• Aucun résultat trouvé

Evidence of octupole-phonons at high spin in $^{207}$Pb

N/A
N/A
Protected

Academic year: 2021

Partager "Evidence of octupole-phonons at high spin in $^{207}$Pb"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-02266344

https://hal.archives-ouvertes.fr/hal-02266344

Submitted on 10 Nov 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Evidence of octupole-phonons at high spin in

207

Pb

D. Ralet, E. Clément, G. Georgiev, A.E. Stuchbery, M. Rejmund, P. van

Isacker, G. de France, A. Lemasson, J. Ljungvall, C. Michelagnoli, et al.

To cite this version:

D. Ralet, E. Clément, G. Georgiev, A.E. Stuchbery, M. Rejmund, et al..

Evidence of

octupole-phonons at high spin in

207

Pb.

Physics Letters B, Elsevier, 2019, 797, pp.134797.

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Evidence

of

octupole-phonons

at

high

spin

in

207

Pb

D. Ralet

a

,

b

,

E. Clément

b

,

,

G. Georgiev

a

, A.E. Stuchbery

c

,

M. Rejmund

b

,

P. Van Isacker

b

,

G. de France

b

,

A. Lemasson

b

,

J. Ljungvall

a

,

C. Michelagnoli

b

, A. Navin

b

,

D.L. Balabanski

d

,

L. Atanasova

u

, A. Blazhev

g

,

G. Bocchi

e

,

ab

,

R. Carroll

f

,

J. Dudouet

h

,

E. Dupont

a

,

B. Fornal

i

,

S. Franchoo

aa

, C. Fransen

g

,

C. Müller-Gatermann

g

, A. Goasduff

k

,

A. Gadea

j

, P.R. John

t

,

k

,

D. Kocheva

v

,

T. Konstantinopoulos

a

,

A. Korichi

a

,

A. Kusoglu

l

,

S.M. Lenzi

k

,

S. Leoni

e

,

ab

,

R. Lozeva

a

,

m

,

A. Maj

i

,

R. Perez

j

, N. Pietralla

t

,

C. Shand

f

,

O. Stezowski

h

, D. Wilmsen

b

,

D. Yordanov

aa

,

D. Barrientos

o

,

P. Bednarczyk

i

,

B. Birkenbach

g

,

A.J. Boston

p

,

H.C. Boston

p

,

I. Burrows

q

,

B. Cederwall

n

, M. Ciemala

i

,

J. Collado

r

, F. Crespi

e

,

D. Cullen

s

,

H.J. Eberth

g

,

J. Goupil

b

, L. Harkness

p

,

H. Hess

g

,

A. Jungclaus

x

, W. Korten

w

,

M. Labiche

q

,

R. Menegazzo

k

,

D. Mengoni

k

,

B. Million

e

,

J. Nyberg

y

,

Zs. Podolyák

f

,

A. Pullia

e

,

B. Quintana Arnés

z

,

F. Recchia

k

,

P. Reiter

g

,

F. Saillant

b

,

M.D. Salsac

w

,

E. Sanchis

r

,

C. Theisen

w

, J.J. Valiente Dobon

o

,

O. Wieland

e

aCSNSM,Univ.Paris-Sud,CNRS/IN2P3,UniversitéParis-Saclay,F-91405Orsay,France bGANIL,CEA/DRF-CNRS/IN2P3,Bd.HenriBecquerel,BP55027,F-14076Caen,France cDepartmentofNuclearPhysics,AustralianNationalUniversity,Canberra, ACT2601,Australia

dELI-NP,HoriaHulubeiNationalInstitute forR&DinPhysicsandNuclearEngineering,077125Magurele,Romania eInstitutoNazionalediFisicaNucleare,Milano,I-20133Milano,Italy

fDepartmentofPhysics,UniversityofSurrey,Guildford,GU27XH,UnitedKingdom gInstitutfürKernphysik,UniversitätzuKöln,D-50937Cologne,Germany

hUniversitédeLyon,UniversitéLyon-1,CNRS/IN2P3,UMR5822,IPNL,F-69622VilleurbanneCedex,France iInstituteofNuclearPhysics(IFJ),PAN,31-342Krakow,Poland

jInstitutodeFísicaCorpuscular,CSIC-UniversidaddeValencia,E-46071Valencia,Spain

kDipartimentodiFisicaeAstronomia,UniversitàdegliStudidiPadovaandINFN,SezionediPadova,I-35131Padova,Italy lDepartmentofPhysics,FacultyofScience,IstanbulUniversity,Vezneciler/Fatih,34134,Istanbul,Turkey

mIPHC/CNRS-UniversityofStrasbourg,F-67037Strasbourg,France nKTHRoyalInstituteofTechnology,10691Stockholm,Sweden

oINFN,LaboratoriNazionalidiLegnaro,ViaRomea4,I-35020Legnaro,Italy

pOliverLodgeLaboratory,TheUniversityofLiverpool,OxfordStreet,LiverpoolL697ZE,UnitedKingdom qSTFCDaresburyLaboratory,Daresbury,WarringtonWA44AD,UnitedKingdom

