• Aucun résultat trouvé

Applications of two-dimensional vidicon photometry--Venus.

N/A
N/A
Protected

Academic year: 2021

Partager "Applications of two-dimensional vidicon photometry--Venus."

Copied!
114
0
0

Texte intégral

(1)

Applications of Two-Dimensional Vidicon Photometry:

Venus

by

Philip Henry Schaller, Jr.

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science

at the

Massachusetts Institute of Technology

June, 1973

Department of_ ht nd Planetary Sciences, May 11, 1973

Certified by:_

Accepted by:

Chairman, Departmental Committee on Graduate Students

(2)

TABLE OF CONTENTS

Acknowledgements ...

A. INTRODUCTION

B. GRAY SCALE EXPANSION

C. IMAGE REFLECTION AND

D. LAPLACIAN IMAGE . E. INTENSITY TRAVERSES F. CONCLUSIONS References ... Figure Captions Figures ... Appendix ... ... 2 g... 3

...

6

ROTATION ... 8 10 12 ... .... .14 .. g.... .. o... e e* 15

... ..

...

.. .. ...

.. ..

16

.... ....

...

....

....

...

19

... ....

...

....

....

54

(3)

ACKNOWLEDGEMENTS

I would like to thank my advisor, Thomas B. McCord, and all my friends at MITPAL for their help. Also,

thanks go to R. Beebe and others at the New Mexico Uni-versity for supplying their photographic plates for com-parison.

(4)

3

A. INTRODUCTION

The vidicon tube and the theory of its operation, and an operating camera and data system have been described by

McCord and Westphal (1972). The hardware and software

sys-tems have been described in detail by Kunin (1972). This thesis describes one application of the vidicon system to

as astronomical problem.

It has been known for some time that the planet Venus exhibits a featureless shroud of clouds in the visible

por-tion of the spectrum. In the ultraviolet portion, however,

features are visible (Boyer and Guerin 1969) (Scott and

Reese 1972). These features, and in particular the curious

"Y"-shaped cloud which rotates around the planet in

approxi-mately four days, are of extremely low contrast. Conventional

photographic pictures are printed on high contrast paper to bring out the low contrast clouds. The vidicon system

is ideally suited for this problem for three reasons.

1) The system has a wide dynamic range, incorporating

many 5ray levels.

2) The system is linear over this wide dynamic ranSe.

3) The data are already in digital form.

Analyses of the vlidican imaeas are simple using a computer.

The yidicon images presented in this thesis were taken

usinS the Kitt Peak National Observatory 84" telescope on

April 23, 24, 25, and 26, 1972. The first night the

(5)

mounted at the Cassegrain focus. Film photographs were taken the same nights at the New Mexico State University.

Thirteen vidicon images were selected for study in this thesis. These represent the best pictures at each of

the several wavelengths taken during each night of the run. On the first night (the only Coude pictures) the Y-shaped cloud had apparently rotated out of view. The second night many quality pictures were obtained at .358, .383, and .402 microns. The cloud is clearly visible on this night although

only one of the branches of the Y is seen. The third night only three pictures were obtained and were of less quality than the night before. The final night all pictures were taken through infared filters (see figures 1-13).

Figures 14 through 17 are the best pictures taken with conventional photographic plates during each night of the run. They are all at .37 microns. Correspondence with the vidicon pictures should be noted. They also show only one branch of the Y cloud and confirm the phase of the cloud during this time. The approximately four-day rotation can be observed, noting that the cloud was rotated out of view

on the night of the 23rd. These pictures, however, are not suitable for entering into the rotation rate controversy of 4 or 4.5 days (Boyer and Guerin 1969) (Scott and Reese 1972).

Various image processing techniques were developed in the course of this thesis research which were used to enhance the cloud features above the background planet. The remainder

(6)

5

of this thesis is devoted to a description of these techniques and their application to the Venus cloud problem. While the data were not taken for the purpose of this thesis, a good deal of it war, usable. Although no great scientific prob-lems were solved, it is hoped that this work will be the guide

(7)

B. GRAY SCALE EXPANSION

To make such low contrast features such as the Y cloud on Venus more visible, various image enhancements can be performed on the computer. The first of these attempts at contrast enhancement is gray scale expansion. The vidicon system has 256 gray levels. The actual feature may extend over only tens of gray levels. These gray levels are

line-arly expanded over the full 0 to 255 range. Points

else-where in the picture falling below 0 are set to 0 and those rising above 255 are set to 255.

As the contrast is enhanced (see figures 18-22), two

effects are noticeable. 1) The size of the image decreases

until under almost total contrast enhancement the image al-most disappears. This is due to less and less of the image

falling into the selected range of gray levels for total expansion. 2) Artificial contours are introduced by the quantization noise. When only a few gray levels are used to

cover the entire range of light levels, noticeable (to the eye) distinct changes in light level are visible across the

image. While the original pictures had eight bits of tray resolution, every contrast enhancement of a factor of two

reduces the number of significant bits by one. Thus these

contours are not inherent to the actual image (which is con-tinuous), but are introduced by the necessity of making

arbitrary decision levels in digitizing the data.

Since our object data is at one end of the gray scale, a logarithmic enhancement built into the film converter was

(8)

7

also tried. (see figures 23-27) The resulting images do not show much improvement. The vidicon system also contains a routine to contrast enhance an overexposed image without

loss of precision, as well as the normal overexposed image reducing routines.

