• Aucun résultat trouvé

Role of heterogeneities in jointing (fracturing) of geological media: Numerical analysis of fracture mechanisms

N/A
N/A
Protected

Academic year: 2021

Partager "Role of heterogeneities in jointing (fracturing) of geological media: Numerical analysis of fracture mechanisms"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: hal-01983594

https://hal.archives-ouvertes.fr/hal-01983594

Submitted on 28 Aug 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

To cite this version:

Alexandre Chemenda, Julien Ambre, Junchao Chen, Jinyang Fan, Jean-Pierre Petit, et al.. Role of

heterogeneities in jointing (fracturing) of geological media: Numerical analysis of fracture mechanisms.

Comptes Rendus Géoscience, Elsevier Masson, 2018, 350 (8), pp.452-463. �10.1016/j.crte.2018.06.009�.

�hal-01983594�

(2)

media:

Numerical

analysis

of

fracture

mechanisms

Alexandre

I.

Chemenda

a,

*

,

Julien

Ambre

a

,

Junchao

Chen

a,b

,

Jinyang

Fan

b

,

Jean-Pierre

Petit

c

,

Deyi

Jiang

b

a

UniversityofCoˆted’Azur,CNRS,OCA,IRD,Ge´oazur,250,rueAlbert-Einstein,SophiaAntipolis,06560Valbonne,France b

StateKeyLaboratoryfortheCoalMineDisasterDynamicsandControls,ChongqingUniversity,400044Chongqing,China c

UniversityofMontpellier,Ge´osciencesMontpellier,placeEuge`ne-Bataillon,34095Montpelliercedex05,France

1. Introduction

Therearetwoprincipaltypesoffracturesingeological media and notably in sedimentary basins (reservoirs), joints and shear fractures.The principal difference bet-ween them is that shear fractures accommodate shear displacements,whereasalongjointsonlynormaltojoints displacements arepossible.Another difference is in the orientationof fractures compared tothe acting (during fracturing)stressdirections.Jointsareparalleltothemost compressivestress

s

1andnormaltotheleastcompressive

orthemosttensilestress

s

3.Jointsthusmakeangle

c

=08

with

s

1 and typically are organized in regular parallel

(tabular)setsororthogonalnetworks.Shearfracturesare oblique toboth

s

1 and

s

3 andtypically formconjugate

networks,orientedto

s

1atangles

c

=108–308.Allfracture

typesareparalleltotheintermediateprincipalstress

s

2.

1.1. Theoreticalbackgroundoffractureformation

The mechanism of fracture formation remains not completelyclear.Thisisparticularlytrueforjoints,which isreflectedindifferentnamesusedforthisfracturetype: tensile, extension, opening mode or cleavage fractures. Most commonly, they are believed to form (or more exactly,topropagatefromapreexistingflaw)accordingto Mode-Imechanism(Fig.1)stemmingfromLinearElastic FractureMechanics(LEFM),(e.g.,Lawn,1993). According-ly, shear fractures are believed to be Mode-II fractures (Fig.1).Fromatheoreticalpointofview,LEFMisapplicable

ARTICLE INFO Articlehistory: Received29June2018

Acceptedafterrevision29June2018 Availableonline6September2018 HandledbyVincentCourtillot Keywords: Fracture Damage Joints Finite-differencemodeling Plumose Plasticitytheory AMScodes:65,74,86 ABSTRACT

Fracture process is investigated using finite-difference simulations with a new constitutivemodel.Itisshownthatbothgeometryandfracturemechanismitselfdepend onthepreexistingheterogeneitiesthatarestressconcentrators.Inthebrittleregime(low pressure,P),Mode-Ifracturespropagatenormaltotheleaststresss3fromtheimposed

weakzones.AthighP,sheardeformationbandsareformedobliquetos3.Atintermediate

valuesofP,thefractureprocessinvolvesbothshearbandingandtensilecrackingand resultsintheinitiationandpropagationofpuredilationbands.Thepropagatingbandtip undulates,reactingonthefailuremechanismchanges,butitsglobalorientationisnormal tos3.Thes3-normalfracturesarejoints.Therearethustwotypesofjointsresultingfrom

Mode-Icrackinganddilationbanding,respectively.Theobtainednumericalresultsarein goodagreementwithandexplaintheresultsfromprevioussimilarexperimentalstudy.