rDepartmentofElectronicEngineering,UniversityofValencia,E-46100Burjassot(Valencia),Spain

sSchusterBuilding,SchoolofPhysicsandAstronomy,TheUniversityofManchester,ManchesterM139PL,UnitedKingdom tInstitutfürKernphysik,TechnischeUniversitätDarmstadt,D-64289Darmstadt,Germany

uDepartmentofMedicalPhysicsandBiophysics,MedicalUniversity-Sofia,1431Sofia,Bulgaria vUniversityofSofia,Sofia,Bulgaria

wIRFU,CEA/DRF,CentreCEAdeSaclay,F-91191Gif-sur-YvetteCedex,France xInstitutodeEstructuradelaMateria,CSIC,E-28006Madrid,Spain yDepartmentofPhysicsandAstronomy,UppsalaUniversity,Uppsala,Sweden

zLaboratoriodeRadiacionesIonizantes,UniversidaddeSalamanca,E-37008Salamanca,Spain aaInstitutdePhysiqueNucléaire,CNRS/IN2P3-UniversitéParis-Sud,F-91406Orsay,France abDipartimentodiFisica,UniversitadegliStudidiMilano,I-20133Milano,Italy

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received2July2019 Accepted19July2019 Availableonline24July2019

A lifetime measurement ofthe 19/2− state in 207Pb has been performed using the Recoil Distance

Doppler-Shift(RDDS)method.Thenucleiofinterestwereproducedinmulti-nucleontransferreactions inducedby a208Pbbeamimpingingona100Mo enrichedtarget. Thebeam-likenuclei weredetected

*

Correspondingauthor.

E-mailaddress:clement@ganil.fr(E. Clément).

https://doi.org/10.1016/j.physletb.2019.134797

(3)

2 D. Ralet et al. / Physics Letters B 797 (2019) 134797 Editor:D.F.Geesaman Keywords: AGATAspectrometer γ-Raytracking VAMOS++spectrometer Plungerdevice Nucleardeformation Octupolephonon

and identifiedintermsoftheiratomicmassnumberintheVAMOS++spectrometerwhiletheprompt

γ

rays weredetectedbytheAGATAtracking array.The measuredlarge reducedtransition probability

B(E3,19/2−→13/2+)=40(8)W.u.isthefirstindicationoftheoctupolephononathighspinin207Pb. Ananalysisintermsofaparticle-octupole-vibrationcouplingmodelindicatesthatthemeasuredB(E3)

value in207Pbiscompatiblewiththecontributionsfromsingle-phononandsingleparticle E3 aswell

as E3 strengtharisingfromthedouble-octupole-phonon6+state,alladdingcoherently.Acrucialaspect of thecoupling model,namelythe strongmixing betweensingle-hole andthe phonon-hole states,is confirmedinarealisticshell-modelcalculation.

CrownCopyright©2019PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY license(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

Theoccurrenceofcollectivevibrations,whenalatticeofatoms ormoleculesoscillatesuniformly atasingle frequency forminga quantum-mechanicalphonon, isa well-knownphenomenon.Such vibrationscorrespond,inclassicalmechanics,towave-likenormal modes. Quantum-mechanical phonons,however, exhibit particle-like properties, too. The excitation spectra of several different many-body systems can be described as a superposition of ele-mentary excitation modes that are (approximately independent) fluctuationsabout equilibrium. There is a close relation between theinternalstructureofthesystemandthenatureofthese fluctu-ations,whichmayleadtodensityvibrationsorshapeoscillations. Innucleithecharacterofcollectivevibrationsfollowsfromthe ob-servationthatsome arespherical,likedoubly-magicnuclei,while others are deformed, like mostrare-earth nuclei. In an interme-diatesituationtheshapecanundergolargefluctuationsaboutone oftheequilibriumshapes.Incontrasttomolecules,thenuclear en-ergyscalesrelatedtovibrationalandsingle-particleexcitationsare ofthesameorder,andthustheir interweavinghasprofound con-sequences.

Doubly-magicnucleihaveasphericalequilibriumshape.Among them,the 208Pbisotope, with Z

=

82 protons and N

=

126 neu-trons,istheheaviestknowndoubly-magicnucleus.Itsfirst-excited state has been established to be of natural-parity octupole type,

J π

=

3−c, at an excitation energy of Ex

(

3−c

)

=

2615 keV, about

800 keV lower than the neutron shell-gap energy at N

=

126, the index c stands for collective. The highly enhanced and col-lectivetransition connectingthe 3−c levelto the 0+ groundstate

has been measured to have a reduced transition probability of

B

(

E3

,

3−c

0+

)

=

34

.