(9)

C. IMAGE REFLECTION AND ROTATION

The usual method of mapping a feature which appears only at selected wavelengths is to divide the picture at one

of the selected wavelengths by the same scene at another, but featureless, wavelength. In this case, however, this cannot be done, The scattering function of the CO2 atmos-phere, which is superimposed on the feature, is a strong

function of wavelength and hence cannot be divided out. As noted before, only one branch of the Y seems to be visible on this occasion, The southern hemisphere can be divided by the northern hemisphere at the same wavelength

(using the same picture, obviously), and thus eliminate the CO2 scattering function. (This assumes a certain symmetry

about the function, of course.) The vidicon system now contains a routine to reflect a picture about an arbitrary axis in the plane of the picture. The problems of such a reflection on a discrete grid of points are obvious, but

the results are remarkably good. Note that the proper com-bination of two reflections can produce an arbitrary rotation about an axis perpendicular to the plane of the picture.

The reflected image of Venus is divided by the original and then contrast enhanced. (see figures 28-42) Two things are now immediately obvious. 1) There is a symmetry about the reflection axis. Where the image is dark on one side, it is light on the other side and vice versa. So in the same picture we have the southern hemisphere divided by the

(10)

northern hemisphere juxtaposed with the northern hemisphere divided by the southern hemisphere. 2) There is an edge effect to this process. The reflection, while good, is not perfect and the limbs of the planet in the two images.(or-ginal and reflected) do not match up exactly. Since the

light level changes rapidly across the limb, the division process greatly enhances the edge. Contrast enhancement makes it worse. The problems of contrast enhancement

(11)

10

D. LAPLACIAN IMAGE

Another method of enhancing low contrast features is that of the Laplacian. Being a second derivative operator, the Laplacian is not sensitive to overall reflectivity levels or their uniform variations. It yields only changes in re-flectivity variations. These are most often due to fine detail in the image.

The discrete Laplacian is performed on the image by subtracting the average level of the right nearest neighbors of a point from the level of the point. (Rosenfeld 1969) The resultant values are then contrast enhanced. (see figures 43-55) The absolute values of the Laplacian may also be used for display. (see figures 56-68)

Two items are noticeable in these pictures. 1) The ones taken at the Cassegrain focus show a considerable edge effect whereas the Coude pictures do not. This is due to our now enlarged raster (nine points instead of one) when taking the Laplacian. In the Cassegrain images the entire disk of the planet is approximately 32 points wide, while

the Coude images show a disk 128 points wide. Since the Coude image is of smaller scale and the limb varies more slowly, the effect of the larger raster is not noticeable.

One might try to circumvent this purely mechanical problem by enlarging the smaller picture in the computer before taking the Laplacian. Two methods of enlarging are

common and both have problems, a) Each point is mapped into, say, four points at the same gray level. Its

(12)

problem is graininess. The Laplacian pictures appear grainy enough without making them worse by this method. b) Each of the four points in the enlarged picture can be interpolated in gray level between the positions of the original gray levels. This is an expensive process and does not yield enough quality to make it worthwhile. Fre-quently, artificial contours are introduced and are enhanced by the Laplacian process. Both these methods suffer from

the problems associated with displaying a supposedly con-tinuous function on a discrete grid, (see previous section)

2) The second branch of the Y cloud is now discern-able. This has been unnoticed by any of the previously mentioned methods, which shows the power of this technique.

(13)

E. INTENSITY TRAVERSES

While the CO2 scattering function is a complication

for the purpose of observing the Y cloud, it is interesting in its own right. (see Appendix) This data is presented in the format of intensity traverses. The intensity of the image is scanned along a line perpendicular to the planet's terminator. All plots begin with the limb on the left and end with the terminator on the right. The organization of these 117 intensity traverses is first by image and then by

latitude, In order there are nine plots for each of the thirteen previously mentioned selected images corresponding to figures one through thirteen, respectively. In each set of nine, the plots start at the northern end of the planet and end at the southern end. Note that in some cases, the first or last plot misses the planet altogether. The fifth plot in the sequence is reliably along the equator. The lines of traverse are as close to being at equivalent

lati-tudes as is possible on a discrete grid, and very close in equivalent distance. A normalized distance scale, as well as the start and end points for each traverse, is given. Note that the traverses were taken before correction due to the mirror image reflection by the Cassegrain focus. This

is apparent in the absolute coordinates only. Also note

that the plots of the Coude images span about 128 points, making the Coude traverses appear smoother.

For interpretation, the plots at similiar latitudes, but through different filters, may be overlayed to show the

(14)

13

wavelength dependence of the CO2 scattering function. Small features, such as the Y cloud, seem to be masked by the

(15)

14

F. CONCLUSIONS

The first data from the two-dimensional vidicon photometer are at least as good as that obtainable from

conventional photographic film techniques. Further

pro-cessin to bring out desired features is readily and easily done through computer techniques. These techniques produce better and cleaner results With more and more sophisticated methods. The next method to be tried should be some form of high pass filtering in the spatial frequency domain. Noise filtering can easily be done along with this.

