol, 84, P a r t 1 , pp. 667-674.

M i t a l a s , G.P. 1983. "Room dynamic thermal response, Proceedings of t h e 4th I n t e r n a t i o n a l Symposium on t h e Use of Computers f o r Environmental Engineering R e l a t e d t o Buildings", pp. 25-31, Tokyo, Japan.

Sander, D.M. 1985. I n s t i t u t e f o r Research i n C o n s t r u c t i o n , N a t i o n a l Research Council of Canada, p r i v a t e communication.

S t e i g l i t z , K. 1970. Computer-aided d e s i g n of r e c u r s i v e d i g i t a l f i l t e r s " . IEEE T r a n s a c t i o n s on Audio and E l e c t r o a c o u s t i c s , Vol. AU-18, No. 2, pp. 123-129.

Stephenson, D.G., and M i t a l a s , G.P. 1967. "Cooling load c a l c u l a t i o n by t h e thermal response f a c t o r method". ASHRAE T r a n s a c t i o n s , Vol. 73, P a r t 1.

TABLE 1

C h a r a c t e r i s t i c s of Test U n i t s

Wall thermal r e s i s t a n c e (m2 OC/W) C e i l i n g thermal r e s i s t a n c e (m2 OC/W) Floor thermal r e s i s t a n c e (n? OC/W) South-window g l a s s a r e a (m2 )

North-window g l a s s a r e a (m2 )

Window thermal r e s i s t a n c e (m2 OC/W) Floor a r e a per room

(d

)

Room h e i g h t (m) TABLE 2 Thermal S t o r a g e C h a r a c t e r i s t i c s of Test U n i t s T e s t Thermal c a p a c i t y a u n i t (MJ/K) C o n s t r u c t i o n L i g h t

-

Standard wood-frame, 12.7 mu

gypsum board f i n i s h on w a l l s and c e i l i n g s ,

c a r p e t over wooden f l o o r .

i

Medium

-

A s above, but 50.8 mm gypsum board f i n i s h on w a l l s and 25.4 mm f i n i s h on c e i l i n g . Heavy

-

I n t e r i o r wall f i n i s h of 101.6 mm b r i c k , 12.7 mm gypsum board f i n i s h on c e i l i n g , c a r p e t over wooden f l o o r . a I n c l u d e s framing i n w a l l s and c e i l f n g TABLE 3 S o l a r T r a n s f e r Function C o e f f i c i e n t s Weight v~ W1 RMS f i t e r r o r (W) Light 0.635 -0.240 -0.605 11.7 Medium 0.400 -0.140 -0.740 9.2 Heavy 0.335 -0.205 -0.870 9.2 153

(12)

TABLE 4

Room-Air Response Factors

- -- - RMS f i t Number of Date go gl 82 P1 e r r o r (W) t e s t s Light Average 1981 334.4 -398.8 91.2 -0.601 33.5 3 Corrected g2 334.4 -398.8 82.8 -0.601 Average 1983 368.9 -508.4 153.7 -0.693 25.9 b Corrected g2 368.9 -508.4 151.0 -0.693 Medium

-

Average 1981 446.3 -547.7 120.2 -0.724 34.0 Corrected g2 446.3 -547.7 113.5 -0.724, Heavy Average i981 453.7 -529.2 81.5 -0.901 30.2 Corrected g2 453.7 -529.2 80.1 -0.901 Average 1983 400.3 -452.2 51.4 -0.895 24.0 4 Corrected g2 400.3 -452.2 56.3 -0.895 TABLE 5

Normalized Room-Air Response Factors

Thermal

Unit Data go

*

gl

*

g2* P1 capacity

( J / K ) - - - Light 198 1 10.40 -13.37 2.97 -0.601 1983 11.92 -17.35 5.43 -0.693 Average 11.16 -15.36 4.20 -0.647 1.98(1.96)a Medium 1981 14.50 -18.58 4.08 -0.724 3.78(4.21)a Heavy 1981 14.67 -17.55 2.88 -0.901 1983 13.00 -15.02 2.02 -0.895 Average 13.84 -16.29 2.45 -0.898 11.18(11.62)a aValues i n brackets a r e from Table 2