0

(

5

)

W.u. [1],thatis,itexceedsby34times

theWeisskopfunitorsingle-particle estimate.The3−c state is in-terpreted as a one-phononexcitation corresponding to a nuclear surfacevibrationofoctupolecharacterwhileitsmicroscopic struc-tureisunderstoodasthecoherentandcollectivesuperpositionof one-particle-one-hole (1p–1h) excitationsacross the neutron and protonshellgaps.

Providedthat this3−c state representsthefirst phonon ofthe octupole vibration, it is expected that the double-octupole quar-tet

(

0+c

,

2+c

,

4+c

,

6+c

)

of two-phonon states exists at an energy of abouttwice Ex

(

3−c

)

[2].In thecaseofa fullyharmonicvibration,

allmembers ofthisquartet,andinparticularthe 6+c level,decay totheone-phononstatewiththecharacteristicreducedtransition probability B

(

E3

,

6+c

3−c

)

=

2

×

B

(

E3

,

3−c

0+

)

.Manyattempts havebeenundertakentoidentifythemembersofthetwo-phonon octupole quartet [3–11]. Candidates for the lower-spin members have been proposed [10,11] but the 6+c member has not been identified asyet.Onthe basis ofa large-scale shell-model calcu-lation, including up to 2p–2h excitations, Brown [12] concluded thatthe6+c memberofthedouble-octupolequartetisfragmented.

Furthermore,hefoundthatthereare0+,2+,and4+stateswitha concentrated double-octupolestrength butdecayingvia weak E1

and E2 transitions, which in themselvesare not strongevidence forthespecialdouble-octupolenatureofastate.

In the nuclei neighboring 208Pb, with one valenceparticle or hole, the particle-octupole-phonon model favors strong coupling betweentheorbitals j1

=

l1

±

1

/

2 and j2

=

l2

±

1

/

2 if

|

j1

j2

|

=

|

l1

l2

|

=

3,preserving therelativeorientationofthespinand

or-bital angular momenta [13, (Vol. II, p. 419)]. In addition to the particle or hole states, several excitations have been found and interpretedasacollectiveoctupolephonon

|

3−c



coupledtoa

par-ticleorhole.Becauseofthestrongcouplingmentionedabove,such states are expected to mix i.e.

|

j(1−1)



with

|

j(2−1)

×

3−c

;

J1

=

j1



and

|

j(1−1)

×

3c

;

J2



with

|

j2(−1)

×

6+c

;

J2



,the latterbeinga

par-ticle or hole coupled to a double-octupole phonon. Given this mixing, it has been suggested in Ref. [14], in analogy to the case of 147Gd [15], that the characteristic enhancement of the

B

(

E3

,

6+c

3−c

)

valuein208Pb,shouldbereflectedinanenhanced

B

(

E3

,

J2

J1

)

valueintheodd-massnucleus.

The octupoleexcitationscoupled tothe low-spingroundstate in 207Pbhavebeeninvestigatedearlier [16,17].The 5

/

2+ stateat

2624 keV and 7

/

2+ state at 2662 keVhave been interpreted as membersofthelow-spin

ν

p1/12

× φ

1

(

3−c

)

multipletresultingfrom

weakcoupling.Thecorrespondingreducedtransitionprobabilities have been measured as B

(

E3

,

5

/

2+

1

/

2

−)

=

30

(

3

)

W.u. and

B

(

E3

,

7

/

2+

1

/

2

−)

=

28

(

2

)

W.u. [17].The smallpositiveenergy shifts,

+

9 keVand

+

47 keVrelativetoEx

(

3−c

)

,canbenoticedthat

couldberelatedtotheblockingofthe

ν

p1/2 orbital.

For207Pb,amongtheavailableneutronorbitals, p

1/2,p3/2, f5/2,

f7/2, h9/2 and i13/2, forming a major shell 82

N

126, only

the j1

=

ν

i13/2 and j2

=

ν

f7/2 satisfy the strong coupling rule,

describedabove.Thecorrespondingstates,13

/

2+ and7

/

2−, dom-inantlyof single-holecharacter, are well studied [18].The 19

/

2− stateandthecorresponding2485keVtransitiontothe13

/

2+state were assignedto207Pbby Schrammetal. [6],andthe E3

charac-terofthetransitionwas recentlydeterminedbyShandetal. [19]. The 13

/

2+, 7

/

2−, and 19

/

2− states were analyzed in terms of particle-octupole-vibration coupling in Ref. [14] using the exper-imentally known level energies and assuming the dominance of theabove-mentionedorbitals.Thiscouplingschemeisdepictedin Fig. 1. In panel (a) the one-phononstate is illustrated for 208Pb. Thecoupledanduncoupledstatesin207Pbareshowninpanels(b)

and(c),respectively.Thewave functionsofthe13

/

2+ and19

/

2− statesare representedassingle-hole statesandsingle-hole states coupledtoasingle ordoubleoctupolephononin208Pb.The coef-ficients

α

i and

β

i,asshowninpanel(d)ofFig.1,dependcrucially

(4)

Fig. 1. Illustrationoftheparticle-octupole-vibrationcouplingmodel:(a)Thelowest octupole-vibrationalphononof208Pb,(b)selectedstatesresultingfromthe

particle-octupole-vibrationcouplingin207Pb,(c)uncoupled(unperturbed)statesin207Pb,

(d)wavefunctionsofthe13/2+and19/2−statesintheparticle-octupole-vibration couplingmodel.TheenergiesoftheknownstatesaregiveninMeV.

ofh

=

0

.

