• Aucun résultat trouvé

On the faithfulness of parabolic cohomology as a Hecke module over a finite field

N/A
N/A
Protected

Academic year: 2021

Partager "On the faithfulness of parabolic cohomology as a Hecke module over a finite field"

Copied!
26
0
0

Texte intégral

(1)

          

  

!"#$

%&' ())*

+,-./01.

234567849:; ;<34=4859>?@484>?5A?@;7B3493 69;7864? C676=>:49 D7>AC

9>3>E>:>DF 5C69; >G;7 6H?48; H;:@

F

45 6I6483IA: E>@A:; I>7 83; J;9K;

6:D;=76 >I 9A5C4@6: L68M E>@A:67 I>7E5 >G;7 6? 6:D;=7649 9:>5A7; >I

F

N

23;5;7;5A:8596? ;

N D

N

=;6CC:4;@8>9>ECA8;9A5C4@6:L68ME>@A:67I>7E5

>IB;4D38>?; B483 E;83>@5>I :4?;676:D;=76 >G;7

F

N

OPQ Q:6554I

NR SSTUV W

C74E67FXY

SSTZZ Y

SST[\

Y

SS]^_ W

5;9>?@67FX

N

` abcdefghcieb

jkl mnopl

S k (Γ 1 (N ), C)

qr kqsqtqunkvp tqwxsou pxmn rqutm qr ylvzk{

k ≥ 2

rqu {kl z

uqx

n

Γ 1 (N )

rqu mqtl v|{lzlu

N ≥ 1

vm ulso{lw {q {kl nouo}qsvp zuqxn

p

q k

qtqsq z~

qr

Γ 1 (N )

}~ {kl mqposslw €vpkslukvtxuo vmqtqunkvmt ‚mll lƒzƒ

„ …†‡ jkl

qu l

t ˆ‰

ƒ

‰

ƒ

‰Š

‚ˆ

ƒ

ˆŠ

S k (Γ 1 (N ), C) ⊕ S k (Γ 1 (N ), C) ∼ = H par 1 (Γ 1 (N ), C[X, Y ] k−2 ),

y kl

u

l

C[X, Y ] k−2

w

l|

q {lm {kl

C

lp{qu mnopl qr kqtqzl|lqxm nqs~|qtvosm qr

w lz

u ll

k −2

v|{yq‹ouvo}slmyv{k{klm{o|wouw

SL 2 (Z)

op{vq|ƒ Œqu{klw|v{vq|

qr {klno

u o}

qs vpz

uqx n p

q k

qtqsq z~mll

 lp{v

q

|

‰

ƒ Ž|{kl

tqwxs o

urqut m

‡

om

y l

ss

om

q

| {klz

uqx n p

q k

qtqsq z~

q

|l

w vmn

q mlm

qr

|o{

xu o

s  lpl

q nl

u o{

qu m‡

y kvpk o

u l

p

qt no{v}

s l

y v{k {kl

€ vpk

s l

u

kv

txu o vm

qtqu nkvm

t

ƒ ‘| v

tt l

w vo{l

q }ml

o{v

q

|

vm {ko{

H par 1 (Γ 1 (N ), C[X, Y ] k−2 )

vm o rull tqwxsl qr uo|

2

rqu {kl pqtns

 lpl o

s zl}

u o

T C

zl|l

u o{l

w }~{kl

 lpl

q nl

u o{

qu

m v| {kl l|

wqtqu nkvm

t u v|z

qr

S k (Γ 1 (N ), C)

ƒ jkvm vtnsvlm‡v| nou{vpxsou‡{ko{

H par 1 (Γ 1 (N ), C[X, Y ] k−2 )

vm o

r ov{k

rxs

T C

tqwxs

“| zl|l

u o

s {kl

u l vm |

q o|o

sq z

x l

qr {kl

€ vpk

s l

u kv

txu o vm

qtqu nkvm

t q‹

l

u

|v{ll

sw mƒ

qy l

‹ l

u

‡

v| {kln

u lml|{ o

u {vp

s l

y l mk

qy

{ko{ {klo}

l

q }ml

o{v

q

|

zl|l

u o

s vmlm{

q p

x mnv

w o

s ” o{•

tqwxs o

u rqut m

l

u

|v{ll

sw m v| pl

u

{ov| pomlmƒ

–l{|

qy

T F p

w

l|

q {l{kl

F p

lplo

s zl}

u o zl|l

u o{l

w }~{kl

 lpl

q nl

u o{

qu m

v|mv

w l{kll|

wqtqu nkvm

t u v|z

qr {klp

x mnv

w o

s” o{•

tqwxs o

urqut

m

S k (Γ 1 (N ), F p )

qr y lvzk{

k ≥ 2

rqu

Γ 1 (N )

q‹lu {kl lsw

F p

ƒ “|

‹ vl

y qr {kl

q }ml

o{v

q

|m

ruqt

{kl

€ vpk

s l

u

kv

txu o vm

qtqu nkvm

t {

yq —x lm{v

q

|m o

u vml|o{

xu o

ss

(2)

‚ o

Š

“m

H par 1 (Γ 1 (N ), F p [X, Y ] k−2 )

o rov{krxs

T F p

tqwxs

‚ }

Š

“m

H par 1 (Γ 1 (N ), F p [X, Y ] k−2 )