(13)

TABLE 6

Experimental and ASHRAE Response Factors

- - . . - - - - -

Exptl. Exptl. ASHRAE ASHRAE Expt 1. ASHRAE light medium light medium heavy heavy Specific mass

(kg/m2 )

of floor area 4 6 130 146

34

1 535 6 35

Solar

TABLE 7

Calculated Response Factors

Light Medium Heavy

Specific mass ( kg/m2 of floor area Solar Conduction Lighting (incandescent ) Room-air temperature

(14)
(15)

0 0 0 0 0 0 0 0 0 0 0

m N d 4 cuo 0 0

I I l n 0 ln

(16)
(17)
(18)

a )

R O O M T E M P E R A T U R E

MEASURED 20.5"C AVERAGE

---

PREDICTED 20.6OC AVERAGE

-

-

I I I I I 1 I I I I I I I I

C

MEASURED 342.0 k w h TOTAL

b l

H E A T I N G P O W E R

---

PREDICTED 328.9 k w h TOTAL

C O N S U M P T I O N

-I

D E C 1 9 8 0

D A Y O F M O N T H

J A N 1 9 8 1

F i g u r e 9 . ENCORE s i m u l a t i o n r e s u l t s f o r l i g h t u n i t s u s i n g new r e s p o n s e f a c t o r s ( T a b l e 7)

(19)

T h i s paper

i s

being d i s t r i b u t e d i n r e p r i n t

form by

t h e I n s t i t u t e f o r Research i n

C o n s t r u c t i o n .

A l i s t

of b u i l d i n g p r a c t i c e

and r e s e a r c h p u b l i c a t i o n s a v a i l a b l e from

t h e I n s t i t u t e may be o b t a i n e d by w r i t i n g t o

t h e P u b l i c a t i o n s S e c t i o n ,

I n s t i t u t e f o r

Research i n C o n s t r u c t i o n , N a t i o n a l Research

C o u n c i l

of

C a n a d a ,

O t t a w a ,

O n t a r i o ,

KlA

OR6.

C e

document e s t d i s t r i b u C sous forme de

t i r b - 3 - p a r t

p a r

1'

I n s t i t u t de r e c h e r c h e e n

c o n s t r u c t i o n .

On peut o b t e n i r une

l i s t e

d e s p u b l i c a t i o n s de

1' I n s t i t u t p o r t a n t s u r

l e s t e c h n i q u e s ou les r e c h e r c h e s e n

matisre

d e batiment e n g c r i v a n t

3

l a S e c t i o n d e s

p u b l i c a t i o n s ,

I n s t i t u t de

r e c h e r c h e

en

c o n s t r u c t i o n ,

C o n s e i l

n a t i o n a l

d e

r e c h e r c h e s du Canada,

Ottawa ( O n t a r i o ) ,

KIA

OR6.

Références

Documents relatifs

Les résultats obtenus concernant l’activité antifongique des extraits aqueux sont représentés dans (Tableau 06). Avec les extraits des feuilles, l’activité antifongique est

Ce travail est focalisé à l’évaluation de toxicité aigue du mélange binaire d’un insecticide (Dursban) et fongicide (Mancozebe)et d’un insecticide seul (Décis) sur des

Au total, 31 parcelles agricoles ( Fig. 1 ), situées chez 10 agriculteurs représentatifs de la typologie (en termes de pratique et de gestion) et dans une station expérimentale, ont

Et dans notre travail, on a élaboré également une base de données avec cartes numérisées pour faciliter la gestion de fonctionnement du réseau d’alimentation

On étudie numériquement la convection naturelle laminaire de l’air (Pr=0.71) dans une enceinte rectangulaire, pour deux cas : Le premier cas c’est pour la paroi inferieur soumis

In particular, they know that adjectives name properties of entities named by nouns; they know that adjectives imply a contrast (i.e. values on a dimension are

The transcriptional activation of SREBP targets encoding the key enzymes of fatty acid biosynthesis (FASN) and the pentose phosphate pathway (G6PD) leads to a rapamycin-

words, it is critical to resolve between signaling intermediates in their free active and inactive forms (A * and A) from when they are bound to other intermediates, including