C 2018PublishedbyElsevierMassonSASonbehalfofAcade´miedessciences.Thisisan

openaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/ by-nc-nd/4.0/).

* Correspondingauthor.

E-mailaddress:chem@geoazur.unice.fr(A.I.Chemenda).

https://doi.org/10.1016/j.crte.2018.06.009

1631-0713/C 2018PublishedbyElsevierMassonSASonbehalfofAcade´miedessciences.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense

(3)

only when thesize ofthe near tipzone (processzone) undergoinginelastic(irreversible)deformationordamage issmallcomparedtoothergeometricdimensionsofthe problem (fracture length, size of thedeformingobject). Thisassumptioncanholdonlyatarelativelylowpressure P(orstresslevel),whendeformationandfractureoccurin apurelybrittleregime.However,thisiscertainlynotthe caseintheexperimentaltestsatarelativelyhighP,when damage(revealedbyacousticemissions)involves practi-callytheentiredeformingspecimenpriortothefracture (e.g.,Fortinetal.,2006).Inthis‘‘ductile’’regime,thefailure occursvialocalizationoftheinitiallydistributeddamage (inelasticdeformation)withinanarrowbandthatthencan becomeafracture.Thetheoreticalframeworkfor address-ing the mechanical instability resulting in deformation localizationconstitutesthebifurcationtheoryappliedto elasto-plasticity models (Chemenda, 2007; Issen and Rudnicki, 2000; Rudnicki and Rice, 1975; Vardoulakis andSulem,1995).Thistheoryiscompletelydifferentfrom LEFM (which does not explicitly take into account the inelasticdeformation),andexplainsverywellthe forma-tion ofvarioustypes ofsheardeformation bandsatthe origin of shear fractures. However, the prediction of dilation banding (which can be at the origin of joints, see below)does nogostraightforward fromthis theory whenrealisticmaterialparameters(notablythedilatancy factor)areadopted.

1.2. Insightsfromexperimentalstudies

Thetransitionfromverybrittleto‘‘ductile’’fracturing withincreasingpressurehasbeenobservedinnumerous experimental tests (e.g., Be´suelle et al., 2000; Fortin et al., 2006;Wong et al.,1997)including the conven-tional (axisymmetric) extension tests on specimens made of Granular Rock Analogue Material (GRAM), which behavesas real rocks,butis muchweakerthan hard rocks (Nguyen et al., 2011). The dog-bone and cylindrical specimens are first loaded hydrostatically intheseteststoagivenconfiningpressurePthatisequal to

s

1 and

s

2, andthenunloaded in theaxialdirection

that becomes

s

3, P being maintained constant. With

increasingP, specimen fracture occursat progressively smaller j

s

3j (which is negative),but the failure plane

orientation does not change until

s

3 reaches

approxi-mately zero (Fig. 2a, b): this plane is parallel to

s

1

(

c

08), Fig. 2b, which corresponds to jointing. With further Pincrease,

c

increases(Fig. 2b),which corres-pondstoshearfracturing.

Althoughtheorientationoffailureplanesinthestress spaceinGRAMexperimentsis thesame(

c

08)within thePrangeofjointsformation,the‘‘ductility’’ofthefailure processclearlyincreaseswithP,whichisexpressedinthe morphologyoftheformingfracturesurfaces(Chemenda etal.,2011a).AtlowP,thesesurfacesarerathersmooth, whileathighP,theyarerough,withtherugositiesbeing organizedinniceplumosefeatures(Fig.2c)sotypicalfor naturaljoints(e.g.,Bahat,1991;PollardandAydin,1988; Savalli and Engelder, 2005; Woodworth, 1896). The damage/failure process occurs under these pressures within a band of a finite thickness comparable to the plumoserelief.Thisprocessisthereforeratherductileand isnotlimitedtotheopeningofa‘‘zero’’-thicknessplane, whichwouldbethecase duringMode-Ifracturing.SEM observations of the failure zones forming at high P in GRAM specimens reveal a several grains-thick irregular wavybandofdamagedmaterialwithincreasedporosity (Chemenda et al., 2011a). This