rullqruo|

2

om o

T F p

tqwxs

‘ n

q mv{v

‹ lo|m

y l

u {

q ™x lm{v

q

|

‚ }

Š p

s lo

us

~ v

t n

s vlmo n

q mv{v

‹ l o|m

y l

u {

q ‚ o

Š

ƒ

šmv|z

p

owvpqwzl{klqu~‚v|nou{vpxsou{klou{vpsl„ˆ›†Š‡€wv’kl|mkqymv|

jkl

qu l

t …

ƒ

‰ qr

„œ†

{ko{

™x lm{v

q

|

‚ o

Š

komo n

q mv{v

‹ l o|m

y l

u v| {kl

y lvzk{

u o|zl

2 ≤ k ≤ p − 1

ƒ €tlu{q|‡ qsso o|w žlm{q| ylul o}sl {q wlwxpl ruqt {kl

rx

|

w o

t l|{o

s yqu

}~

ž v

s lm

q

| Œl

ut o{Ÿm

s om{ {kl

qu l

t {ko{

™x lm{v

q

|

‚ }

Š vm{

ux l

sq po

ss

~ o{n

u v

t lm

qr {kl

 lplo

s zl}

u o

y kvpko

u

l

p

quwv|ou~o|w

p

wvm{v|zxvmklw

‚ mll

„ †‡ 

uq n

q mv{v

q

| ¡ƒ¡ƒ

ˆŠ rqu

Z p



p

q

l¢pvl|{m o|

w {kl

rxss p

q k

qtqsq z~

‚ vƒlƒ|

q {

{kl no

u o}

qs vp m

x }mnopl

Š

‡

ruqt y

kvpk {kl

u lm

xs {

rqssqy m

rqu

F p



p

q

l¢pvl|{m o|

w

{kl

rxss p

q k

qtqsq z~ƒ

ž l mk

qxswt l|{v

q

| {ko{ o n

q mv{v

‹ lo|m

y l

u {

q ™x lm{v

q

|

‚ o

Š

y v{k

Z p



p

q

l¢pvl|{m

wq lm |

q { v

t n

s

~ o n

q mv{v

‹ l o|m

y l

u q‹

l

u

F p

ƒ

jkl

t ov|

u lm

xs {

qr {kl n

u lml|{ o

u {vp

s l vm {

q o|m

y l

u ™x lm{v

q

|

‚ o

Š n

q mv{v

‹ l

s

~

sq po

ss

~ o{

p

quwv|ou~ nuvtlm qr

T F p

v| {kl

y lvzk{

u o|zl

2 ≤ k ≤ p + 1

‚mll

£

quqss o

u

~ ¤ƒ 

Š

ƒ ‘ mv

t v

s o

u u lm

xs {

rqu p

x mnv

w o

s tqwxs o

u rqut m

rqu

Γ 1 (N )

yv{k o

¥v

u vpk

s l{ pko

u op{l

u rqssqy m

x

|

w l

u pl

u {ov|

u o{kl

u y lo omm

xt n{v

q

|m

‚ mll jkl

q

u l

t ¦

Ĥ

Š

ƒ jklml

u lm

xs {m o

u l

q }{ov|l

wx

mv|z {lpk|v

—x lm{ko{

y l

u lv|mnv

u l

w }~{kl

mnlpvo

s

poml

p = 2

qr „œ†‡ jklqult …ƒ‰ƒ

–l{

x m n

q v|{

qx { {kl

rqssqy v|z p

q

|ml

—x l|pl‡

y kvpk n

u lml|{l

w

{kl v|v{vo

s tq

{v

‹ o{v

q

|

rqu {kvm m{

xw

~ƒ “

r

{kl o|m

y l

u {

q ™x lm{v

q

|

‚ o

Š vm ~lm

‡

y l

t o~ p

qt

n

x {l

T F p

‹

vo {kl

 lpl

q nl

u o{

qu m

q

| {kl |v{l

w v

t l|mv

q

|o

s

F p

lp{

qu mnopl

H par 1 (Γ 1 (N ), F p [X, Y ] k−2 )

ƒ jkvm po| }l wq|ll’nsvpv{s~ q| o pqtnx{lu o|wq|s~

u l

—x v

u lm

s v|lo

u o

s zl}

u o

t l{k

qw

mƒ jkl |

qys l

w zl

qr {kl

 lpl o

s zl}

u o vm

‹ l

u

~

v|{l

u

lm{v|zƒ Ž|l po|

‡

rqu l’o

t n

s l

‡

{

u

~ {

q ‹ l

u v

r

~

y kl{kl

u

v{ vm o ¨

qu l|m{lv|

u

v|zƒ jkvm n

uq nl

u {~ vm

qr {l| v

t n

s vl

w y kl| {kl

 lpl o

s zl}

u o vm vm

qtqu nkvp{

q o

w l

rqut o{v

q

|

u v|z

‚

om lƒzƒv|

„

‰

§†

Š

ƒ

jlpk|v

—x lm

ruqt

„œ†‡

 lp{v

q

| §

‡

mk

qy k

qy p

x mnv

w o

s ” o{•

tqwxs o

u rqut m

qr

y lvzk{

q

|l

q‹ l

u

F p

po| }l

u l

s o{l

w {

q y lvzk{

p

ƒ žl q}mll v| uqnqmv{vq| œƒ§

{ko{ {kl p

quu lmn

q

|

w v|z

sq po

s r op{

qu m

qr {kl

 lpl o

s zl}

u o v|

y lvzk{

p

oul

p



quw v|o

u

 l|pl‡

o p

q

|ml

—x l|pl

qr qxu u lm

xs

{ vm {ko{

t l{k

qw m

ruqt

F p

s

v|lo

u

o

s zl}

u

o po| }l

x ml

w rqu {kl p

qt n

x {o{v

q

|

qr y lvzk{

q

|l

” o{• p

x mn

rqut m

‚ mll

jkl

qu l

t

œƒ…

Š

ƒ jkl o

x {k

qu po

uu vl

w qx { m

qt l m

x pk po

s p

xs o{v

q

|mo|

w u ln

qu {l

w q

|

{kl

t v|

„

‰ˆ

†

ƒ

“{ mk

qxsw }l

t l|{v

q

|l

w {ko{ v

r q

|l vm |

q { v|{l

u lm{l

w v| {kl

 lpl o

s zl



}

u o m{

ux p{

xu l

‡

}

x {

q

|

s

~ v| {kl m~m{l

t m

qr lvzl|

‹ o

sx lm

qr 

lpl lvzl|

rqut m v|

S k (Γ 1 (N ), F p )

‡q|l po| zl{ {klt wvulp{s~ ruqt

H 1 (Γ 1 (N ), F p [X, Y ] k−2 )

rqu oss

k ≥ 2

‚mll lƒzƒ

„

‰‰

†‡

uq n

q mv{v

q

|

§

ƒ¡ƒ

ˆŠ

ƒ

qy l

‹ l

u

‡

{kl

u l

t o~ }l

tqu lm~m{l

t m

qr

lvzl|

‹ o

sx

lm v| {klz

uqx n p

q k

qtqsq

z~{ko| v|

S k (Γ 1 (N ), F p )

‡}x{ {kll’{uo q|lm

po| lomv

s

~ }lv

w l|{vl

w

ƒ

jkvm o

u {vp

s

lvm }oml

w q

| {kl

x ml

qr z

uqx n p

q k

qtqsq

z~ƒ jklo

x {k

qu m{

xw vl

w v|

kvm {klmvm

„

‰‰

†

o|

w {kl o

u {vp

s l

„

‰

¡†

u l

s o{v

q

|m {

q tqwxs o

u m~

t }

qs m o|

w o pl

u {ov|

p

q k

qtqsq z~ z

uqx n

q

| {kl p

quu lmn

q

|

w v|z

tqwxs o

u p

xu‹

lƒ ‘

ss

{klml oz

u ll

rqu

v|m{o|pl

rqu o|~ p

q

|z

ux l|plm

x }z

uqx n

qr

SL 2 (Z)

vr{kl pkouop{luvm{vpqr{kl}oml

l

sw

vm

p ≥ 5

qu v| o|~ pkouop{luvm{vprqu{klzuqxn

Γ 1 (N )

yv{k

N ≥ 5

ƒ

(3)