710 MeV.Finally,itcanalsobecalculatedwiththe shell-modelexpression,wheretheparticle-holematrixelementscanbe obtainedfromparticle-particlematrixelements usingthePandya transformation [21] h

=



1 2





kk kk



ν

f7/2

ν

i−131/2

;

3−

| ˆ

Vνν

|

jνkjνk1

;

3−



+



ll ll



ν

f7/2

ν

i131/2

;

3−

| ˆ

Vνπ

|

jπljπ−1l

;

3−





,

which gives the separate contributions of the neutron-neutron (

νν

) and neutron-proton (

νπ

) interactions. The sums are over the neutron and proton particle-hole excitations that constitute the octupole phonon. The amplitudes kk and aπll are obtained

microscopically in a shell-model calculation for 208Pb with 24

single-particle energies takenfrom Ref. [22] andwith the realis-ticnucleon-nucleoninteractionasgiveninRef. [23].Althoughthe off-diagonalmatrixelementsintheexpressionforh generallyare smallandofvaryingsign,multipliedwithamplitudestheyact co-herently, giving rise to a large mixing matrix element with the valueofh

=

0

.

655 MeV.Thisisthehallmarkofcollectivebehavior, whichtherefore is found to be presentin a realistic shell-model description. The consistency of the values forthe mixing matrix elementderivedwiththreetotallydifferentapproacheslends sup-porttothehole-octupole-phononinterpretationofstatesin207Pb. Inthefollowingtheexperimentalvalueofh

=

0

.

725 MeVisused.

Theexperimental value ofh

=

0

.

725 MeVwas determined as-suming the contribution of the collective vibrational-phonons to the 13

/

2+ and19

/

2− states.Due tothe presenceof thespecific orbits, the f7/2 and i13/2 for 207Pb, a strong

particle-octupole-vibrationcouplingisexpectedtoattractanadmixtureofthe dou-ble octupole state to the low-lying yrast 19

/

2− state, that can decaybythecharacteristicenhanced E3 transition.Themainpart of the double octupole state remains however in the higher ly-ing 19

/

2−, which could be fragmented and havedifferent decay modes. The negative energy shiftof

130 keV for the2485 keV transition between the 19

/

2− and 13

/

2+, relative to Ex

(

3−c

)

, is

thereforeunderstoodasresultingfromthemixingofone-phonon statewiththetwo-phononstate.ThelargeB

(

E3

,

19

/

2−

13

/

2+

)

value, characterizing the contribution of octupole phonons, has howevernot been measured.A predicted B

(

E3

,

19

/

2−

13

/

2+

)

valueisobtained(seediscussionbelow)thatisenhancedas com-paredto B

(

E3

,

3−c

0+

)

in 208Pb, duetothe strongmixingand

thecoherentcontributionofthesingle-phononandsingle particle andthe double-octupole-phononstrengths. The aim ofthiswork was toprovidetheexperimentalevidenceofthecollectivenature ofthe E3

(

19

/

2−

13

/

2+

)

transitionby meansoflifetime mea-surement. The knowledge of the strength of this transition will allow toprovethe hypothesisofthe strongcouplingschemeand quantifythecontributionsofone-phononandtwo-phononstates; ultimatelyitmayprovetheexistenceofthelatter.

The measurement of sub-nanosecond lifetimes of high spin states in nuclei near 208Pb is very challenging. These high spin

statescanbe efficientlypopulatedinmulti-nucleontransfer reac-tions of heavy ions atthe energies near the Coulomb barrier [6,

14,23]. The excited products of interest are distributed near the grazing angle, far away from the beam axis, in contrast to fu-sionreactions.Multi-nucleontransfer reactionsproducehundreds ofnucleiatthesametime,thereforesomeselectionofthereaction productsisrequired.Itcanbeobtainedusing

γ

γ

coincidences orusing a massanalyzeror magneticspectrometer to determine the mass number. The direct measurement of the atomic num-ber at Z

82 for low energy ions is not possible today. Mass analyzers havetypically low acceptanceandare restrictedto op-eration near 0◦. Further, the use of the plunger technique, for measurement of sub-nanosecond lifetimes of states populated in multi-nucleontransferreactions,requiresan event-by-event mea-surementoftherecoilvelocityvector. Inthisworkthe VAMOS++ spectrometer was used to identify, for the first time, the atomic massnumberofthelead-like ejectilesatenergies rangingfrom1 to2 MeV/u.The requiredmassresolutionwas reachedonly fora partof the focalplane setup (

15%),which resultedin reduced statistics.In thisletterwe presenttheresultsofthe firstlifetime measurementofthe J π

=

19

/

2− levelin207Pb, provingthe one-octupolephononnatureofthisstateandsuggestingtheexistence ofadouble-octupole6+c statein208Pb.