s

3-normal band can be

called a pure dilation band. The conclusion made by

Chemendaetal.(2011a,b)isthatthejointingmechanism changes from Mode-I cracking to dilatancy/dilation bandingwithincreasingP.Withfurtherpressureincrease, failureoccursviatheformationofshear-dilatant deforma-tionbands.

Thedilationbandingclearlyinvolvesductile,butalso tensiledamage/failuremechanisms.Thisisthereasonwhy the dilatancy banding could not be correctly predicted theoreticallyfromdeformationbifurcationanalysiswithin anelasto-plasticityframeworkasmentionedabove.Inthis paper,weinvestigatethisprocessnumericallyby consid-ering both brittle-tensile (BT) and shear-ductile (SD) failure/damagemechanisms.

(4)

2. Constitutiveformulation

The adequate constitutive formulation is the most importantingredientintheoreticalanalysisandnumerical modelingofinelasticdeformation(damage)andfailureof geomaterials.Rockmechanicsexperimentalstudieswith differentloadingconfigurations(considerablyaccelerated recently(e.g.,Ingrahamet al.,2013; Li etal., 2018;Ma etal.,2017),clearlyshowtheimportanceoftheloading type (controlled by the Lode angle), which affects the mechanicalresponseofrocks.Anewconstitutivemodel has been proposed based on these experimental data (ChemendaandMas,2016).Themodelincludesa three-invariantyieldfunction

t



t

s

Þ 1 2 1þcosð3

u

ÞþRð

s

Þ 1 nð1cosð3

u

ÞÞ h i  n (1) andtherelatedplasticpotential(nistheconstantscalar thatcantake valuesfrom 0.1to1).The bifurcation analysiswithintheframeworkofthisconstitutivemodel ledtothepredictionsofrockfailureregimesthatarein goodagreementwiththeexperimentaldata,andthatare differentfromthepredictionsmadebasedontheclassical 2-invariant theories like that of Drucker–Prager (ChemendaandMas,2016).Here

t

isvonMises’sstress; R¼

t

c=

t

e;

t

c and

t

earefunctionsofthemean stress

s

definedfromtheconventionalcompressionandextension tests,respectively;

u

istheLodeangle.Thisconstitutive model is rather complicated and has not been imple-mented into a numerical code as yet. For this reason, we use here much simpler, but also 3-invariant Coulomb-typetheory.Theyieldfunctionistakeninthe form

F¼A

s

1

m

c

s

3kc (2)

Itdoesnotinclude

s

2,whichisasimplificationofreality

thatcanbejustifiedbytheexperimentalfactthattherock propertiesdependmuchstrongeron

s

1and

s

3thanon

s

2

(e.g.,Ingrahametal.,2013; Maetal.,2017).Theplastic potentialfunctionreads

G¼A

s

1

m

b

s

3 (3)

where

m

c,kc,

m

barethefriction,cohesionanddilatancy

parameters(notcoefficients);Atakesvalue0or1forthe brittle-tensile(BT)andshearductile(SD)failure/damage mechanisms,respectively.Theinitialvaluesof

m

candkcas

wellasofthetensilestrength

s

t(

m

c0,k0cand

s

0t)aredefined from theGRAM experimental data(from the simplified

s

3(

s

1)curveinFig.3a)tobe

m

0 c¼1;A¼0; kc¼

s

t if

s

3¼

s

t

m

0 c¼2; A¼1; k0c¼0:65MPa if

s

3>

s

t; (4) ThemuchhigherbrittlenessoftheBT(thanthatofthe SD) mechanism is taken into account in the following softeningrules:

s

s

0t 1

e

t

e

0 t   ;kc¼k0 c 1

e

e

0   ;

m

m

0cþ

m

end c 

m

0 c  

e

e

0 (5) where

s

0 t =0.07MPa;

e

0t=0.5103 and

e

0=1102 (

e

0

t <<

e

0);

m

endc =1.7,

e

t¼Rd

e

p3 and

e

e

tþRd

e

p1 (the superscript‘‘p’’standsforplasticorinelastic).Notethat

s

1

in (5) evolves only with the accumulated inelastic extensionstrain,whichisasumofstrainsresultingfrom BTandSDdeformations.Thisisthewayhowbothfailure mechanismsare coupled.According tothis formulation, thetensilestrengthdecreasesevenduringSDdeformation alongwiththecohesiondecrease,meaningthatthesetwo parametersarerelated,bothcharacterizingthe pressure-independentpartofthestrength.Accordingtotheresults oftheprocessingofalargeexperimentaldataset(Masand Chemenda, 2015), the dilatancy parameter

b

c evolves

(reduces)with

e

inthesamewayas

m

c,seeEq.(5).

Theelasticpropertiesofthemodelbothbeforeandafter reaching the yield condition are described by Hooke’s equations with Poisson’s ratio

n

=0.25 and Young’s modulus E=6.7108Pa, characterizing GRAM material

(Nguyenetal.,2011).

The formulated constitutive model has been imple-mentedintothefinite-differencedynamictime-matching explicit code Flac3D (Itasca, 2012) used for numerical modelinginthiswork.Numeroussimulationswerecarried outinquasi-static,large-strainmodewithdifferentmodel parameters.Belowwereportrepresentativeresults.

Fig.2. Resultsfromconventional(axisymmetric)extensiontestsofGranularRockAnalogueMaterial,GRAM(fromChemendaetal.,2011a).(a)Minimum nominalstresss3atfracturing/rupturevsconfiningpressureors1.(b)Anglecbetweentheruptureplaneands1directionvss1atfailure.(c)Surfaceofthe fracture(openedrupturezone)formedats1=s2=0.6MPa.Theinitiationpoint(zone)oftheplumosemorphologyisduetothestressconcentrationcaused bytherigidsupportoftheLVDTgageattachedtothespecimen(tothejacket)atthatlocation.

(5)

3. Setupofnumericalmodeling

Themodelingsetup(Fig.3b)istwo-dimensionalinthe sensethatthemodelthicknessinthe

s

2-directionisonly

onenumericalzone(or0.25mm),butthestrainrateinthis directionis notzero(seebelow).Themodelisfirst pre-stressedtotheinitialstresses

s

1=

s

2andtoasufficiently

large

s

3forthe stress state tobeabovethe initialyield

envelopeinFig.3a(thiscorrespondstothepurelyelastic mechanicalstate).Then,

s

3isprogressivelydecreasedby

applyingvelocitiesV3tothe

s

3-normalmodelboundaries,

whilemaintainingtheinitialvaluesof

s

1and

s

2byapplying

velocities V1 and V2 as shown in Fig. 3b. In reality,

maintainedandmonitoredareaveragesovereach bound-ary or nominal stresses as it is typically done in the experimentaltests.SinceV2isnotzero,themodelsarenot

plane-strain. 4. Results

We reporthere theresultscorrespondingtothefour pointsshownontheyieldenvelope

s

3(

s

1)inFig.3a.The

firstpoint(point1,

s

1=0.3MPa;

s

3=

s

0t =0.07MPa)is locatedinthemiddleoftheBTsegmentoftheenvelope. Point2(

s

1=0.54MPa;

s

3=0.055MPa)islocatedonthe

SDsegmentclosetothetransitiontotheBTsegment.Point 3 (

s

1=0.6MPa;

s

3=0.025MPa)is on theSD segment

close to

s

3=0 (

s

3 < 0), and point 4 (

s

1=0.66MPa;

s

3=5103Pa)isalsoontheSDsegmentwith

s

3>0.