ž ww qt u t u q ” tqwxs u rqut u r u q x

„¤†‡ „

ˆ

§†

qu

„…†

ƒ Œ

qu

R = C

‡ {kl ”o{• pxmnvwos tqwxsou rqutm oul nulpvmls~ {kl

k

qsqtqu nkvp p

x mn

rqut mƒ š|

w l

u

{kl omm

xt n{v

q

|m

N ≥ 5

o|w

k ≥ 2

q|l kom

S k (Γ 1 (N ), Z[1/N ]) ⊗ R ∼ = S k (Γ 1 (N ), R)

rqu o|~ uv|z

R

v| ykvpk

N

vmv|‹lu{v}slƒ

“| no

u {vp

xs o

u

‡

{kvm

t

lo|m {ko{ o|~

” o{• p

x mn

rqut q‹

l

u

F p

po| }l

s v

r {l

w {

q

pko

u op{l

u vm{vp •l

uq

v| {kl mo

t l

y

lvzk{ o|

w s l

‹ l

s

ƒ jkl n

u l

‹ v

qx m m{o{l

t l|{

wq lm

|

q { k

qsw rqu y lvzk{

k = 1

v| zl|luosƒ

” o{•p

x mn

rqut m

l

u

F p

rqu

o n

u v

t l

p

nso~ o| vtnqu{o|{ slv| o tqwvlw

‹ l

u mv

q

|

qr  l

uu lŸm p

q

|ªlp{

xu l

q

|

tqwxs o

u rqut m

‚ mll

„

¦

†

Š

‡

om {klv

u x ml‡

q

| {kl

q

|l ko|

w

‡

zl{m

u v

w qr m

qt l pko

u op{l

u s v

r {v|z n

uq }

s l

t m

‡

o|

w q

| {kl

q {kl

u ko|

w

‡

o

ssqy m

q

|l {

q t v|v

t vml {kl

y lvzk{m

qr {kl

tqwxs o

u rqut

mƒ “| no

u {vp

xs o

u

‡

qww

‡

v

uu l

wx pv}

s l ¨o

sq vm

u ln

u lml|{o{v

q

|m

Gal(Q|Q) → GL 2 (F p )

ykvpk oul x|uotvlw

o{

p

oulpq|ªlp{xulw {q pquulmnq|w {q ”o{• lvzl|rqutm qr ylvzk{ q|lƒ

Œv|o

ss

y lmk

qxswt l|{v

q

|{ko{

ž v

ss vo

t 

{lv| komv

t n

s l

t l|{l

w

F p

tqwxs

o

u

m~

t }

qs m o|

w {kl

 lpl

q nl

u o{

qu m

q

| {kl

t

v| «oz

t o o|

w



~{k

q

|ƒ Ž|l p

qxsw

mo~{ko{ {kvm o

u {vp

s l vm o

s m

q o}

qx {

y

ko{ {kl~ p

qt n

x {lƒ

¬­®¯°±²³´µ³¶³¯·¸

jkvmo

u {vp

s lkomz

uqy

|

qx {

qr

£kon{l

u

“““

qrt

~{klmvmƒ “

yqxsws vl{

q {ko|

t

~

{klmvm o

vm

qu ¹ om

€w v’k

l|

rqu ‹ l

u

~ kl

s n

rxs m

x zzlm{v

q

|m

‡

o|

w jkl

q ‹ o|

w l|

¹q zoo

u {

rqu mko

u

v|z kvmv|mvzk{m v| o

s zl}

u ovpzl

qt l{

u

º»º ¼

°·½·¾°¯

ž l

w l|

q {l }~

Mat 2 (Z) 6=0

{kl ml

t v

 z

uqx n

qr v|{lz

u o

s

2 × 2

to{uvplm yv{k |q|

•l

uq w l{l

ut

v|o|{ƒ Ž| v{

q

|lkom

 kv

txu oŸm

t ov| v|

‹qsx {v

q

|

¡ a b

c d

¢ ι

= ¡ d −b

−c a

¢

ƒ

Œ

qu o

u v|z

R

{kl |q{o{vq|

R[X, Y ] n

m{o|

w m

rqu {kl k

qtq zl|l

qx mn

qs

~|

qt vo

s m

qr

w lz

u

ll

n

v| {kl ‹ouvo}slm

X, Y

ƒ žl sl{

V n (R) := Sym n (R 2 ) ∼ = R[X, Y ] n

y kvpk

y l l

—x vn

y

v{k {kl |o{

xu o

s s l

r {

Mat 2 (Z) 6=0



ml

t v

 z

uqx n op{v

q

|ƒ “

r

V

vm o|

R

tqwxsl‡sl{

V

}l {klwxos

R

tqwxsl

Hom R (V, R)

ƒ

‘m

x m

x o

s

‡

{kl

x nnl

u ko

sr n

s o|l vm

w l|

q {l

w

}~

H

ƒ «qullu‡ yl mkoss xml

{kl m{o|

w o

uw p

q

|z

ux l|pl m

x }z

uqx nm

Γ(N )

‡

Γ 1 (N )

o|w

Γ 0 (N )

qr

SL 2 (Z)

rqu o|

v|{lzl

u

N ≥ 1

‡ ykvpk oul wl|lw {q pq|mvm{ qr {kl to{uvplm

¡ a b

c d

¢ ∈ SL 2 (Z)

u l

wx pv|z

tqwxsq

N

{q

( 1 0 0 1 )

‡

( 1 ∗ 0 1 )

ulmnƒ

( ∗ ∗ 0 ∗ )

ƒ

¿ ÀÁdÁÂeÃih ÄdegÅ heÆeÇeÃeÄÈ

“|{kvmmlp{v

q

|

y l

u lpo

ss {kl

w l|v{v

q

|

qr no

u o}

qs vpz

uqx np

q k

qtqsq z~o|

w n

u lml|{

m

qt l n

uq nl

u {vlm{

q }l

x ml

w

v| {kl ml

—x l

s

ƒ

ž l mko

ss x ml m{o|

w o

uwr op{m

q

| z

uqx n

p

q k

qtqsq z~

y v{k

qx { mnlpvo

s u l

r l

u

l|plƒ jkl

u lo

w l

u po|

rqu l’o

t n

s lp

q

|m

xs {

„¡†

ƒ

(4)