Further observations of Venus with the vidicon system

should span at least five nights in order to see one

complete cloud c.ycle. The image should be as large as

possible without reaching the edge of the target. Since the cloud feature spans just 10 or 20 gray levels out of 200, the exposure should be such that the brightest part of the image is near the top of the gray scale range. Overexposed images should be retaken, as it is at best difficult to retrieve the information. Images should be taken at several wavelengths during each night and

repeated on the other nights. Adequate loggin5 of the

setup of the observations and the data taken will ease

(16)

REFERENCES

Boyer, C. and P. Guerin (1969). Etude de la rotation retrograde, en 4 jours, de la couche exterieur nuageuse de Venus. Icarus 11,

338-355.

Kunin, J. S. (1972). A Technique for Two-Dimensional Photoelectronic Astronomical Imaging, with Applica-tion to Lunar Spectral Reflectivity Studies. Master's Thesis. Massachusetts Institute of Technology.

McCord, T. B. and J. A. Westphal (1972). Two-dimensional Silicon Vidicon Astronomical Photometer. Opt.

11, 522-526.

Rosenfeld, A. (1969). Picture Processing b Computer. Academic Press, 94-102.

Scott, A. H. and E. J. Reese (1972). Venus: Atmospheric

(17)

16

FIGURE CAPTIONS

North is to the top and east is to the right, unless

otherwise rioted. (Planetocerntric coordinates)

1 2

3

4

5

6

7

8

9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 Fi "f figure 18 4/24/72 4/23/72 4/24/72 4/25/72 4/23/72 4/24/72 4/23/72

4/26/72

4/26/72

4/26/72

4/26/72 4/26/72 4/26/72 4/22/72 4/23/72 4/24/72 4/25/72 gray levels -9 "n with logarithmic e lter: .358 microns .383 .383 383 .402 .402

.564

.906

"9 .948 1.00 1.05 "HB 1.10 microns "' .37 " "9 .37 9 "9 .37 " "9 .37 " 10 to 200 of figu 60 to 200 " 100 to 200 160 to 200 130 to 200 re 3 nhancement

Notes double

ex-posure

New Mexico State University

(18)

24 25 26 27 28 29 30 31 32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Notes second branch

of Y cloud figure 19 with logarithmic enhancement

figure 20

figure 21 "

figure 22

same as figure 3

reflection of figure 28

figure 28 divided by figure 29

gray levels 10 to 245 of figure 30

"1 20 to 235 " "o 30 to 225 " "1 40 to 215 " "f 50 to 205 " "f 60 to 195 " "f 70 to 185 "f 80 to 175 " o90 to 165 "t 100 to 155 "f 110 to 145 " "o 120 to 135 "

Laplacian of figure 1 Note: second branch

of Y cloud

(19)

Laplacian of figure 9 10 11 12 13

Absolute value of Laplacian of figure 1 2

3

8 9 10 11 12 13

53

54

55

56

57

58

59

60

62

64

65

66

67

68

(20)
(21)

20

Figure 1

(22)

Figure

3

(23)

2Z

Figure

5

(24)

Figure

7

(25)

Figure 9

(26)

Figure 11

(27)

26

Figure 13

(28)

Figure 15

(29)

26

Figure 17

(30)

29

Figure 19

(31)

30

Figure 21

(32)

Figure 23

(33)

3z

Figure 25

(34)

33

Figure 27

(35)

3Sf

Figure 29

(36)

35

Figure 31

(37)

36

Figure 33

(38)

3?

Figure 35

(39)

38

Figure 37

(40)

39

Figure 39

(41)

40

Figure 41

(42)

4'

Figure

43

(43)

42.

Figure

45

(44)

Figure 47

(45)

Figure 49

Figure 50

44

(46)

45

Figure 51

(47)

%I'

Figure 53

(48)

Figure 55

(49)

SjB

Figure

57

(50)

i9

Figure 59

(51)

Figure 61

(52)

Figure 63

(53)

51-Figure 6.5

(54)

53

Figure 67

(55)
(56)

0. PC

o.

30 a'1o FILT=.356 EXP-.42 .50 PGSIT ION 0. w 0.70 4/24/72 926 PRL217 009 8. .0 .0 O.0 0.30 C.40 O.50 0.60 0. 133.0 117.0 VEtIUS rS I TIN FILT=.35 EXPw.42., 4/24/72 928 PRL217 009 0.10 z,-. I-z ~48 8 M.00 329.0 121.0 VENUS >- p zi 0.80 0'.90 1'.00 153.0 70) 0.30 0.30 t0 165. D IWO0

(57)

8-LI I 7 U .. 1 * -I

0.20 6.0 .4o0

FILT=.3G& EXP-.42

0.so

PSIT ICN o-.o o'. 0

4/24/72 928 PRL217 009

b"

I-c.oo .o.i 0.10 0.,0 0... 0si 0.60 U.,0 --O 0.90 1.0

POSITION 373.0 141.0 141.0 FILT.36 EXP~-.q2 4/2q/72 928 PRL217 009 VD43S0

)J

8" 28. .o 10 u.a0 137.0 113.0 VENUS 0.o Veases 16.0 15.0 I C 0.y 7 VENUS

(58)

cr

*z

veoses

84

8.D

VENUS FIL7=.3S EXP-.42 4/24/72 928 PRL217 009

8 .. 01 Vees 8 F. POS1I71GN 2419.0a 101.0

VENUS FILT=.356 EXP-.12 4/24/72 928 PRL217 009

0.g i'.o 1m7.0 137.0 4~4 U, z lii I--z 0.730 0'.50 1is.0

(59)

58 o.so POSITION FILT=.3S8 EXP-.42 4/24/72 928 PRL217 009 'IJ I--8

0.10 0.go 0.3 0.40 0. 0.60 0.70 Owo O.no 1.00

POS1TIGN 109.0 FILT'.356 EXP-.42 4/24/72 928 PRL217 009 B. 2:'-lii I-2: b.42 S 0.10 -D.00 07.0 VENUS 0.20 0.70 1~.o 12a.o vueses 167.0 83.0 VENUS

(60)

Von SIM

59

B

:i.