4.1. Point1inFig.3a,

s

1=

s

2=0.3MPa

4.1.1. Homogeneousmodel

Inthiscase,thetensilefailureoccursexactlyat(along) oneofthe

s

3-normalendsofthemodelduetotheend

effect. Although very small, this effect exists in the

numerical models, and occurs where the extension is appliedtothemodel,i.e.atthe

s

3-normalboundaries.

4.1.2. ‘‘Homogeneouslyheterogeneous’’modelwithsmall variationsofthePoisson’sratio

n

TheGaussdistributionof

n

isappliedinthismodelwith ameanvalueof0.25andastandarddeviationof0.02.This leads to a non-uniform stress distribution during the loading, which eliminates the boundary (end) affects because the stress perturbations within the model are largerthanthose(verysmall)causedbytheseeffects.

Fig.4showstheevolutionoffracturing,whichoccurs exclusivelyaccordingtotheBT mechanism asexpected (Fig.4e);theSDmechanismwasnotactivatedatall.The formedtensilefracturesconstituteagenerallynormalto

s

3but ratherirregularset.Thisis becausethemodelis

almosthomogeneousandthereforefracturingisinitiated simultaneouslyindifferentpointsresultinginstressdrops and perturbations of the stress field. Therefore, the initiated fracturespropagatein theheterogeneousfield, which explains their irregular geometry. To avoid such multiple stress perturbations, in the following model a smallweakzoneisintroduced.

4.1.3. Modelwithweakzone

ThiszoneisshowninFig.3bandcanberecognizedin

Fig.5a.Thestrengthparametersinthiszonearereduced, asindicatedinthecaptionofFig.5;theotherparameters arethesameasintherestofthemodel.Onecanseethat thefracturingoccursinthiscaseinacompletelydifferent waycomparedtothepreviousmodelinFig.4.Thereis onlyonefracturethatisinitiatedattheweakzoneand propagatesstrictlynormalto

s

3.Propagationoccursdue

to the tensile stress concentration at the fracture tip, whereitreaches

s

t(Fig.6b).ThisMode-I-type

propaga-tionoccursexclusivelyduetotheBTfailuremechanism,

Fig.3.(a)Initialyieldsurface/envelopeorfunctionusedinthenumericalsimulations(simplifiedplotinFig.2a).Points1to4correspondtothestressstates appliedinthenumericalmodels.(b)Setupofnumericalmodeling.Themodelswerepre-stressedtotheinitialstressess1ands2(s2=s1)correspondingto points1to4inFig.3a,andtoasufficientlylarges3forthemodeltoremaininapurelyelasticstate.Thens3wasprogressivelydecreased(byapplying velocitiesV3tothes3-normalboundaries),whilemaintainingtheinitialvaluesofs1ands2byapplyingvelocitiesV1andV2asshowninthisfigure.The modelsizeis510cm(200400numericalzones)inthes1ands3directions,andonenumericalzone,ins2direction.Totakeintoaccountinthemodels heterogeneitiestypicalforrealrocks,twoscalepropertyheterogeneitieswereintroducedindifferentmodels(indicatedinthecaptionsofthefigures showingthecorrespondingnumericalresults):(1)GaussdistributioninthenumericalzonesofthePoisson’sratiowithameanvalueof0.25andstandard deviationof0.02;(2)aweakzoneofalargerscale(includingseveralnumericalzones)showninthisfigure.Thestrengthinthiszoneisindicatedinthe captionsofthefigurespresentingthenumericalresults.

(6)

SDmechanismbeingoperatedonlywithintheweakzone (Figs.6c,d).

4.2. Point2inFig.3a,

s

1=

s

2=0.54MPa

4.2.1. Homogeneousmodel

A dense network of conjugate shear bands is first initiatedthroughouttheentiremodel(Fig.7a).Then,most initialbandsdie,whiletheremainingonesaccommodate

growinginelasticdeformation.Thisprocessresultsinafew principal (well-developed)shear bands(Fig.7c). Oneof themthenistransferredintothree-segmentfracturewhen theBDmechanismcomesinplay(Fig.7d,e).

