• Aucun résultat trouvé

Investigation of absorber and heterojunction in the pure sulphide kesterite

N/A
N/A
Protected

Academic year: 2021

Partager "Investigation of absorber and heterojunction in the pure sulphide kesterite"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: hal-03032110

https://hal.archives-ouvertes.fr/hal-03032110

Submitted on 30 Nov 2020

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Charif Tamin, Denis Chaumont, Olivier Heintz, Remi Chassagnon, Aymeric Leray, Nicolas Geoffroy, Maxime Guerineau, Mohamed Adnane

To cite this version:

Charif Tamin, Denis Chaumont, Olivier Heintz, Remi Chassagnon, Aymeric Leray, et al.. Investigation

of absorber and heterojunction in the pure sulphide kesterite. Boletín de la Sociedad Española de

Cerámica y Vidrio, Elsevier, In press, �10.1016/j.bsecv.2020.05.004�. �hal-03032110�

(2)

Pleasecitethisarticleinpressas:C.Tamin,etal.,Investigationofabsorberandheterojunctioninthepuresulphidekesterite,Bol.Soc.Esp.

w w w . e l s e v i e r . e s / b s e c v

Original

Investigation of absorber and heterojunction in the pure sulphide kesterite

Charif Tamin

a,b,∗

, Denis Chaumont

b

, Olivier Heintz

b

, Remi Chassagnon

b

, Aymeric Leray

b

, Nicolas Geoffroy

b

, Maxime Guerineau

b

, Mohamed Adnane

a

aLaboratoiredeMicroscopieElectroniqueetSciencesdesMatériaux(LMESM),DépartementdeTechnologiedesMatériaux,Facultéde physique,UniversitédesSciencesetdelaTechnologied’OranMohamedBoudiafUSTO-MB,ElM’naouar,BP1505,BirElDjir,31000 Oran,Algeria

bLaboratoireInterdisciplinaireCarnotdeBourgogne(ICB),UniversitédeBourgogneFranche-Comté,BP47870,21078Dijon,France

a r t i c l e i n f o

Articlehistory:

Received7January2020 Accepted25May2020 Availableonlinexxx

Keywords:

Kesterite CZTS Thinfilms Heterojunction Bandalignment

a bs t r a c t

Thispaperaimstostudythepropertiesoftheabsorberlayerandtheheterojunctionin kesteritesolarcells.TheCu2ZnSnS4(CZTS)thinfilmswerelayeredonaglasssubstrate fromacolloidalsolutionofmetalsaltsandthioureadissolvedinamixtureofwaterand ethanolanddepositedbyspincoatingtechnique.Thesampleswerethenheattreatedin afurnace,inthepresenceofsulphurpowderandunderanitrogengasflow.Theresults revealedtheformationofhomogeneouslayersofapurekesteritephaseofCZTScrystallites afterheattreatmentwithcorrectstoichiometryandoxidationstates.Theopticaltransmis- sionmeasurementsindicateanenergyband-gapof1.4eVandanabsorptioncoefficientof 104cm−1.TheseCZTSthinfilms,elaboratedbyspincoatingprocess,wereintegratedfor electronicpropertiesevaluationinaheterojunctioninthefollowingconfiguration:SnO2:F (FTO)andMolybdenumasbackcontact,CdSastamponandtheCZTSfilmasabsorberlayer.

ThebandalignmentattheCdS–CZTSheterojunctionindicatesacliff-likeconductionband offset(CBO)evenclosetobeaflatband.

©2020SECV.PublishedbyElsevierEspa ˜na,S.L.U.Thisisanopenaccessarticleunderthe CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Investigacióndelabsorbenteylaheterojunctionenelsulfuropuro kesterita

Palabrasclave:

Kesterita CZTS

Películasdelgadas Heterojunción Alineacióndebandas

r e su m e n

Estetrabajotienecomoobjetivoestudiarlaspropiedadesdelacapaabsorbenteylahetero- junciónenlascélulassolaresdekesterita.LasfinaspelículasdeCu2ZnSnS4(CZTS)fueron colocadasencapassobreunsustratodevidrioapartirdeunasolucióncoloidaldesales metálicasytioureadisueltasenunamezcladeaguayetanol,ydepositadasmediantela técnicaderevestimientoporcentrifugado.Acontinuaciónlasmuestrassetratarontérmi- camenteenunhorno,enpresenciadepolvodeazufreybajounflujodegasnitrógeno.Los

Correspondingauthor.