4 1AJ I-. z b.48 S B ____ ---.-.--- ,-. -. 0'l 0'.s0 .w FILT=.356 EXP-.42 0.70 O'.so POSIT ION 4/24/72 928 PRL217 009 020 0.30 0.11 O.50 0.60 0.70 090 0.90 1.00 POSITI0Mt 1,.0 J37.0 FI LT=.383 EXPA4,0 4/23/7Z 1000 l' 20 261.0 09.0 VENUS VEeWSa 19'.0 121.D3 B. tz

d.jo

-J37.0 I69. YaH06 d. w .go

.so

PAL216 018

(61)

-60

8.

%.n ot a o 0.10 o'.so wn .70 o.so w~ I'.

147.0 POSI T ION

153.0

VENUS FILT=.383 EXP-6.0 4/23/72 1000 PRL216 018 -D

...

. l

8~

8

0 n o.0 0.co t3.sJ 0.10 O.so 0.5 0.70 0.80 0.9.

sv~oPGSi T7 1ON

157.0 6I1.1

137.1 l]G

FILT:.3U3 EXP-65.0 4/23//2 1086

(62)

VtM651.4 61 u6i 8 8 8S. '~8

Wbao

o.

lo

0.20 .

o'.o

o'

o'.50

.o

.1G

.o w

.su

.a

1st~o POSIT ION

1'.' - 71.0

iei~o o.0

VENUS FILT=.363 EXP-6.0 4/23/72 1000 FRL216 018 -0

S

~8. zn

i.oa 0.10 0A~g 0.so 0.4L0 O.!o 0.60 0..0 0.80 0.9 7 1.0

rr,.o 73.0(I

It 15Ir .33- fXP-6.0 4/23/72 1000 PAL216 010 -D VDIJUS

(63)

62.

.0.0 0.70 .- -.-O 1.00 187.0 POSITION01.0 89.0 s?.0 FILT=.383 EXP-6.O

4/23/72

1000 PL216 018

1',

f.il. * *1 0.~n 1.~r3 1~'7 .it I 111' 1 :' j, " -l tI 13

.-n-v

LT~1.) 2 0-"I uJ 5-z 8-8 VENUS "I * -'F) (;)Iu, lq I I.-8. Ii. 1~ ,.t~ hi. ~ i~*' J INIC I i ~;

I

J

(64)

63

en-

z--to

S-93.00 0.10 0.20 0.30 0.10 0.s0 .0c.80 0.70 0.80 0.90 1.00

VENUS FILT=.383 EXP-6.0 . 4/23/72 1000 PRL216 018 -D3

8

F8.

en-

z-'.if o. o f.e u.fu U.Nal U.60 0.71 0.80 0.9.

P03'rife-'ii .u S.,.

'I-30'PXP-.31/53/72 1 PRL-216 018 --)

(65)

V"0o3C 8 8 121.0 POO.,I7 1ON '113.0.15. FILT=.383 EXP-.1 S 4/24/72 923 PRL217 O0

(I. 3n 0. 410 0.Gil CD 0.*70 0.0)0 ,. Ltyj

P '0,31 UIjN y 1 '*. VENUS 8- X.-U.I() OA~fl )~'!~. fl )(f~i. Li V It Kil; 64

(66)

13 8 8 VoEsse

65

I

<.4-- -- -_________ I"b.a 129.0 105.0 VENUS 0.2 0 FILT=.383 EXP-.15 o.sa . POSITION 4/24/72 .70 923 PRL217 00S

1'i ~ e -w nn u.n Ii, u.so .0

tr:,. r

I

'1i . E. XPs'i - . I 4 /-1/i :. PH 1'/ 005

0.ea 0.s 1.00 157.0 . z-; l 1II3. in. n'.:nI' 1.6:-m o.wo .o w . w

(67)

66

157.0 " "'' ''% '. . - em.o

VENUS FILT=.303 EXF-.1S 4/24/72 923 FRL217 005 -0

ul . -

z--]

--.L0 0.10 0.20 0.30 0.40 0.50 0.60 0.*0 O.0 O.E 1.L POSITION17.