É°Ê°¶°²°µË °Ì

PSL 2 (Z)

jkl z

uqx

n

PSL 2 (Z)

vm rulls~ zl|luo{lw }~ {kl to{u psommlm qr

σ := ¡ 0 −1

1 0

¢

o|

w

τ := ¡ 1 −1

1 0

¢

ƒ ‘ p

q

|ml

—x

l|pl vm {kl

rqssqy

v|z mnlpvo

s poml

qr

{kl ÍÎÏÐÑÒ

ÓÔÐÕÖÑÔ× ×ÐØÙÐÚÛÐ

‚ mlllƒzƒ

„

ˆ

¡†‡

‰‰ˆŠ

ƒ Œ

qu o|~

u v|z

R

o|wo|~slr{

R[PSL 2 (Z)]



tqwxs

l

M

{kl ml—xl|pl

‚ ‰

ƒ

‰Š

0 → M PSL 2 (Z) → M hσi ⊕ M hτ i → M

→ H 1 (PSL 2 (Z), M ) → H 1 (hσi, M ) ⊕ H 1 (hτ i, M ) → 0

vm l’op{ o|

w rqu o

ss

i ≥ 2

q|l komvmqtqunkvmtm

‚ ‰

ƒ¡

Š

H i (PSL 2 (Z), M ) ∼ = H i (hσi, M ) ⊕ H i (hτ i, M ).

ÜÝÞÝßßàÞá âãä åÐÕ

R

æÐ Î ÑÔÚç ÎÚè

Γ ≤ PSL 2 (Z)

æÐ Î ×ÙæçÑÖÙ é Öê ëÚÔÕÐ ÔÚèÐì

×ÙÛí ÕíÎÕ Îîî ÕíÐ ÖÑèÐÑ×

Öê

Îîî ×ÕÎ

æ

ÔîÔ×ÐÑ çÑÖÙ é×

Γ x

ê

ÖÑ

x ∈ H

ÎÑÐ ÔÚïÐÑÕÔæîÐ

ÔÚ

R

ð ñíÐÚêÖÑ Îîî

R[Γ]

ÒòÖèÙîÐ×

V

ÖÚÐíÎ×

H 1 (Γ, V ) = M/(M hσi + M hτ i )

óÔÕí

M = Coind PSL Γ 2 (Z) (V )

ÎÚè

H i (Γ, V ) = 0

êÖÑ Îîî

i ≥ 2

ð

ô ÞÝÝõã

ž l 

u m{

u lpo

ss

{ko{ o|~ |

q

|

 {

u v

‹ vo

ss

~ m{o}v

s vml

w n

q

v|{

x

qr

H

vm

p

q

x

zo{l}~ o| l

s l

t l|{

qr

PSL 2 (Z)

{q lv{klu

i

qu

ζ 3 = e 2πi/3

‡ ykl|pl oss |q|

{

u v

‹ vo

s m{o}v

s vml

u z

uqx nm o

u l

qr {kl

rqut

ghσig −1 ∩ Γ

qu

ghτ ig −1 ∩ Γ

rqu mqtl

g ∈ PSL 2 (Z)

ƒ Œuqt «opl~Ÿm rqutxso ‚mll lƒzƒ „‰¡†Šq|l q}{ov|m

H i (hσi, Coind PSL Γ 2 (Z) V ) ∼ = Y

g∈Γ\PSL 2 (Z)/hσi

H i (ghσig −1 ∩ Γ, V )

rqu o

ss

i

o|w omvtvsouulmxs{rqu

τ

ƒ ¥xl{q {klv|‹lu{v}vsv{~ommxtn{vq|{klulmxs{

rqssqy m

ruqt  konv

uq

Ÿm

s l

tt o o|

w €—x o{v

q

|m

‚ ‰

ƒ

‰Š o|

w ‚ ‰

ƒ¡

Š

ƒ

2

jkl omm

xt n{v

q

|m

qr {kl n

uq n

q mv{v

q

| o

u l

rqu

v|m{o|pl o

sy

o~m mo{vml

w v

r

R

vm

o l

sw qr pko

u op{l

u vm{vp |

q

{

2

qu

3

ƒ jkl~ osmq kqsw rqu

Γ 1 (N )

yv{k

N ≥ 4

lu

o|~

u v|zƒ

ö³÷¯¾·¾°¯ °Ì ø½ù½ú°²¾­ µù°ûø ­°Ê°¶°²°µË

–l{

R

}l o uv|z‡

Γ ≤ PSL 2 (Z)

o mx}zuqxn qr |v{l v|w o|w

T = τ σ = ( 1 1 0 1 )

ƒ

Ž|l

w

l|lm{kl éÎÑÎ

æ

ÖîÔÛ çÑÖÙ é ÛÖíÖòÖîÖçÏ çÑÖÙ é êÖÑ ÕíÐ

R[Γ]

ÒòÖèÙîÐ

V

om{kl

l

u

|l

s qr {kl

u lm{

u vp{v

q

|

t on v|

‚ ‰

Ĥ

Š

0 → H par 1 (Γ, V ) → H 1 (Γ, V ) −−→ res Y

g∈Γ\PSL 2 (Z)/hT i

H 1 (Γ ∩ hgT g −1 i, V ).

jkl

w l|v{v

q

|

qr no

u o}

qs vpp

q k

qtqsq z~vmp

qt no{v}

s l

y v{k

 konv

uq

Ÿm

s l

tt o

‡

vƒlƒ

€—x o{v

q

|

‚ ‰

Ĥ

Š vm vm

qtqu nkvp{

q

‚ ‰

ƒ…

Š

0 → H par 1 (PSL 2 (Z), M ) → H 1 (PSL 2 (Z), M ) −−→ H res 1 (hT i, M )

y

v{k

M = Coind PSL Γ 2 (Z) V = Hom R[Γ] (R[PSL 2 (Z)], V )

‡ om q|l mllm xmv|z lƒzƒ

«opl~Ÿm

rqutxs

o om v| {kln

uqqrqr

£

quqss o

u

~

‰

ƒ

ˆ

ƒ

(5)

R

æ

Γ ≤ PSL 2 (Z)

æ æ

ÔÚèÐ ì ×ÙÛí ÕíÎÕ Îîî ÕíÐÖÑèÐÑ× Öê Îîî ×ÕÎ

æ

ÔîÔ×ÐÑ çÑÖÙ é×

Γ x

êÖÑ

x ∈ H

ÎÑÐ ÔÚïÐÑÕÔæîÐ

ÔÚ

R

ð ñíÐÚêÖÑ Îîî

R[Γ]