E-mailaddresses:charif.tamin@univ-usto.dz,chariftamin@etu.u-bourgogne.fr(C.Tamin).

https://doi.org/10.1016/j.bsecv.2020.05.004

0366-3175/©2020SECV.PublishedbyElsevier Espa ˜na,S.L.U.Thisisanopen accessarticleundertheCCBY-NC-NDlicense (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

Pleasecitethisarticleinpressas:C.Tamin,etal.,Investigationofabsorberandheterojunctioninthepuresulphidekesterite,Bol.Soc.Esp.

resultadosrevelaronlaformacióndecapashomogéneasdeunafasedekesteritapurade loscristalesdeCZTSdespuésdeltratamientotérmicoconlaestequiometríaylosestados deoxidacióncorrectos.Lasmedicionesdelatransmisiónópticaindicanunabrechaenla bandadeenergíade1,4eVyuncoeficientedeabsorciónde104cm−1.Estaspelículasdelgadas deCZTS,elaboradasporelprocesoderevestimientodeespín,seintegraronparalaevalu- acióndelaspropiedadeselectrónicasenunaheterojunciónenlasiguienteconfiguración:

SnO2:F(FTO)ymolibdenocomocontactoposterior,CdScomotampónylapelículaCZTS comocapaabsorbente.LaalineacióndelabandaenlaheterojunciónCdS-CZTSindicaun desplazamientodelabandadeconducción(CBO)similaraldeunacantilado,inclusocerca deserunabandaplana.

©2020SECV.PublicadoporElsevierEspa ˜na,S.L.U.Esteesunart´ıculoOpenAccessbajo lalicenciaCCBY-NC-ND(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Inrecentyears,photovoltaicenergyhasbecomeapromising sourcefor meeting the energythat society demands. Cur- rently,silicon-basedsolarcellsarethemostcommercialised productonthephotovoltaicmarket.Theexpensiveandpollut- ingmanufacturingtechniquesofcrystallinesiliconsolarcells ledscientiststofindanewgenerationofsolarcellsthatare moreeconomicalandenvironmentallyfriendly.

Thin-filmsolarcellsareapromisingalternativethatcould achieve this goal by reducing the amount of materials.In recent years, three thin-film solar cells technologies were developed:amorphoussilicon(a-Si),cadmiumtelluride(CdTe) and CIGS(CuInxGa1−xSe2).TheCIGS technologyachieved a higher efficiency (22.9%)than the cadmium telluride (21%) andamorphoussilicon(10.2%)[1].However,(CdTe)technology usestwotoxicelement(CdandTe)andtheCIGStechnology involvesthe use ofrareelements suchasindium andgal- lium.Inaddition,indiumisnowwidelyusedintouchscreen technology[2]anditspricecouldsignificantlyincreaseinthe futureandaffecttheproductionoftheCIGStechnology.

Toavoidtheuse oftoxicandrare elements,newmate- rial kesterite (Cu2ZnSnS4 or Cu2ZnSnSe4 referred as CZTS and CZTSe) using copper, zinc, tin, and sulphur or sele- niumelements,hasattractedconsiderableinterestinrecent years and became promising for the development of eco- friendlysolarcells.Thiscompoundisap-typesemiconductor andisthereforeusedasanabsorberlayerinsolarcells.Its near-optimumdirectbandgapenergyof1.5eVanditslarge absorptioncoefficient,greaterthan104cm−1,makeitoneof the mostpromisingmaterialsforphotovoltaicapplications [3,4].Althoughthisinnovativetechnologyhasgrownrapidlyin recentyears,itsperformanceisweakcomparedtoCIGS.The bestefficiencyofkesteritesolarcellsis12.6%forCu2ZnSn(S, Se)4and10%forCu2ZnSnS4[1,5].