(68)

ga.0 177.0 59.0 121.0 FILT=.383 EXF-.IS- 4/24/72 923 PRL217 005

8

POSIT I CN -fl 19. 0 VENU'ji 117.0

FILr=.365 EXP-.1! 4/24/72 b23 FAL217 L005

VENUS

vDesse 8

S

(69)

Uzj 8L 8z '10 0.0 . o.e .70 0.80 0.90 1.0 53.0SIION . 51.0 113.0 . FILT=.383 EXP-.1S 4/24/72 923 PRL217 005 8. 8J 8

.-9sc. o 0 .10~~ao f.0 0n ~ir] 0.e 0.' . 80Te 0.0 I.00

PG(1'110N 21?.n

VDIUS I

ei.n FILT=..3= -3 XP--.14 4/i5/72 9o FRL218 071 VENUS vecese

(70)

69

&-4

D.co oao 0.!0 0.9 2.0

12.0 f'(S1TI ON 110.0

VENUS FILT=.383 EXF-.Lt 4&/2S/72 902 FARL21EI 071

-cSf 0. Mo .8 Gf D

cbo

01

P031 T 1 i . VEUU5P--Il FqlT.~sl 1L i 2 90? rAL210 071 VFl.4LJfll

(71)

0.20 .so .1a 0.so POSI TION FILT=.363 EXP-.l t4 0.0 0.. 0 0.6. 1ie.0 03. -4/2S/72 902 PRL218 071

o.so o.'a o.'rs o.co 0.70 o.60 0.90 -.c0 PO(317 1 ON FILT=.3P3 EXP'-.14& 41/2'L/72 902 FRL210 071 --VENI Is veessa sea.0 129.0 VENUS yeeam 'Vil

(72)

ees. 71

21 .0 ' "'' ' ' ' 1111.0

137.0 141.0

VENUS FILT=.363 EXP-.4tt 4/25/72 902 FAL218 071 -0

8 8 . a,.iu 0. M 147.0 )u).13 P..sa .w 0.70 .81 0.9 1.no PQSJ3"'-~ ^ FA L'D'83 E0.l' 4 /25/72 902 PRL-216 071

(73)

72

u.lo . w . w

FILT=.363 EXP-. I&

vin.n d.co POSIION . m a.so 4/2S/72 902 FAL210 071 t'.00 11r.0 14s.0 -D ufl1.0 0- 1 [. 117.0 191-0 VER BS 8 '13 8I-8B c.no 10&.0 14o.0 VENUS I-. zw-. uJ F-' ' ' | 8 .o w d'. w FI ='MEXP--14l 14/1-:1/72 9,1.2 PTIL2163 071

(74)

--- I->-B z-. 8

8

8 153.o

VENUS FILT=.402 EXP-1.0

Pd S IT IN 4/23/72 1002 0' m PRL216 020 8 0.7U 0.0 0..L

153.0i

I I(1.

V1Th43'i FILi:~.Lifl~ LXS'-~1 .0 tj/~.)~j'7,3 ~flji rnL'~I5 020 -0 vecD2C .o30 .to . 20 0.s veaO#c I'.m 67.0 137.0 tu I--28 o.so 0.a w VDBJUS 1 P11Lc216 020 -- 0

(75)

Va,4O2C

ruL 1 LUN 77.0

173.0

137.0

VENUS FILT=.402 EXP-1.0 4/23/72 1002 PRL216 020 -0

8 . g.venoac z-ha 8 . 0..0.70 ... 0.0 0.no 1. POSH7 1 a7.0

(76)

75

FILT=.402 EXP-1.0 4/23/72 1002

97.0 73.0

PRL216 020

a~m 7u otwo nas 7 P7.0

Fil T=.4ti2 EXP-1.0 4/23/72 1.012

VenOPC >.co VE6.0 VENUS 8 .M 8~ 8 8 (-z tIj 00.0 PHL216 020

(77)

-

IM.-VENUSJ FILT=.'I02 EXP-1.0 '/23/72 1002 IrFL216i 020

0.2uP oIee12 O

.

67.

(78)

77

9 .a o. io ol w Go 0.110

I1.0

VENUS IILT=.1102 EXF-1.0

o~o DOS5IT ION '&/23/72 1.002 d. -M d. so 137.0 9.0 12AL216 020 vemaoam 9J~o- f-7.1--.---0.10 0.~1 fly) fl.1~POS 17 1 ON t~1 7~0.J 09 Bn9 z 8v-Bu i r..n )fl?.rs v It Y.'; A M;3. L' IM.0

(79)

78 o. W FILT=.402 EXP-.03 . .5 .io .70 o.o 'w- -. 0 POSITION

lES.o

4/24/72 947 PRL217 023 ~. In ELM U. 1'1) P~.0 4/24/7P £47 PRL2J17 023 v~emOA 8.-Lu

81

:-0.10 '.oo M~.0 7.0 VENUS z 8-V'(45 T 1N ,3 157.

81

.o a

(80)

8* lLi 8. I' . 20 d.0 0. so

Pc(SI

T ION 1-70 0.30 4/24/72 947 PRL217 023 FILT=.402 EXP-.03 8 8 -I". DADO S2r1 o 0.76 .3 .0 20 PS I N 1.0 117.0 FIVfIi.LT-r.2 LCXP-..03 4/241/72 947 PFIL217 023 79 0.o 0 CV. w 1.0 VENUS 0-so0 VEME0A I.c0 161.0 121.0 - in-z zj VE NUS5 8 a. w 0. w

(81)

vool" 80

137.0 Ues.0

51.0 211.0

VENUS FILT=.402 EXF-.03 4/2'i/72 9L&7 PFL217 023

veft"O

P)11.0

77.0

/u(t

Viii*~f'~ Ii U; . 1,1- Yt.O~ iWj1/4 ijtf7 I'lull' ( 123

(82)

8

-z

81

coO 0.20 o.go 0.so 0.no 0.so 1.60 0.70

)tus.0 P1SIT1ON

75.0

VENUS FILT=.402 EXP-.03 4/24/72 947 PRL21

8

9.