The experimentwas performedattheGrand Accélérateur Na-tional d’Ions Lourds, Caen, France using the RDDS method [24], in combinationwith a multi-nucleontransfer reaction in inverse kinematics.A208Pbbeamat6

.

25 A MeVimpingedonanenriched 1.9 mg/cm2-thick 100Mo target followed by a 2 mg/cm2-thick Ni

degrader. Beam-likereaction products were detected and identi-fiedonan event-by-eventbasisinthelarge-acceptanceVAMOS++ spectrometer [25,26].Theopticalaxisofthespectrometerwas po-sitionedat26owithrespecttothebeamaxis,atthegrazingangle

ofthebeam-likeproducts.TheVAMOS++spectrometerallowedthe identificationofthereactionproductsinmass-over-charge( A

/

Q )

andatomiccharge( Q ),andprovidedthevelocityvector(V )

nec-essaryfortheDopplercorrection.

(5)

mass-4 D. Ralet et al. / Physics Letters B 797 (2019) 134797

Fig. 2. Two-dimensional identificationmatrixobtainedwith the VAMOS++ spec-trometer.Nucleiwithatomicmassnumber A=206 andA=208 arehighlighted forseveralchargestatesmeasuredinthespectrometer.Duetothelowvelocityof therecoils,anelementidentification(Z)isnotpossible.

Fig. 3.γ-Ray spectrumgatedonmassA=207 atthetarget-to-degraderdistanceof 75 μm.ThetransitionsmarkedwithacirclecorrespondtotheCoulombexcitationof the100Motarget,Dopplercorrectedusingthevelocityvectoroftheheavypartner.

over-charge ratio as a function of the atomic-charge state. Mass resolutionof

0

.

9

/

208 (FWHM)was obtained. The analysis pro-cedureisfurtherdetailedinRef. [27].Excited-statehalf-lifes(T1/2)

weremeasuredusingtheRDDStechniquewiththeplungerdevice oftheUniversityofCologne [28].Doppler-correctedprompt

γ

rays, emitted beforeand afterthe Ni degrader foil,were measured by theHPGeAGATAtrackingarray [29,30] placedatbackwardangles inacompactgeometry(target-to-detectordistanceof148.5 mm). The

γ

-rayenergyDopplercorrectionwasperformedusingthe re-coilvelocity(V ),

obtainedfromthe VAMOS++spectrometer, after theNidegrader,andthepositionofthefirst

γ

-rayinteraction ob-tainedfromtheOrsayForwardTrackingalgorithmsusingstandard parameters [31].

Fig. 3shows the Doppler-corrected

γ

-ray spectrum measured in the AGATA spectrometer, selected with mass A

=

207 in the VAMOS++spectrometerforthe75 μmtarget-to-degraderdistance. Transitionsat570 keV,898 keV,1770 keV,and2485 keVbelong to207Pb.The2067 keVlinecorrespondstotheshiftedcomponent

ofthe short-lived (T1/2

=

660 fs [32]) 7

/

2+1 state decayin 207Pb

tothe 5

/

2−1 state. The transitionat2615 keVcorresponds tothe 3−c state decayin208Pb;itisa contaminantfromtherandom co-incidenceresultingfromtheinelasticscatteringofthebeam. The transitions marked with a circle correspond to the 100Mo decay

followingCoulombexcitation,Dopplercorrectedusingthevelocity vectorofthebeam-likeion,measuredafterthedegrader.

Fig.4showsDopplercorrected

γ

-ray spectrameasuredinthe AGATA spectrometer, selected onmass A

=

207 in theVAMOS++ spectrometer,forfivetarget-to-degraderdistances(75 μm,200 μm, 625 μm,1000 μm,and2000 μm)fortherelevanttransitionsused forthe lifetime measurement. Since the Doppler correction used

thevelocitymeasuredafterthedegrader,theunshifted(U) compo-nentcorrespondstotheeventswherethe

γ

-raywasemittedafter thedegrader andshifted (S)totheeventswheregamma-raywas emitted beforethedegrader. Thevelocity ofionsdetected in VA-MOS++rangedfrom14 to22 μm/ps,andthedecreaseofthe veloc-ityinthedegraderwastypicallyabout13%.Eventswitharelative angle greater than 138◦, between the

γ

-ray and the outgoing-particlevelocityvector,wereselectedtoenhancetheclear separa-tionbetweentheshifted(S)andunshifted(U)componentsofthe

γ

-raytransitions.TheparametersrequiredfortheDoppler correc-tionusingtheAGATAandVAMOS++spectrometerswereobtained using the inelastic scatteringof the 208Pb in a data set without

thethick Nidegrader.OntheleftpanelofFig.4,thetwo compo-nents, shifted (S) at2454 keV andunshifted(U) at2485 keV, of the19

/

2−

13

/

2+transitionin207Pbareobserved.