Thedevelopmentofkesteritesolarcellsiscurrentlylimited bythelargeopencircuitvoltage(Voc)deficit[6,7].Thishigh Voc deficit(Eg/qVoc)isstronglydependentonseveralfac- tors,inparticularrelatedtothepurityoftheCZTSabsorbent materialandthequalityandnatureoftheinterfacesbetween thedifferentlayersandnon-ideal bandalignmentthatlim- itschargeseparationattheabsorber/tamponheterojunction [8–10]. Thus, the CZTS layer must be pure (without para- siticphases)andstableduringthedepositionandtheheat

treatment processes (no loss of tin and sulphur by evap- oration or diffusion in the other layers of the cell). As well as, the heterojunction needs more investigations to understandtherecombinationlimitsattheheterojunction- interfaceabsorber/buffer(CZTS/CdS),whichisoneofthemain factorsinadditiontotheabsorbentlayerproblemslimitingthe efficiency.

Hence,obtainingapurephaseofCZTSrequiredoptimi- sation. The mechanism of formation of secondary phases anddecompositionofCZTSphaseduringheattreatmentis stillunderstudy[11].Severalauthorshavereportedthepres- ence of secondary phases in the kesterite structure, such as Cu2−xS, SnS, SnS2, Cu2SnS3, whichare p-type orn-type semiconductorsorinsulators,thatcanformsecondarydiodes insideoftheCZTS[11–13].AreviewbyKumaetal.indicates that, under equilibriumconditions, acopper-rich layercan suppress thesecondaryphasesand assistintheformation ofthe purephase ofCZTS[12]. Kermadiet al.proved that copper-richCZTScouldremovesomesecondaryphasesbut wasunabletoremovethecoppersulphidephase[14].Ash- faqetal.recentlydemonstratedthattheuseofIn2O3:Sn(ITO) substratepromotesthegrowthofasingle-phase,namelyCZTS [15].However,mostofthepreviousstudiesdidnottakeinto accountthediffusionmechanismswhenusingITOtoobtain asingleandpureCZTSphase:crystallographicallythephase iskesteritebutchemically,indiumcanpartiallysubstitutetin andformaCu2ZnSn1xInxS4alloy(CZITS),whichmaychanges thepropertiesoftheCZTSandpromotetheappearanceofthe In2O3phase[16].

For theheterojunctionengineering,anunoptimisedhet- erointerfacebetweentheabsorberandthebufferlayercould result in a major limitation on device performance. How- ever,theheterojunctionengineeringhasachievedrelatively littleattentioninthekesteritecommunity.Recently,Yanetal.

(2018) obtained the efficiency record of kesterite sulphide solarcellsbyheterojunctionheattreatment[5].Thus,further focused experimental investigations at the absorber-buffer hetero-interfaceswillbeimpactfulinthekesteritedevelop- ment.

Inthispaper,wepresentthedepositionprocessandthe optical, structural,and chemicalcharacterisationsofsingle phase kesterite on a glass substrate by spin coating and sulphurisation process. These CZTS thin films were used in astack oflayerstoproduce all solution heterojunction.

The electronic properties of the CdS/CZTS heterojunction

(4)

Pleasecitethisarticleinpressas:C.Tamin,etal.,Investigationofabsorberandheterojunctioninthepuresulphidekesterite,Bol.Soc.Esp.

were collected experimentally by XPS including core-level, valance band positions and UV–visible bandgap measure- ments.

Experimental

CZTSthinfilmsweredepositedonsubstratesbyspincoating andheattreatedinafurnaceundercontrolledatmosphere.

Thecompleteheterojunctionwaselaboratedusingchemical bathdepositionandspincoatingtechniques.Variouscharac- terisationtechniqueswerecarriedouttostudytheproperties ofCZTSthinfilmsandheterojunctions.

CZTSthinsfilmspreparation

The colloidal solution was prepared by dissolving copper chloridedihydrate,zinc chloride,tinchloridedihydrateand thiourea(H2NCSNH2)withrespectiveconcentrationsof0.4M, 0.2M,0.2Mand1Minamixofwater(75%)andethanol(25%).