8-|

VD4Mo

Ch.un 0.lo a.e -nau 1,10" V.5 NOc U7.;- 000 0.so tLco

S1.n 181.3 FaLO 2tUl.L iil.: .4 D:P-- [x .039 /4/~/ f17 rL.217 23 . w .o 2'.00 Uas. 0 7 023 VLtNUS 1

(83)

8 I- %-2nR '.50 '.o FILT=.56I EXP-.20

d.so

D. )o POSITION 4/23/72 1011 .?o . w .so W5.0 MID. FRL216 027 T~ -~~~1--~

O.r'LI .LO u.roi Co.( 0.70 1oo O.N 1.o

P(Y31 T (sNs59 PRL216 027 -O 82 930cc 29.0 27.0 ~----I I 0.20 0.~0

VENUS

~8. . 8-98.m 23.0 23;.'J' 81

(84)

83

141.0

77.0 115.0

VENUS FIL7=.564I EXP-.20 4/23172 toll PRL216 027 -0

ve6Sa

. -- - ~.- T--

i'.inl G-I -'.O'm g

tj~g// 11 r1L216 027

141-0

(85)

84

IS&o POSITION 57.0

ee.o 65.0

FILWT.564 EXP-.20 4/23/72 1011 FRL216 027

.UU ~~~ ~ I M),0 I. I.% IJUJ .I 71 W 5.01.3 1.00

Uii.Ll Ii IL216 027 -VENUS lr.eio 1'.IJ VIUUi .|=00 Ex'-20 4/r>-/-2 1111

(86)

85

Vo.)C..AU

9b.w o.o 0.50 0.1o o.so o 0.70 o. l.ao t'. o

POSI T ION

as.0 29.0

VENUS FILT=.S6q EXF-.20 4/23/72 toll PRL216 027 -0

z--S.

*b,1ni .co 0.3O ry~r1 r.y' 0.rio 0.70 0.UO 0.9o 100

171.0L75.0

63.0 17.1

PRL216 027 -0

(87)

VFts 86

M7.0 a 0J&I4R 81.0

IU1.0 L

VENUS5 FIT.~ EXI'-.20 4/23/72 ltl rAL216 027

-0

uj

10 111U T T011

i~

9~o OL'O .~JJ 0.60 0.70 a~i~ 0.9 1.0 L7--.. r'4r r -.03 . kl' -l~~72 0000 MPL219B 110

(88)

vtvwio 8?

FILT=.906 EXt~-.03 '1/25/72 0000 FARL219 110

117.0 nAu05 .IZ Ga0D .7 .0 00.00

V Ft'J~3 l'LT=. 5,5

I'Xr'-.

03 //? 000~f) , P14.21 9 Ito VENUS5 MEel5A w F-vPjlj(5

(89)

Vr.mSDmA

8/

8-.

8J,

8-8 .o w 119.0

0'.10 o.o o.3o o.so

POSIT ION .70 o.ao 0.S

FIL7=.906 EXPA-.03 4/26/72 0000 PRL219 110

9.00 0.10 0. o.3 0.110

0 ..0 PTSw

0.!71 o.sgr 0.70 0.50 0.Do0

0 01

1.00

FITZ 11- ,, Vwit /237 iOO~L1 1 - nU VENUS VM,5a

t'. o

-1.00 87.0 139.0 I--z .

(90)

VDoMW 89

i

-

.-

ir--0.0 o.a 0'.30 0.1o 0.50 O.60 . 0.90 0.90 1.00

PMSIT ION ,1.0

VENUS FILT=.906 EXP-.03

8

.

~

cb.c 0.10 0.20 0.3 0. 0-Ctr 05- I w 14);.t] 4/26/72 0000 FRL219 110 0.6b .70 0.80 4/? UJ/72Q O010*RI. 219 2 1.0 8. 3.0 157.0 V Ll 11S

(91)

8 z..d 1*J 8-0.10 .0~ 0.30 .1o FILT=.906 EXP=.03 d. so .Go POSI T ION 4I/26/72 0000 . m I-J 8 SL O-10.11) 1i'13.0 .. r - - - 1 - - - -- -- T -- - -- ---.- - -

--0..U U.'.Ju 0.4W 0.'./1 0.t0 0.'O 0.t0 . 1.t n-/.j.I

FILT .M EXIw. 03 4/i/712 L(100 Mew RI 127.0 117.0 VENUS v'EEne PRL21 9 110 .Lo 103.0 90 0.o w V 1 '. i PML219 110 -O

(92)

C'b'.co o'.Ao 0.50 0.'. 0.70 0.80 0.8o .00

P1OSITION

FILT=.948 EXP-.03 4/26/72 0000 PRL219 114

8

...---o .lu G.20 a .u.4 . !.]0 0.70 0.00 'D0.9 1.noi

W5.o nn?. n

FLk.9 ~IF3[Xl. 3~

42(i/72

0.00 PRI L219 114

voeren 1as.u VENUS vefnenl oao U 212.0 S S S 11).0 V1.flS

(93)

FILT=.948 EXP-.03 dlo 0'.7 1.00 97.o 4/26/72 0000 PRL219 114 0r 0.30 0.40L P.50 0.60 0.70 0.80 0.90 1.00 PLT;S I il oNn. n 13W.0 FILT:=.!4 1:IXf'..03 41/26~/72' 0000 PRLP19 114 -0 . 1s.0 117.0 VENUS POSITION VPtJ IS 1 .o veesm