ÒòÖèÙîÐ×

V

ÕíÐ ×ÐØÙÐÚÛÐ

0 → H par 1 (Γ, V ) → H 1 (Γ, V ) −−→ res Y

g∈Γ\PSL 2 (Z)/hT i

H 1 (Γ ∩ hgT g −1 i, V ) → V Γ → 0

Ô× Ð ìÎÛÕ

ð

ôÞÝÝõã ¥

x l{

q {klomm

xt n{v

q

|m

y l

t o~onn

s

~ £

quqss o

u

~

‰

ƒ

ˆ

ƒ jkl

u lm{

u vp{v

q

|

t on v|

€—x o{v

q

|

‚ ‰

ƒ…

Š {k

x m }lp

qt lm

M/(M hσi + M hτ i ) −−−−−−−−→ M/(1 − T )M, m7→(1−σ)m

mv|pl

H 1 (hT i, M ) ∼ = M/(1 − T )M

ƒ jkl vmqtqunkvmt

M ∼ = (R[PSL 2 (Z)] ⊗ R V ) Γ

o

ssqy m

q

|l {

q p

qt n

x

{l {ko{ {kl p

q

l

u

|l

s qr {kvm

t on vm

V Γ

‡ {kl

Γ

pqv|‹ouvo|{mƒ

2

ʳ ¶°´û²³

V n (R)

–l{

R

}l o uv|zƒ lposs ruqt q{o{vq| ˆƒˆ {ko{ yl nx{

V n (R) = Sym n (R 2 ) ∼ = R[X, Y ] n

ƒ

ôÞÝüÝýþÿþÝ âã  Ù ééÖ×Ð ÕíÎÕ

n!

Ô× ÔÚïÐÑÕÔæîÐ ÔÚ

R

ð ñíÐÚ ÕíÐÑÐ Ô× Î éÐÑêÐÛÕ

éÎÔÑÔÚç

V n (R) × V n (R) → R

Öê

R

ÒòÖèÙîÐ× óíÔÛí ÔÚèÙÛÐ× ÎÚ Ô×ÖòÖÑéíÔ×ò

V n (R) → V n (R)

Öê

R

ÒòÖèÙîÐ×

ÑÐ×éÐÛÕÔÚç ÕíÐ

Mat 2 (Z) 6=0

ÒÎÛÕÔÖÚ

ó

íÔÛí Ô× çÔïÐÚ ÖÚ

V n (R)

æÏ

(M.φ)(w) = φ(M ι w)

êÖÑ

M ∈ Mat 2 (Z) 6=0



φ ∈ V n (R)

ÎÚè

w ∈ V n (R)

ð

ôÞÝÝõ㠎|l

w

l|lm {kl nl

ur lp{ nov

u v|z

q

|

V n (R)

}~ um{ pq|m{uxp{v|z o

nl

ur lp{ nov

u v|z

q

|

R 2

‡ykvpk yl pq|mvwlu ompqsxt| ‹lp{qumƒ Ž|l ml{m

R 2 × R 2 → R, hv, wi := det(v|w) = v 1 w 2 − v 2 w 1 .

“

r

M

vm o to{u v|

Mat 2 (Z) 6=0

‡

q

|l pklpm lomv

s

~ {ko{

hM v, wi = hv, M ι wi

ƒ

jkvm nov

u

v|z l’{l|

w m |o{

xu o

ss

~ {

q o nov

u v|z

q

| {kl

n

{k {l|mqu nqylu qr

R 2

ƒ

¥

x l {

q

{kl omm

xt n{v

q

|

q

| {kl v|

‹ l

u {v}v

s v{~

qr

n!

‡ yl to~ ‹vly

Sym n (R 2 )

om o

m

x }

tqwxs

l v| {kl

n

{k {l|mqu nqylu‡o|w kl|pl q}{ov| {kl wlmvulw novuv|z o|w

{klvm

qtqu nkvm

t qr

{kl m{o{l

t l|{ƒ

2

 à âã åÐÕ

n ≥ 1

æÐ ÎÚ ÔÚÕÐçÐÑ

t = ( 1 N 0 1 )

ÎÚè

t 0 = ( N 1 1 0 )

ð ê

n!N

Ô×

ÚÖÕ Î ÐÑÖ èÔïÔ×ÖÑ ÔÚ

R

 ÕíÐÚêÖÑ ÕíÐ

t

ÒÔÚïÎÑÔÎÚÕ× óÐíÎïÐ

V n (R) hti = hX n i

ÎÚè

êÖÑ ÕíÐ

t 0

ÒÔÚïÎÑÔÎÚÕ×

V n (R) ht 0 i = hY n i

ð ê

n!N

Ô× ÔÚïÐÑÕÔæîÐ ÔÚ

R

 ÕíÐÚ ÕíÐ ÛÖÔÚÒ

ïÎÑÔÎÚÕ× ÎÑÐ çÔïÐÚ

æ

Ï

V n (R) hti = V n (R)/hY n , XY n−1 , . . . , X n−1 Y i

ÑÐ×éÐÛÕÔïÐîÏ

V n (R) ht 0 i = V n (R)/hX n , X n−1 Y, . . . , XY n−1 i

ð

(6)

ôÞÝÝõã jkl op{v

q

|

qr

t

vm

t.(X n−i Y i ) = X n−i (N X + Y ) i

o|w pq|ml—xl|{s~

(t − 1).(X n−i Y i ) = P i−1

j=0 r i,j X n−j Y j

yv{k

r i,j = N i−j ¡ i

j

¢

‡

y

kvpk vm|

q { o•l

uq

w v

‹ vm

qu

‡

u lmnlp{v

‹ l

s

~ v|

‹ l

u {v}

s l‡

}~ omm

xt n{v

q

|ƒ Œ

qu

x = P n

i=0 a i X n−i Y i

yl

ko

‹ l

(t − 1).x = P n−1

j=0 X n−j Y j ( P n

i=j+1 a i r i,j ).