Within the RDDS technique, a decay curve was constructed from the intensities of the unshifted (U19/2−) component of the

19

/

2−

13

/

2+ transitionnormalizedto the7

/

2−1

5

/

2−1 tran-sition in 207Pb as a function of the target-to-degrader distance. The7

/

2−1 state,atanexcitationenergyof2339.9 keV,decaysbya

γ

-raytransitionof1770.2 keVtothefirst-excited5

/

2−1 state.Only theshiftedcomponent(S7/2−)wasobservedduetotheveryshort

lifetime of the 7

/

2−1 state (see rightpanel of Fig. 4). The

γ

-ray transition intensities were determined assuming forall distances thesamewidthandcentroidforthepeaks.Thenormalization us-ingthesumoftheshifted(S19/2−)andunshifted(U19/2−)

compo-nentsofthe2485 keVtransitionisinagreement,withinthe statis-ticaluncertainties,withthenormalizationusingthe7

/

2−1

5

/

2−1 transition.Theformerhasahigherstatisticalerrorduetotheweak intensity of the shifted (S19/2−) component. In the following,all

quotederrorsarestatistical.Inagreementwiththelevelschemeof

207Pb [19],

γ

-

γ

-coincidenceanalysisshowedtwotransitionsabove

the 13

/

2+ statepopulatingthe 19

/

2− state:the 21

/

2−

19

/

2− and 23

/

2−

19

/

2− transitions with the respective energies of 592 keV and749 keVandfeeding of20

(

6

)

% and37

(

5

)

%, respec-tively.Thesestates,havingaverylongeffectivelifetime,aretaken into account in the analysis, following the method described in Ref. [24].The lifetimewasextractedfromthefirstthreedistances where the RDDS analysis showedmaximum sensitivity. The life-timeanalysisprocedurewasverifiedusingtheknowndecayofthe 2+1 state in 206Pb (T

1/2

=

8

.

30

(

24

)

ps [33]). The deduced value

from thisexperimentis T1/2

=

12

(

3

)

ps, takinginto account the

feedingsfromthe3+ and4+states,inreasonableagreementwith thepublishedvalue.

The result of the lifetimeanalysis forthe 19

/

2− state decay-ingbythe2485keVtransitionin207PbispresentedinFig.5.The deducedvalue of T1/2

=

20

(

4

)

ps, correspondsto B

(

E3

,

19

/

2−

13

/

2+

)

=

40

(

8

)

W.u., assuming a branching ratioof 100%. When compared with the B

(

E3

,

3−c

0+

)

=

34

.

0

(

5

)

W.u. in 208Pb, it isa clearfirstindication thatthe octupole-vibrationsplayan im-portant role inthe natureofthe 19

/

2− state. Further,the differ-entcontributionsto theoctupolestrength canbeevaluated.With the wave functions of the 19

/

2− and 13

/

2+ states as given in Fig. 1(d) and with the two-to-one-phonon strength B

(

E3

,

6+c

3−c

)

=

2

×

B

(

E3

,

3−c

0+

)

,thereducedtransitionmatrixelement

(6)

Fig. 4. Dopplercorrectedγ-rayspectraformass A=207 asafunctionofthetarget-to-degraderdistance.Left:the19/2−→13/2+transitionin207Pb.Right:the7

/2−1→

5/2−1 transitionin207Pbusedfornormalization.

Fig. 5. Meanlifetime(τ)determinationofthe19/2−stateof207Pb.Thecontinuous

redlinecorrespondstothefittedmeanvalueofτ asthedashedlinescorrespond toits1σerrorbar.

Thecoefficients

α

and

β

can be takenfromthe analysisin [14]. WithWoods-Saxonradial wave functionsandan effectivecharge

eeff

=

1

.

35

(

45

)

e, one obtains the single-hole reduced matrix

el-ement



ν

f7/12

E3

ν

i13−1/2



= −

359

(

119

)

e fm3 [14]. The errors

associated with the effective charge and the reduced transition matrix element follow from the experimental precision of the

B

(

E3

,

15

/

2−

9

/

2+

)

in209Pb [34].Thefirsttermintheequation, proportionalto

α

19

α

13multipliedwiththecollectiveE3 matrix

el-ement,providesthedominantcontribution,withcorrections

stem-ming from the two-to-one-phonon 6+c

3−c transition (second term, proportional to

β

19

β

13) andthesingle-hole

ν

i−131/2

ν

f

1 7/2

transition(thirdterm,proportionalto

α

19

β

13).

Threedifferentscenarioscanbeconsideredalongwiththe cal-culatedreducedtransitionprobability(inparentheses):(i) Neglect-ing the strong coupling and the two-phonon contribution using

α

19

=

α

13

=

1 and

β

19

= β

13

=

0 (34.0(5) W.u.) (ii) Neglecting

the two-phonon contribution using

α

19

=

1,

α

13

=

0

.