(94)

93

PMSIT1ION FILT=.948 EXP-.03 4/26/72 0000

1'.00

101.0 131.0 PRL219 114 in I.IUo . ).fn O. o .70 0.0 0.90 M IS)A 133.0 12B.0 VENUS ;aE

(95)

94 .... .. 0.... ... - - - -O 0'.50 .POSIT IN . FILT=.948 EXP=.03 .60 4k/26/72 000 PRt.219 114q .0 0.10 0.00 u.'0 0.40 0-50 O-60 0.70 0.1f n9 1.00 POSIT10 147.0 ViI lji) VENAea 137.0 1111.0 VENUS 07.33 rvew4 1.00 157.0 a. w0 . 163.0 PRL.21B 1-14tt FILT:-.-4 E0im.1 4/2jG/,' 000

(96)

S xL 6-1~ 111.0 0.10 YxON tOM, FILT=i.9tB EXP=.03 4/26/72 000 .0 PRL219 I I S v~nms S 8 8-~~1 -- V---I -- *~---. T 1M~.0 VII J.13 I V).t) ti.'~;. ix VENUS tl/ A-V*11 ' C1001(lb F HL219 ItO

(97)

96 )t47. 0 POSIT ION VENUS FlLT=1.00 EXP=.03 ~0410O8 B 8 8 '8 8 __ 9~.oo 1U9.D q/26/72 0000 FRL219 Ile -0 203I 0.3G 117.0 FRL.219 1to -0 'a. z li~J z I-FRA'"I.00 [--Xp-.O'i (M. 0

(98)

FILT=1.00 EXP--.03 4/26/72 0000 PRL219 118

o..u) 0. 0. f.20 0.Uo 0.90 1.01

14, 1. 1)

ILA :-. i.(InF Xt.03 1/.1//p 0 0 PRL IqI

l

VENtC00a 151.0 127.0 VENUS VENio00 119.0 -1113.0 8 z-| 8 n. to D.11 b. w ira. n 1i~t. Li

(99)

VEwtcxi

156.0 P057104 13.

VENUS5 FILT=1.OO EXF1-.03 4/26/7' 0000 PrL219 11.8"

0.10 aO

PO 71O

lu!"u

VEULI~i Ll:. I MIEXP. tl/Lu/P JO I"'AL.21!3 110 --D VENUS

(100)

99

.

8

8 to -cb oo 159.0 151.0 FILT-1.00 EXI-.03 4/26/72 0000 PRL219 118 cbm 0.10 0A.2 01~0 0.10 ().R; Tom .71 080 09 POSI At G FIL.T.t4.00 EXt'~.03 4/26/72 0000 o'o o'.so M171N 0'. to o'.eo O.30 VENUS 0.so o.o .90 VeNID00 107.0 157.0 8i 8. Irm. 11J/.0 17..0 veton rm PAL21

(101)

I1t--VCrmois 100

137.0 ru-i i i UN

103.0

-VENUS FILT=1.0S EXP-.12 4/26/72 0000 PRL219 122 -0

VB41055 8 8I

ii

cb~ .c031r ii ou 0.10 0.7 0.. 3a13 Pu.00 O PY)S T N07.0 1Y4.0131.n I'l IL I T=.0l EX--. 12 4/26/72 0000 P3R-L219 122 -13 va lus

(102)

101 .00 0.10 0.go 5.0 '.80 0.70 0.t0 0.90 .o P0317 ION FILT=1.05 EXP-.12 4/26/72 0000 137.0 PRL219 122 8 8.

boo o.in o.ro ,o 0.wo - .r~O 0.60 0.70 oa 0.00 .co

PSS IGN a I) VWU5 FL219 122 -0 vwtoss Iu%.u IP.0 VENUS vmtosa

a

t&,

143. FIL'l::-1.IlEXff.12 1/26 72" 0000

(103)

102

POSIT ION

FIL-T=1.OS EXfP-.12

0. 11Q o. L' 130

uAs.0

'i/26/7P OWtL FRL2IS 122

VEN I USA

0.1W ~~ 10,.7 .8 .10 1.)

vu 'It FX T;-. j; Yf'-. 1.' It/ 2 /7a '-3 rAULTI 122

Vt14tose 111S.0 153.0 VFNUS ZoR 4*I.( VC1 11.15

(104)

'Li

103

Voft058

8

S...--I 0

"b~ . t 0o.20 0.30 o.no o.so o.ao o.*; o's.9o0'

FILT=1.05 EXP-.12 4/26/72 0000 PRL219 122 8 ...--- --~, ---- ' .. ..-.. - - - -- ~ -~~~ -.1 - 1-011 0' 1 ' 0.7 0.9 0,9. 1.00 DAG I .011'3. 16-1.1 rf A ~-t .r' .1f5-.1 't/25/7 1)(11r PRL219 12? 19.0 * 1.0 VENUS VENIO!S 117.0 161.0 -. tz--4 8-9. 8 i. 161.UJ

vr

I!V P SIT710

(105)

.LV 1+ X - z-8 .bo 0.10 0.20 0.30 0.010 0.50 0.60 POSIT ION 15/.0

VENUS FILT=t.OG EXP-.12 4&/26/72 0003

z,-. 11.5 I-z b 0-so 0 PRL219 122 vYEian 0.10 .0 U.a 0. 1..50 .O 07.0031.00 PG31IT f GN

VEI~t'; iIt fi~ F'ILZI fl?