“r

(t − 1).x = 0

‡ylpq|psxwlrqu

j = n − 1

{ko{

a n = 0

ƒ 

l’{‡

rqu

j = n − 2

v{ rqssqym {ko{

a n−1 = 0

‡

o|

w m

q

q

|

‡

x

|{v

s

a 1 = 0

ƒ jkvm nuq‹lm{kl m{o{ltl|{q|{kl

t

v|‹ouvo|{mƒ jkl q|lq|{kl

t 0

v|‹ouvo|{mrqssqym ruqt m~ttl{u jkl psovtm q| {kl pqv|‹ouvo|{m oulnuq‹lw

v| o

‹ l

u

~mv

t v

s o

u o|

w m{

u ovzk{

rquy o

uw y o~ƒ

2

ôÞÝüÝýþÿþÝ âã åÐÕ

n ≥ 1

æÐ ÎÚ ÔÚÕÐçÐÑð

Î

ê

n!N

Ô× ÚÖÕ Î ÐÑÖ èÔïÔ×ÖÑ ÔÚ

R

 ÕíÐÚ ÕíÐ

R

ÒòÖèÙîÐ Öê

Γ(N )

ÒÔÚïÎÑÔÎÚÕ×

V n (R) Γ(N )

Ô× ÐÑÖð



æ



ê

n!N

Ô× ÔÚïÐÑÕÔæîÐÔÚ

R

ÕíÐÚÕíÐ

R

ÒòÖèÙîÐÖê

Γ(N )

ÒÛÖÔÚïÎÑÔÎÚÕ×

V n (R) Γ(N )

Ô× ÐÑÖ

ð

Û 

Ù ééÖ×ÐÕíÎÕ

Γ

Ô× Î ×ÙæçÑÖÙ é Öê

SL 2 (Z)

×ÙÛí ÕíÎÕ ÑÐèÙÛÕÔÖÚ òÖèÙîÖ

p

èÐëÚÐ×

Î ×ÙÑÐÛÕÔÖÚ

Γ ³ SL 2 (F p )

ðçð

Γ(N )



Γ 1 (N )



Γ 0 (N )

êÖÑ

p - N

ð Ù ééÖ×Ð

òÖÑÐÖïÐÑ ÕíÎÕ

1 ≤ n ≤ p

Ôê

p > 2

 ÎÚè

n = 1

Ôê

p = 2

ð ñíÐÚ ÖÚÐ íÎ×

V n (F p ) Γ = 0 = V n (F p ) Γ .

ôÞÝÝõ㠑m

Γ(N )

pq|{ov|m{klto{uvplm

t

o|w

t 0

‡–ltto ‰ƒ§ osulow~ |vmklm



o

u {m

‚ o

Š o|

w ‚ }

Š

ƒ jkl

q

|

s

~no

u {

qr‚ p

Š

{ko{vm|

q {~l{p

l

u l

w vm

y kl|{kl

w lz

u ll

vm

n = p > 2

ƒ v|pl

V p (F p )

vm |o{xuoss~ vmqtqunkvp{q

U 1

‡ 

uq n

q mv{v

q

| §ƒ

ˆ zv

‹ lm

{kl l’op{ ml

—x l|pl

qr

Γ

tqwxslm

0 → V 1 (F p ) → V p (F p ) → V p−2 (F p ) → 0.

“{

m

x

¢plm{

q {olv|

‹ o

u vo|{m

u lmnlp{v

‹ l

s

~ p

q v|

‹ o

u vo|{m {

q q

}{ov| {kl

u lm

xs {ƒ

2

°ù¸¾°¯Ìù³³¯³¸¸ ½¯´ ú½¸³ ­Ê½¯µ³ øù°ø³ù·¾³¸

 l

uu l

t

o|mkom p

qt n

x {l

w o {

qu mv

q

|

ru ll|lmm

u lm

xs {

s vl{kl

rqssqy v|zn

uq n

q mv{v

q

|

v|

„

ˆ‰

†‡ 

uq n

q mv{v

q

|

 

ƒ

 l

u l

y l zv

‹ l o mk

qu { o|

w p

q

|pln{

x o

s n

uqqr qr o m

s vzk{

s

~

tqu lzl|l

u o

s m{o{l

t

l|{ƒ jkl

y o~

qr onn

uq opk

y omm

x zzlm{l

w }~

¹ om

€w v’k

q‹ l|ƒ

ôÞÝüÝýþÿþÝ âã  ××ÙòÐÕíÎÕ

R

Ô× ÎÚ ÔÚÕÐçÑÎî èÖòÎÔÚ Öê ÛíÎÑÎÛÕÐÑÔ×ÕÔÛ

0

×ÙÛí

ÕíÎÕ

R/pR ∼ = F p

êÖÑ Î éÑÔòÐ

p

ð åÐÕ

N ≥ 1

ÎÚè

k ≥ 2

æÐ ÔÚÕÐçÐÑ× ÎÚè îÐÕ

Γ ≤ SL 2 (Z)

æÐ Î ×ÙæçÑÖÙ é ÛÖÚÕÎÔÚÔÚç

Γ(N )

æÙÕ ÚÖÕ

−1

×ÙÛí ÕíÎÕ ÕíÐ ÖÑèÐÑ×

Öê

ÕíÐ ×ÕÎ

æ

ÔîÔ×ÐÑ ×Ù

æ çÑÖÙ é×

Γ x

ê

ÖÑ

x ∈ H

íÎïÐ ÖÑèÐÑ ÛÖéÑÔòÐ ÕÖ

p

ð ñíÐÚ ÕíÐ

ê

ÖîîÖ

ó

ÔÚç ×ÕÎÕÐòÐÚÕ× íÖîè

Î

H 1 (Γ, V k−2 (R)) ⊗ R F p ∼ = H 1 (Γ, V k−2 (F p ))

ð



æ



ê

k = 2

 ÕíÐÚ

H 1 (Γ, V k−2 (R))[p] = 0

ð ê

k ≥ 3

 ÕíÐÚ

H 1 (Γ, V k−2 (R))[p] = V k−2 (F p ) Γ

ð Ú éÎÑÕÔÛÙîÎÑ Ôê

p - N

 ÕíÐÚ

H 1 (Γ, V k−2 (R))[p] = 0

êÖÑ Îîî

k ∈ {2, . . . , p + 2}

ð

Û

ê

k = 2

 ÖÑ Ôê

k ∈ {3, . . . , p + 2}

ÎÚè

p - N

 ÕíÐÚ

H par 1 (Γ, V k−2 (R)) ⊗ R F p ∼ =

H par 1 (Γ, V k−2 (F p ))