98,

β

19

=

0

and

β

13

= −

0

.

19 (37(2) W.u.) (iii) Considering all the

contribu-tions using

α

19

=

0

.

97,

α

13

=

0

.

98,

β

19

= −

0

.

25 and

β

13

= −

0

.

19

(40(2) W.u.). The errorsassociated withthe calculatedvalues re-sultfromthoseofB

(

E3

,

3c

0+

)

in208Pbande

eff.Theobserved

strength andacomparisonwiththeabove calculatedvalues sug-gestan enhancementwithrespecttothe known B

(

E3

,

3−c

0+

)

(7)

6 D. Ralet et al. / Physics Letters B 797 (2019) 134797

isamainsourceofuncertaintiesinthecalculations,wouldbe re-quired.

In summary, a large B

(

E3

,

19

/

2−

13

/

2+

)

=

40

(

8

)

W.u. re-ducedtransitionprobabilityhasbeenmeasuredin207Pbbasedon thelifetimemeasurementofthe19

/

2−stateusingtheRDDS tech-nique.Suchcollective characterindicatesthat thedominant com-ponentofthisstate isa single-holeexcitation coupledto the oc-tupolephononofthe208Pbcore.Theenergyloweringofthe2485 keV transitionin 207Pb, as compared to the 2615 keV transition in 208Pb, is consistent witha mixingwitha state containing the double-octupole-phononexcitation.The measuredreduced transi-tion probability is compatiblewitha contribution fromthe two-to-one-octupole-phonon E3 transition.Furtherinformationonthe double-octupole-phononstate can beobtainedby a moreprecise lifetimemeasurementofthe19

/

2− statein207Pborofthe corre-sponding21

/

2+statein209Pb,wherethe B

(

E3

)

waspredictedto

be50 W.u. [14].Inaddition,amoreaccuratemeasurementofthe lifetimeofthe15

/

2− state in209Pbismandatoryto improvethe

precisionoftheE3 effectivecharge.

TheauthorsaregratefulforthehelpoftheGANILstaffandof theAGATA collaboration. D. R. Chakrabarty isgratefully acknowl-edged forthe careful reading of the manuscript. This work was supportedbytheEuropeanUnionSeventhFrameworkthrough EN-SAR (Contract No. 262010) andpartlyfunded by the P2IO LabEx (ANR-10-LABX-0038) in the framework Investissements dávenir (ANR-11-IDEX-0003-01)managed bytheFrenchNationalResearch Agency (ANR). DLB is supported by the Extreme Light Infras-tructure Nuclear Physics (ELI-NP) Phase II, a project co-financed by the Romanian Government and the European Union through the European Regional Development Fund - the Competitive-ness Operational Programme (1/07.07.2016, COP, ID 1334). This work was supported by the Bundesministerium für Bildung und Forschung under grant No. 05P18RDFN9. A.G and R.P were par-tially supported by Ministry of Science, Spain, under the Grants FPA2017-84756-C4 and SEV-2014-0398, and by the EU FEDER funds. A.E.S was partially supported by the Australian Research CouncilgrantNo.DP0773273.Thisworkwassupportedbythe Na-tionalScienceCenter(NCN),PolandunderHARMONIAcontractNo. 2016/22/M/ST2/00269.

References

[1] R.H.Spear,etal.,Phys.Lett.B128 (1)(1983)29–32,https://doi.org/10.1016/ 0370-2693(83)90067-9.

[2] J.Blomqvist,Phys.Lett.B33 (8)(1970)541–544,https://doi.org/10.1016/0370 -2693(70)90342-4.

[3] M.A.J.Mariscotti,etal.,Nucl.Phys.A407 (1)(1983)98–126,https://doi.org/10. 1016/0375-9474(83)90310-X.

[4] R. Julin, et al., Phys. Rev. C 36 (1987) 1129–1131, https://doi.org/10.1103/ PhysRevC.36.1129.

[5] H.J.Wollersheim,etal.,Z.Phys.A341 (2)(1992)137–144,https://doi.org/10. 1007/BF01298473.

[6] M.Schramm,etal.,Z.Phys.A344 (1)(1992)121–122,https://doi.org/10.1007/ BF01291029.

[7] B.D.Valnion,etal.,Z.Phys.A350 (1)(1994)11–12,https://doi.org/10.1007/ BF01285046.

[8]C.Fahlander,etal.,Phys.Scr.1995 (T56)(1995)243.

[9] E.F.Moore,etal.,Nucl.Instrum. MethodsPhys.Res., Sect.B,BeamInteract. Mater.Atoms99 (1) (1995)308–311, https://doi.org/10.1016/0168-583X(94) 00687-3.

[10] M.Yeh,etal.,Phys.Rev.Lett.76 (8)(1996)1208–1211,https://doi.org/10.1103/ PhysRevLett.76.1208.