0.90 17.00

173.0

117 .

tr. o

(106)

105 o. o .0 FILT=HB EXP-2. 0 o'. w '.5 6'.o POSIT I N 4/26/72 00003 do' 9.0 0.10 121. 0 121.0L vEN tI 0.30 0,40 0.0 .60 0.70 0.00 0.90 10 FDST I (N 00, n g1".0 PrLt13 12G -0 S 'U b-es

I

Si

QI

'.10 PRL219 126 1'.1o 131.0 b'.D . 119.0 l15.0 VENUS

1.

a'.l w FIL7=1171 i i2O ~ ~ 4/G7 ~ O pr

(107)

106

VD*48s

CT.D- 0g .10 '.ao 0.30 0.1o 0.50 0'80 0'.0 70ru ~ 1~ 0.80 - 0.90

POSITION

VENUS FILT=HB EXP-2.0 4/26/72 0000 IRL219 126 -D

8i I-VEJaA

r.n, 3 n

oI1

i

vEl n'S

z--- -e1 9.0 11jt).n Fil.Te~ii EXP-20 426~/ 0100 t'RL219 126

(108)

107

vte.aw

cb I*4a

B

B

cbo 6 o'.go o'.so 0'n n.s0 o.50 o.-o 0.80 o'.s t'.00

POSIT IGN O.1

VENUS FILT=HB8 EXP-2.0 41/26/'72 0000 PRL219 126 -0

--- r---- r u.o a 1-,

n

-. ~ 0 ~ ~ .0~ Ll:'H't '" /;,/72 -t.!t IRL219 126

vENt

i

101.0

(109)

1 (y4 vW~IA 131.D 99.0 FILT=HB EXf'-2.0 '1/26/72 0000 FR1219 126 ilV0.3n 0.11 0 0 PSSTIIIR

t 11.1.219

1;?(-)0 VENUS r I (., i --t iti a 111;:161*74Z, fjuclt

(110)

VENtt1s

0~t 1 coeo ~~~W~~~~oN -ZAD

IM

POSIT10ON 4/26/72 0000 133.0 -1es.a FRL219 130 vtNLtos

ei.0 .10 0.20 J.30 (.'10 U.D 0-.) .*0 0.80 U..0 1.0

71 ONI 15

FIL l.10- EXIP-.I.( FRK'l9 I'.

1b5.0 1V.0 VENUS Z ILJ b~42 167.0 VELU ltl', ' ' " FIL T=l.10 EXP*-1. 2 . PRI 2?19 1390

(111)

110

VEM1IIg

169.0 ' ".'

'J" 1y7.U

1e.0y

VENUS FILT=1.10 EXP-1.2 4/26/72 0000 PRL219 130 -0

8

VENI to

8I

8. O

8

/

93.~0 -~~~~th ~~~~~T0At 0JI 0.1Wu 0 0.s 0.20 (L80 0.90 1.100

PG(SI T If 13.

171.1

(112)

VENt108

13.0 ' '1 .0

taso lug. a

VENUS FILTot.10 EXP-1.2 4/26/72 0000 PRL219 130 -0

VEN .10m

8I

IT;

0

/IL

.15. u

(113)

~iEWUU8112 VEN110Bw 8 -8

51

0.10 0. Ev 0.31 a.1 0 .0 0.7 ate0 5.90 1. 111s.0 181.0

VENUS FILT=t.10 EXP-1.2 4/25/72 0000 PRL218 130 -D

8~~o

8.).

'0.10 0.e!0 0.se 0.11a (a.B) 0.70 0.80 0.i0 t.00

r~~sP~3rION

t~

151. -17.

(114)

' '- '-d.2 d.so 0'.90 t00 I'm., 1~3.0 4/26/72 0000 VIDA Ioft 113 tLJ t42 8L1 11.0 VENUS 0.oso o.sa

POS IT ION 0.wo

d.o e

Figure

FIGURE  CAPTIONS

Références

Documents relatifs

During a planetary transit, atoms with high atomic number absorb short-wavelength radiation in the upper atmosphere, and the planet should appear larger during a primary

The region sounded by SOIR (65-150 km) corresponds to a region where different circulation patterns coexist: the SS-AS driven by strong diurnal temperature gradients,

In the twentieth century, well before the start of Akat- suki mission, the former Soviet Union and the USA had explored Venus and elucidated basic characteristics such as

In particular, fundamental problems in the fields of atmospheric structure and composition, morphology and distribution of clouds and hazes, atmospheric dynamics, properties of

In the absence of data to constrain Venus’ density profile, the interior structure of Venus is often a rescaled version of the Earth using the one-dimensional seismological

Nous avons déjà mentionné plusieurs fois que ces expériences ne définissent que le nombre quantique principal de l’état initial des atomes et nécessitent

Gonzalez, Polar organic chemical integrative sampler (POCIS) uptake rates for 17 polar pesticides and degradation products: laboratory calibration,

La mise à la terre du neutre n’a pas d’impact sur les matrices 4 x 4 d’impédance linéique des câbles et n’en a pas non plus sur le profil de tension phase-neutre. Par contre,