Somedropsofethanolaminewereaddedtothesolutionas stabiliser,wherethe pHofthesolution wasaround4. The solutionwasstirredfor6hatroomtemperaturetoobtaina clearyellow-colouredcolloidalsolution.

CZTSthinfilmswerelayeredonglasssubstratesfromthe colloidalwater-ethanolsolutionbyspincoatingprocessingat 4000rpmfor30s.Sampleswerethendrieddirectlyonahot plateheatedat250Cfor10minunderairambient.Thispro- cesswasrepeated10times(forafinalthicknessof1.2m).

Samplesweresubsequentlyheattreatedinafurnaceat520C during30mininthepresenceofsulphur(0.5g)undernitrogen gasflow.

SamplesCTB01andCTB01Srespectivelycorrespondtothe CZTSthinfilmsbeforeandafterheattreatment.

Heterojunctionfabrication

Theheterojunctionprototypewasbuiltasfollows:

- Thefirst layerwas Molybdenum(Mo).ThisMolayerwas depositedusingane-beamevaporator(PlassysMEB400)on FTO(fluorine-dopedtinoxide,SnO2:F)glasssubstratespro- vided bySOLEMCompany.Thethicknessofthe Molayer was100nm;

- ThesecondlayerwastheCZTS(5layers)thinfilmdeposited using aspin coating techniqueasdescribed above (CZTS thinsfilmspreparationsection);

- ThethirdlayerwastheCdSbufferlayerdepositedbyChem- icalBathDepositionCBD(70C,15min).Thechemicalbath compositionwas: 20mLofdeionisedwater,5mLof0.1M CdCl2,20mLof0.1Mthioureaand17.5mLof6.5MNH4OH.

ThepHofthechemicalbathduringthereactionwasabout 10.

ThisstackoflayerswillbereferredtoasHJ19-01.Finally, arapidannealing wasperformedinafurnaceat270C for 10minundernitrogengasflowwithoutsulphur.Theas-built heterojunctionwillbelabelledasHJ19-01S.

Characterisations

TransmissionElectronMicroscopy(TEM)wasperformedona JEOLJEM-2100FmicroscopetocharacterisetheCZTSthinfilm microstructure.Forthepreparation,thinfilmswereremoved fromthesubstratebyscratchingthemwithascalpel.After- wards,thesamplesurfaceiswipedwithacarbon-coatedgold grid,resultinginpiecesofthefilmsstucktothecarbonfilm.

Thelocalmorphologyandthecrystallographywerestudied usingconventional,highresolutionmicroscopy(HRTEM)and SelectedAreaElectronDiffraction(SAED)modes.

Thesurface morphology(Plain view)and the multilayer stack(cross-section)oftheheterojunctionwereexaminedby ScanningElectronMicroscopy(SEM).Theobservationswere performedonaHitachiSU8230SEMequippedwithanEnergy DispersiveSpectrometer(ThermoScientificNSSSDD)allow- ingchemicalanalysesofthefilms.

The atomic states, chemical compositions and valence band data were determined by X-ray Photoelectron Spec- troscopy (XPS)and performedusing aPHIVersaprobe5000 apparatus with monochromated Al K1 X-rays (energy of 1486.6eV,powerof50WandX-rayspotdiameterof200m).

Experiments were realised after sputtering of the CTB01, CTB01SandHJ19-01Ssamplesinordertoremovethemajor partofthethinlayerofoxidefromatmosphericcontamina- tion.Sputteringwasdonewithargonionsof500eVfor5min forthethinfilms(incidenceangleof45).Fortheheterojunc- tion,the XPSdatawere collected aftereach 60s ofetching time. Inthis condition, the sputteringrate ofstandard sil- icondioxide isaround2nm/min.Adventitiouscarbonfrom atmosphericpollutionisusedasinternalstandardforenergy calibration(1s levelat284.8eV). Duringmeasurements, the residual pressure ofthe analysis chamberwas maintained below107Pa.SpectrawereprocessedwiththeCasasoftware packageandtheionisationcross-sectionsfromLandaumodel wereusedinordertoquantifythesemi-empiricalrelativesen- sitivityfactors.