ð

(7)

x u q —x

0 → V k−2 (R) −→ V ·p k−2 (R) → V k−2 (F p ) → 0

qr

R[Γ]

tqwxslm vm l’op{ƒ jkl ommqpvo{lw sq|z l’op{ ml—xl|pl zv‹lm uvml{q {kl

mk

qu

{ l’op{ml

—x l|pl

0 → H i (Γ, V k−2 (R)) ⊗ F p → H i (Γ, V k−2 (F p )) → H i+1 (Γ, V k−2 (R))[p] → 0

rqu l

‹ l

u

~

i ≥ 0

ƒ €’nsqv{v|z {kvm ml—xl|pl rqu

i = 1

vttlwvo{ls~ ~vlswm ou{ ‚oŠ‡

mv|pl o|~

H 2

qr

Γ

vm •luq }~ £quqssou~ ‰ƒˆƒ ou{ ‚}Š vm o wvulp{ pq|ml—xl|pl qr

{klpoml

i = 0

o|w



uq n

q mv{v

q

|

‰

ƒ…

ƒ

ž l ko

‹

l{kl l’op{ p

qttx {o{v

‹ l

w voz

u o

t

0 // H 1 (Γ, V k−2 (R))

²²

·p // H 1 (Γ, V k−2 (R))

²²

// H 1 (Γ, V k−2 (F p ))

²²

// 0 0 // Q

g H 1 (D g , V k−2 (R))

²²

·p // Q

g H 1 (D g , V k−2 (R))

²² // Q

g H 1 (D g , V k−2 (F p )) // 0 (V k−2 (R)) Γ

·p //

²²

(V k−2 (R)) Γ

²² 0 0

y kl

u l{kln

uqwx p{m o

u l{ol|

l

u

g ∈ Γ\PSL 2 (Z)/hT i

‡

o|

w

D g = Γ ∩ hgT g −1 i

ƒ

jkl l’op{|lmm

qr {kl 

u m{

uqy

vm {kl p

q

|{l|{m

qr



o

u {m

‚ o

Š o|

w ‚ }

Š

ƒ jko{ {kl

p

qsxt

|m o

u l l’op{

rqssqy m

ruqt



uq n

q mv{v

q

|

‰

ƒ

‰

ƒ jkl •l

uq q

| {kl

u vzk{

qr {kl

mlp

q

|

wuqy vm

wx l{

q {kl

r

op{{ko{

D g

vm

ru ll

q

|

q

|lzl|l

u o{

qu

ƒ jko{zl|l

u o{

qu vm

qr {kl

rqut

g ( 1 r 0 1 ) g −1

yv{k

r | N

‡mq {ko{

r

vm v|‹lu{v}slv|

F p

ƒ jkl •l

uq q

| {kl

s l

r { vm {

u v

‹ vo

s rqu

k = 2

o|w rqu

3 ≤ k ≤ p + 2

v{ vm o pq|ml—xl|plqr –ltto ‰ƒ§ƒ

o

u {

‚ p

Š

|

qy rqssqy m

ruqt

{kl m|ol

s l

tt o o|

w



uq n

q mv{v

q

|

‰

ƒ…‡

y kvpk v

t n

s vlm

{ko{ {kl }

q {{

qt t

on vm o| v|ªlp{v

q

2

 h Áhcieb

 lpl

q nl

u o{

qu m p

q

|pln{

x o

ss

~ p

qt l

ruqt  lpl p

quu lmn

q

|

w l|plm

q

|

tqwxs o

u

p

xu‹

lm

u lmnlp{v

‹ l

s

~

tqwxs o

u

m{opmƒ jkl~ o

u l }lm{

w lmp

u v}l

w q

| {kl

tqwxs v

v|{l

u n

u l{o{v

q

|m

‚ mll lƒzƒ

„…†‡

¡ƒ

‰ o|

w ¦

ƒ¡

Š

ƒ ‘

ss  lpl

q nl

u o{

qu m {ko{

y l

y v

ss l|



p

qx

|{l

u

v| {kvm o

u {vp

s l o

u vml

s

vl {kvmƒ jkvm mlp{v

q

| n

u lml|{m

 lpl

q nl

u o{

qu m

q

|

z

uqx n p

q k

qtqsq z~ o|

w {kl n

u v|pvno

s u lm

xs

{ vm {kl }lko

‹ v

qxu qr {kl

 lpl

q nl

u

o{

qu m

y v{k

u

lmnlp{ {

q  konv

uq

Ÿm

s l

tt

oƒ jko{

u lm

xs {

y om

q }{ov|l

w

}~ ‘mk o|

w

 {l

‹ l|m

‚

„

ˆ

†‡

–l

tt o

‰

ƒ

‰Š

ƒ

 l

u l‡

k

qy l

‹ l

u

‡

y l o

‹q v

w {klv

uu o{kl

u klo

‹

~

s o|z

x ozl

qr y lo

s

~ p

qt no{v}

s l



lpl nov

u

mƒ “|m{lo

w

‡

{kl

w lmp

u vn{v

q

|

qr  lpl

q nl

u o{

qu m

q

| z

uqx n p

q k

qtqsq z~ vm

x ml

w y kvpk p

qt lm

w v

u lp{

s

~

ruqt {kl

 lpl p

quu lmn

q

|



w l|plm

‚rqut o

ss

~

q

|l kom {

q yqu



q

| {kl

tqwxs o

u m{opm

y v{k

sq po

ss

~ p

q

|m{o|{

p

q

l¢pvl|{m

‡

v| poml

qr

|

q

|

 {

u v

‹ vo

ss

~ m{o}v

s vml

w n

q v|{m

Š

ƒ Œ

qu {kl

w lmp

u vn{v

q

|

y l

rqssqy

„ …†‡

ˆ‰

ƒ§ƒ

(8)

–l{

R

}l o uv|z‡

α ∈ Mat 2 (Z) 6=0

o|

w

Γ ≤ PSL 2 (Z)

}l o mx}zuqxn pq|{ov|v|z

m

qt l

Γ(N )

ƒ žlxml{kl|q{o{vq|m

Γ α := Γ∩α −1 Γα

o|w

Γ α := Γ∩αΓα −1

‡yklul

y l p

q

|mv

w l

u

α −1

om o| lsltl|{ qr

GL 2 (Q)

ƒ ¹q{k zuqxnm oul pqttl|mxuo}sl

y v{k

Γ

ƒ

x nn

q ml{ko{

V

vm o|

R

tqwxslyv{k o

Mat 2 (Z) 6=0



ml

t v

 z

uqx n op{v

q

|

y kvpk

u lm{

u vp{m{

q o| op{v

q

| }~

Γ

ƒ jkl ÐÛÐÖéÐÑÎÕÖÑ

T α

op{v|z

q

|z

uqx n p

q k

qtqsq z~

vm{kl p

qt n

q mv{l

H 1 (Γ, V ) −−→ H res 1α , V ) −−−→ H conj α 1 (Γ α , V ) −−−→ H cores 1 (Γ, V ).

