• Aucun résultat trouvé

Non-uniform sampling & denoising applied to nuclear magnetic resonance

N/A
N/A
Protected

Academic year: 2021

Partager "Non-uniform sampling & denoising applied to nuclear magnetic resonance"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01516795

https://hal.sorbonne-universite.fr/hal-01516795

Submitted on 2 May 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative CommonsAttribution - NonCommercial - ShareAlike| 4.0 International License

Non-uniform sampling & denoising applied to nuclear magnetic resonance

Guillaume Laurent, Christian Bonhomme

To cite this version:

Guillaume Laurent, Christian Bonhomme. Non-uniform sampling & denoising applied to nuclear magnetic resonance. Spring School on Sparse Representations and Compressed Sensing, Apr 2016, Ilmenau, Germany. �hal-01516795�

(2)

Non-Uniform Sampling & Denoising

applied to Nuclear Magnetic Resonance

G. LAURENT, C. BONHOMME

Laboratoire de Chimie de la Matière Condensée de Paris

Spring School on Sparse Representations and Compressed Sensing, 4th-8th April 2016, Ilmenau, Germany

NUS and SVD are useful to increase sensitivity

Efficient algorithms are critical

Graphic card is a low cost option (Nvidia GTX 750 = 120 €)

Highlights

Automatic SVD thresholding

Sparse matrix SVD

Combining NUS and SVD

Future work

V. BARRET-VIVIN, F. PORTIER and M. ROBIN for samples

P. P. MAN for Java application

W. WOELFFEL for python application

Acknowledgements Non-Uniform

Sampling (NUS) Spectra denoising

[2]

Singular Value Decomposition (SVD) [3]

Low rank approximation 1D Signal

Hankel Matrix

Tools Context Nuclear Magnetic

Resonance Increasing sensitivity References

SANOFI

Physico-chemical spectroscopic analysis

Precise but poor sensitivity

100 mg of sample needed Broad noisy peaks

for distributed environments

Sensitivity gain

= time gain

or sample size gain Microcoils (MACS) [1]

[1] D. Sakellariou, G. L. Goff, and J.-F. Jacquinot, ‘High-

resolution, high-sensitivity NMR of nanolitre anisotropic samples by coil spinning’, Nature, vol. 447, no. 7145, pp. 694–697, Jul.

2007.

[2] M. Mobli and J. C. Hoch, ‘Nonuniform sampling and non- Fourier signal processing methods in multidimensional NMR’, Prog. Nucl. Mag. Res. Sp., vol. 83, pp. 21–41, Nov. 2014.

[3] J. A. Cadzow, ‘Signal enhancement-a composite property mapping algorithm’, IEEE T. Acoust. Speech, vol. 36, no. 1, pp.

49–62, Jan. 1988.

[4] P. P. Man, C. Bonhomme, and F. Babonneau, ‘Denoising NMR time-domain signal by singular-value decomposition

accelerated by graphics processing units’, Solid State Nucl. Mag., vol. 61–62, pp. 28–34, Jul. 2014.

In st ru m en ta tio n

Proc essin g Ac qui siti on

Sensitivity

2E+5 2E+6 2E+7

0,1 1 10 100 1000

P4 530 PM 745 C2D E6400 C2Q Q8200 Ci3 4005U C2D T9600 Ci5 4670K NVS 160M 8400 GS FX 570 FX 770M 820M GTX 260 GTX 660 Matrix size

Time (s)

CP U G PU

* * ¤ * * ¤ ¤ ¤ Matrix shape

Results

CPU: Central Processing Unit GPU: Graphics Processing Unit

Massively parallel (Nvidia CUDA) [4]

GPU limited by memory transfers CPU time / 100:

Divide and conquer → / 8

SSE3 instructions → / 3

Intel MKL library → / 2

Single Precision → / 2

Java

0,1 1 10 100 1000

CPU

Time (s) GPU

Windows Ci5 4670K + GTX 660 (2013)

Optimised CPU GPU

Unoptimised CPU

29

Si CPMG

Specific license

Useful for narrow peaks

(parsimonious data)

Références

Documents relatifs

(The aluminum atoms have trigonal point symmetry.) Also shown in figure 2 is the quantityzR = (TI T)-I which is the spin-lattice relaxation rate times the reci-

the virtual excitation of spin waves as a consequence of the large Mn55 hfs interaction. Happily the Fig NMR has a smaller hfs interaction and the nuclear dipolar

étude, on retrouve 25 % (donnée ne paraissant pas dans la figure) des diabétiques de type 2 pour lesquels le suivi gly- cémique est seulement réalisé par l’échelle d’ajustement

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Tryptophan 2,3-Dioxygenase (TDO) Inhibitors as Anticancer Immunomodulators Dolusic, Eduard; Larrieu, Pierre; Moineaux, Laurence; Strobant, Vincent; Pilotte, Luc; Colau, Didier;

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Prostate segmentation in trans rectal ultrasound (TRUS) and magnetic resonance images (MRI) facilitates volume estimation, multi-modal image registration, surgical planing and

The first part of establishing a shape similarity measure across the segmented prostate images in the TRUS and the MR involves establishing point correspon- dences on the