[11] M.Yeh,etal.,Phys.Rev.C57 (5)(1998)R2085–R2089,https://doi.org/10.1103/ PhysRevC.57.R2085.

[12] B.A.Brown,Phys.Rev.Lett.85 (25)(2000)5300–5303,https://doi.org/10.1103/ PhysRevLett.85.5300.

[13]A.Bohr,B.R.Mottelson,NuclearStructure,WorldScientific,1998.

[14] M.Rejmund,etal.,Eur.Phys.J.A8 (2)(2000)161–164,https://doi.org/10.1007/ s100500070102.

[15] P.Kleinheinz,etal.,Phys.Rev.Lett.48(1982)1457–1461,https://doi.org/10. 1103/PhysRevLett.48.1457.

[16] E.Grosse,etal.,Nucl.Phys.A174 (3)(1971)525–538,https://doi.org/10.1016/ 0375-9474(71)90400-3.

[17] O. Häusser,et al.,Nucl. Phys.A 194 (1)(1972) 113–139,https://doi.org/10. 1016/0375-9474(72)91055-X.

[18] F.G.Kondev,S.Lalkovski,Nucl.DataSheets112 (3)(2011)707–853,https:// doi.org/10.1016/j.nds.2011.02.002.

[19] C.Shand, etal.,ActaPhys. Pol.B46 (3)(2015)619,https://doi.org/10.5506/ APhysPolB.46.619.

[20] I.Hamamoto,Phys.Rep.10 (2)(1974)63–105,https://doi.org/10.1016/0370 -1573(74)90019-2.

[21] S.P.Pandya,Phys.Rev.103 (4)(1956)956–957,https://doi.org/10.1103/PhysRev. 103.956.

[22] M.Rejmund,etal.,Phys.Rev.C59 (5)(1999)2520–2536,https://doi.org/10. 1103/PhysRevC.59.2520.

[23] J.Wrzesi ´nski,etal.,Eur.Phys.J.A10 (3)(2001)259–265,https://doi.org/10. 1007/s100500170111.

[24] A.Dewald,etal.,Z.Phys.A334 (2)(1989)163–175,https://doi.org/10.1007/ BF01294217.

[25] M.Rejmund,etal.,Nucl.Instrum.MethodsPhys.Res.,Sect.A,Accel.Spectrom. Detect.Assoc. Equip.646 (1)(2011)184–191, https://doi.org/10.1016/j.nima. 2011.05.007.

[26] M.Vandebrouck,etal.,Nucl.Instrum.MethodsPhys.Res.,Sect.A,Accel. Spec-trom.Detect.Assoc.Equip.812(2016)112–117,https://doi.org/10.1016/j.nima. 2015.12.040.

[27]D.Ralet,etal.,Phys.Scr.92 (5)(2017)054004.

[28] A.Dewald,etal.,Prog.Part.Nucl.Phys.67 (3)(2012)786–839,https://doi.org/ 10.1016/j.ppnp.2012.03.003.

[29] S.Akkoyun,etal.,Nucl.Instrum.MethodsPhys.Res.,Sect.A,Accel.Spectrom. Detect.Assoc.Equip.668(2012)26–58,https://doi.org/10.1016/j.nima.2011.11. 081.

[30] E.Clément,etal.,Nucl.Instrum.MethodsPhys.Res.,Sect.A,Accel.Spectrom. Detect.Assoc.Equip.855(2017)1–12,https://doi.org/10.1016/j.nima.2017.02. 063.

[31] A.Lopez-Martens,etal.,Nucl.Instrum.MethodsPhys.Res.,Sect.A,Accel. Spec-trom.Detect.Assoc.Equip.533 (3)(2004)454–466,https://doi.org/10.1016/j. nima.2004.06.154.

[32] O. Häusser,et al.,Nucl. Phys.A 194 (1)(1972) 113–139,https://doi.org/10. 1016/0375-9474(72)91055-X.

[33] F. Kondev,Nucl. Data Sheets 109 (6)(2008) 1527–1654, https://doi.org/10. 1016/j.nds.2008.05.002.

Références

Documents relatifs

Dans la première étude (A), composée de trois expérimentations, nous présentons l’influence de la texture, en l’absence de contact tactile, sur l’attitude

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Since increased working memory- related neural activity in individuals with or at risk for schizophrenia has been interpreted as ‘neural inefficiency,’ these findings suggest

ZN event activity dependence of the ψ(2S) (red) production for backward (top panel) and forward (bottom panel) rapidity compared to the J/ψ results (green). The horizontal

Calculations employ- ing the quasiparticle random phase approximation in the cranked shell model (Cranked QRPA) and a model with quadrupole-octupole rotation and octupole vibration

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The new detection setup continues to be fully compat- ible with the measurement of coincidence γ-rays emitted by the moving reaction products. The coincident prompt γ-

Decay spectroscopy after separation will be performed at the focal plane using an array known as SIRIUS (Spec- troscopy and Identification of Rare Ions Using S 3 ). The first