The crystallographic structures of samples was investi- gatedbyX-RayDiffraction(XRD)andperformedwithaBruker D8DISCOVER(CuKradiationsource=1.5406 ˚A).

ThesizeofnanocrystalswasestimatedfromtheScherrer formula[17]:

Dhkl=0.89/Bhklcos

whereistheX-raywavelengthused,Bhkl thefullwidthat halfmaximumandtheBraggangleofthestudiedpeak.

TheRaman spectroscopy(Raman)wasperformedwitha custom-built epi-confocal microscope equippedwitha40× objective lens(0.6 NA,Nikon).Thesamplewas illuminated withalaserexcitationwavelengthof784nmandanintensity of0.6mWatthefocus.Raman spectrawere acquiredwith aspectrometer (equippedwitha gratingof1200lines/mm) associatedwithacooledCCDcamera(1024×256pixels).An expositiontimeof10swasusedandthecalibrationwasper- formedusinga(111)siliconwaferat520cm−1.

The Ultraviolet–visible Spectroscopy (UV–vis) was per- formedwithaThermoSpectronicHeliosGammaspectropho- tometer,inthewavelengthrange190–1100nmwitha0.5nm

(5)

Pleasecitethisarticleinpressas:C.Tamin,etal.,Investigationofabsorberandheterojunctioninthepuresulphidekesterite,Bol.Soc.Esp.

Fig.1XRDdiffractogramsoftheCZTSthinfilm,(a)raw sampleCTB01,(b)heattreatedsampleCTB01S.

steptorecordthetransmittanceofthinfilmsandtocalculate theabsorptioncoefficient,˛,fromthefollowingequation:

= 1 eln

1

T

whereeisthe filmthickness andT thetransmittance[18].

NotedthatthefilmthicknesswasmeasuredusingaDektak 6MProfilometer(Veeco).

Theopticalbandgap valuesweredetermined usingthe Taucdiagram[16]where(˛h)2isplottedasafunctionofthe energyh.Thevalueofthegapisthatattheintersectionofthe extrapolationofthelinearpartofthecurvewiththeabscissa axis.

Resultsanddiscussion

Crystallographicandchemicalcharacterisation

TheXRD diffractogramoftheCZTSlayerbeforeheattreat- ment(CTB01)isshowedinFig.1a.Thethreemajorpeaksat 28.43,47.27and56.15arerespectivelyassignedtothe(112), (220)and(312)crystallographicplanesofthekesteritetetrag- onalstructureofCZTS(PDFcard #04-015-0223).Inaddition totheCZTSmajorphase,theSnO2cassiteritephaseisalso detected,seepeaks(110),(101)and(211)atrespectiveangles 26.49,33.77 and51.72(PDFcard#04-003-0649).ThisSnO2 phaseemergesduringthedryingprocessinambientairon thehotplate.

Thesizeofthenanocrystals,derivedfromtheScherrerfor- mula,variesfrom5.5nmto8.8nmforeachpeak.

The XRD pattern of the annealed CZTS layer, CTB01S (Fig. 1b) shows narrow and intense diffraction peaks cor- responding to the pure kesterite CZTS structure without

secondary phase. The cassiterite peaks have disappeared duringannealing.Tindioxidecanturnintosolidtinmono- sulphide[19,20]duringannealingundersulphuratmosphere andtinmonosulphideisavolatilespecieabove500C[21].

Thesizeofthenano-crystallitesvariedbetween18.7nm and 23.1nm depending on the chosen peak. The peak intensities highlight an isotropic growth of the crystal- lites. Logically, the crystallites size increases under heat treatment.

Theheattreatmentundersulphurandnitrogengasflow (oxygen free) prevents the formation of oxidised phases, increasesthecrystallisation,andhelpstheformationofthe CZTSkesteritephase.Insomecase,asitseemstobethecase here,italsoavoidsthedecompositionofthisstructureinto binary and ternarycompounds suchas Cu2−xS, SnS2, ZnS, Cu2SnS3whichhasbeenobservedbyseveralauthorsinthe literature[11–13].