jkl 

u m{

t

on vm {kl

x m

x o

s

ÑÐ×ÕÑÔÛÕÔÖ Ú‡

o|

w

{kl {kv

uw q

|l vm {kl m

q

po

ss l

w ÛÖÑÐÒ

×ÕÑÔÛÕÔÖÚ

‡

y kvpk

q

|l o

s m

q

|

w

m v| {kl

s v{l

u o{

xu l

x

|

w l

u {kl |o

t l ÕÑÎ

Ú×ê

Ðу

ž l

l’n

s vpv{

s

~

w lmp

u

v}l{klmlp

q

|

wt on

q

||

q

|

 k

qtq zl|l

qx mp

q p~p

s lm

‚ p

r

ƒ

„ …†‡

ˆˆ

¤

Š

conj α : H 1α , V ) → H 1 (Γ α , V ), c 7→ ¡

g α 7→ α ι .c(αg α α −1 ) ¢ .

jkl

u lvmo mv

t v

s o

uw lmp

u vn{v

q

|

q

|{klno

u o}

qs vpm

x

}mnoplo|

w {kl{

yq o

u lp

qt no{



v}

s lƒ jkl

rqssqy v|z

rqutxs o po|o

s m

q }l

rqx

|

w v|

„ …†‡

ˆˆ

¤

‡

o|

w

„

‰›

†‡

 lp{v

q

|

œ

ƒ¡ƒ

ôÞÝüÝýþÿþÝ ãä Ù ééÖ×Ð ÕíÎÕ

ΓαΓ = S n i=1 Γδ i

Ô× Î èÔ×ÖÔÚÕ ÙÚÔÖÚ

ð ñ

íÐÚ

ÕíÐ ÐÛÐ ÖéÐÑÎÕÖÑ

T α

ÎÛÕ× ÖÚ

H 1 (Γ, V )

ÎÚè

H par 1 (Γ, V )

æÏ ×ÐÚèÔÚç ÕíÐ ÚÖÚÒ

íÖòÖçÐÚÐÖÙ× ÛÖÛÏîÐ

c

ÕÖ

T α c

èÐëÚÐè æÏ

(T α c)(g) = X n i=1

δ ι i c(δ i gδ −1 j(i) )

ê

ÖÑ

g ∈ Γ

ð ÐÑÐ

j(i)

Ô× ÕíÐ ÔÚèÐ ì ×ÙÛí ÕíÎÕ

δ i gδ −1 j(i) ∈ Γ

ð

ôÞÝÝõã

ž l

q

|

s

~ ko

‹ l {

q w lmp

u

v}l {kl p

qu lm{

u vp{v

q

| l’n

s vpv{

s

~ƒ Œ

qu {ko{

y l

|

q

{vpl{ko{

q

|lkom

Γ = S n

i=1 Γ α g i

y

v{k

αg i = δ i

ƒ Œ

xu {kl

utqu l{kl p

qu lm{

u vp{v

q

|

qr o |

q

|

 k

qtq zl|l

qx m p

q p~p

s

l

u ∈ H 1 (Γ α , V )

vm {kl pqp~psl

cores(u)

x|v—xls~

zv

‹ l| }~

cores(u)(g) = X n i=1

g −1 i u(g i gg −1 j(i) )

rqu

g ∈ Γ

ƒ £qt}v|v|z yv{k {kl l’nsvpv{ wlmpuvn{vq| qr{kl ton

conj α

~vlswm{kl

u lm

xs {ƒ

2

x nn

q ml|

qy {ko{

Γ = Γ 1 (N )

‚ulmnƒ

Γ = Γ 0 (N )

Šƒ Œquonqmv{v‹lv|{lzlu

n

‡{kl

ÐÛÐÖéÐÑÎÕÖÑ

T n

vm

P

α T α

‡

y kl

u l{klm

xt ux

|m{k

uqx

zkom~m{l

t qru ln

u lml|{o



{v

‹ lm

qr {kl

wqx }

s lp

q

ml{m

Γ\∆ n

rqu{klml{

n

qrto{uvplm

¡ a b

c d

¢ ∈ Mat 2 (Z) 6=0

qr w l{l

ut v|o|{

n

mxpk {ko{

¡ a b

c d

¢ ≡ ( 1 ∗ 0 ∗ ) mod N

‚ulmnƒ

¡ a b

c d

¢ ≡ ( ∗ ∗ 0 ∗ ) mod N

Šƒ

Œ

qu on

u v

t

l

p

q|lkom

T p = T α

y

v{k

α = ¡ 1 0

0 p

¢

ƒ “

r

Γ = Γ 1 (N )

o|w{klv|{lzlu

d

vm

p

q n

u v

t l{

q

N

‡{kl èÔÎòÖÚè ÖéÐÑÎÕÖÑ

hdi

vm

T α

rqu

o|~

t o{

u

α ∈ SL 2 (Z)

ykqml

u l

wx p{v

q

|

tqwxsq

N

vm

¡ d −1 0 0 d

¢

ƒ jkl

w vo

tq

|

w q nl

u o{

qu zv

‹ lm o z

uqx n op{v

q

|

}~

(Z/N Z)

‚yv{k

−1

op{v|z {uv‹voss~Šƒ “r {kl sl‹ls vm

N M

yv{k

(N, M ) = 1

‡

{kl|

y

l po| mlno

u o{l{kl

w vo

tq

|

w q nl

u o{

qu v|{

q {

yq no

u

{m

hdi = hdi M × hdi N ,

Références

Documents relatifs

Berkovich’s strategy is based on the fact that in the case of a local non-Archimedean ground field with non-trivial absolute value, the Bruhat-Tits building of the group PGL(V)

Here, we have explored the range of parameters to quantify both the off-centring of the circumbinary disc with respect to the centre of mass of the system, and the average inner

In Section 3 we introduce the modular symbols formalism extended to subgroups of finite index in Hecke triangle groups, and give a description in terms of Manin symbols.. An

– The goal of this paper is to give an explicit formula for the -adic cohomology of period domains over finite fields for arbitrary reductive groups.. The result is a generalisation

3. The difficult task of showing o^) / 0 is easier if the cycle z is chosen carefully. With this in mind, this paper focuses on cycles supported in the fibers of a dominant morphism,

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

After recalling the basic facts about the local models for symplectic groups, we prove two results, Proposition 6.5 (on the integrality properties of differentials) and Lemma 6.7

In this article, we express the zero variance change of measure, and develop approximations of the zero-variance importance sampling in the setting of a continuous-time Markov