Inordertoconfirmtheabsenceofsecondarystructures(as ZnSandCu2SnS3,forwhichthethreemainsX-raydiffraction peaksare identicaltoCZTSones),theSAEDtechnique,the FastFourierTransformationofHRTEMimageandtheRaman spectroscopywerecomplementaryperformed.

Fig. 2(a, b) shows oneelectron diffraction patterns and theFastFourierTransformationofaHigh-Resolutionimage (HRTEM) of sample CTB01. The calculation of d spacing (Table1)fromtheSAEDconfirmtheresultsofXRD.Onlypure Cu2ZnSnS4 kesterite crystallites were found inthe studied samples.Fig.2cshowswheretheSAEDandthechemicalanal- ysis(EDS)wereperformed.Thechemicalcompositioninthis area(Fig.2d)showsthepresenceoffourelementsoftheCZTS compound:copper,zinc,tin,andsulphur.

Fig. 3a shows the Raman spectrum of the CTB01 sam- ple. Thestrongest peak at335cm−1 corresponds to the A mode ofthe kesterite structureofCZTS whichis theoreti- callyreportedbyGureletal.[22].Theweakpeakat363cm1 isassignedtotheE(LO)modeofkesteritestructureofCZTS [23]. Forthe calcinedCTB01Ssample(Fig.3b),thepeaksat 287cm−1 and337cm−1 areassignedtothetwoAmodesof thekesteritestructureaswellasthepeaksat366cm1 and 373cm1 whichcorresponds tothe E(LO) and B(LO)modes [24–26].Thenewintensepeakat287cm1,mayduetoabetter crystallinityofCTB01ScomparedtoCTB01.Asnootherpeaks are observed neitherthe ZnS (at 348cm−1) nor theCu2xS (at 476cm−1), SnS2at(315cm−1)and Cu2SnS3 (at352cm−1) phasesarepresent[27–32].

ThedifferentoxidationstatesweremeasuredbyXPSbefore and afteretching for the CTB01 and CTB01S samples (see Fig.4).

XPSspectrainFig.4ashowthebindingenergyofCu2p3/2 andCu2p1/2corelevels,respectivelyataround932and952eV, fortherawandannealedCZTSsamples.Themeasuredbind- ingenergyfortheCu2p3/2 levelandtheabsenceofsatellite athighbindingenergyforbothpeakscorroboratethe Cu(I) oxidationstateofcopperinthewholeCZTSlayers[33–35].

Thebindingenergyvalueofabout1021.8eVforZn2p3/2 corelevelconfirmsthepresenceofZn(II)forbothCZTSlayers, beforeandaftercalcination(seeFig.4b)[35].

TheSn3d5/2levelforCTB01andCTB01Ssamplesareshown inFig.4c.Energyofthislevelslightlyabove486eVconfirmsthe presenceofSn4+speciesinthetwosamples[35,36].

Références

Documents relatifs

Abstract — Cu 2 ZnSnS 4 (CZTS) / CdS heterojunctions have been prepared by a successive deposition of CZTS and CdS thin films on glass substrates by spray pyrolysis and

Experimental Measurement of Human Oocyte Mechanical Properties on a Micro and Nanoforce Sensing Platform Based on Magnetic Springs..

• Given the high surface to volume ratio encountered within the studied meso-scale channel and the high wall temperature, neglecting radiative heat transfer as done in the present

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

If such phenomenon would be critical for the band tailing in kesterite, ones would predict a lower distortion width or Urbach energy for the fully Cu-Zn disordered material than for

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Mots clés : transfusion sanguine ; histoire ; don du sang ; sécurité transfusionnelle. La transfusion sanguine est devenue une procédure relativement sûre et pratique après

In this work, we analyze intensity-, temperature-, voltage- dependent, and spectrally resolved TRPL data measured on CZTSe and CZTSSe absorbers and devices to determine the origin