4.2.2. Homogeneouslyheterogeneousmodel

Beforefracturing,thismodelundergoesdistributedBT, butmostlySDdistributeddamage(inelasticdeformation),

Fig. 8a. Then, an oblique fracture is initiated and

Fig.5.Evolutionoftheep

patterninthemodelwithGaussianndistributionandaweakzonewiththereducedinitialstrengthparameters:st=0.03MPa; kc=0.1MPa.Theinitialstressesandboundaryconditionsarethesameasinthepreviousmodel.

Fig.4.(a–d)Evolutionoftheinelasticstrain,ep,patternduringverticalunloading(s

3reduction)ofthemodelatconstants2=s1=0.3MPa,correspondingto point1inFig.3a.Poisson’srationvariesinthenumericalzonesaccordingtoGaussdistribution.(e)Mechanicalstate(elasticandelastic-plastic),damage/ failureorinelasticdeformationmechanism(tensileorshear)anditshistoryforthedeformationstagein(d).Differentcolorsinthisimagecorrespondto differentdamage/failuremechanismsandtheirsuccession.Forexample,‘‘tensile-n(nmeansnow),shear-p,tensile-p(pmeanspast)’’indicatesthatthe correspondingzonesundergotensiledamageatthestageshown,buttheyalreadyunderwentshearandtensiledamageduringthepreviousdeformation stages(inthepast).Zonesindicatedas‘‘elastic’’didnotundergoinelasticstrainingatall.

(7)

propagatesduetobothBTandSDmechanisms(Fig.8b–d). Theobliquefracturingprocessisfollowedbyanalmost

s

3

-normalone(Fig.7d). 4.2.3. Modelwithweakzone

The introduction of the weak zone again changes radically thefractureprocessandgeometry(Fig.9).The fracturepropagatingfromtheweakzonedoesnotfollow exactly a linear trajectory in this case. Its tip slightly undulates during propagation, resulting in globally

s

3

-normal macro fracture orientation, whose formation involves both BT and SD mechanisms(Fig. 9). One can recognizeboththeprocess(bluedots)anddamage(green dots)zonesonthemapsofdamagedistributioninFig.9

(thesecondrowinthisfigure). 4.3. Point3inFig.3a,

s

1=

s

2=0.6MPa

4.3.1. Homogeneousmodel

Thedeformationpatterninthiscaseissimilartothatin

Fig.7,whichisexplainedbythefactthat,inbothcases,the imposedstressstatescorrespondtotheSDdomain. 4.3.2. Modelwithweakzone(Fig.10)

TheresultissimilartothatinFig.9,buttheprocessand damagezonesrelatedtothefracture(ormoreexactlyto thedeformationband)propagationaremuchlarger.They developexclusivelythroughanSDmechanismandinvolve almosttheentiremodel(thelast rowinFig.10). Atthe band/fracture tip,

s

3 istensile. Itsmaximummagnitude

reaches around0.06MPa, which is somewhat less than

s

0

t=0.07MPa. The nominal stress (which would be

measuredatthemodel(sample)endintheexperimental test)is

s

3=0.0011MPa,whichismuchlessinmagnitude

than

s

0 t.

Within the band, both BT and SD mechanisms are active.Asinthepreviouscase(Fig.9),thefracture/bandtip undulatesduring propagation. Thistime, thereasonfor this is clear from the octahedral strain rate ˙

g

and

s

t

patternsinFig.10.Duringgenerally

s

3-normalbandtip

propagation,theinitiationofobliqueshearbandsoccurs. Thefracturetiptendstofollowthese(oblique)directions alternately,keepinggeneraltrajectorynormalto

s

3.Inthe

nextmodel,itistheobliquedirectionthatisdefinitively followedbythedeformationband.

4.4. Point4inFig.3b,

s

1=

s

2=0.66MPa

4.4.1. Modelwithweakzone

Thesameweakzoneasinthepreviousmodelleadsin thiscasetotheinitiationofthe

s

3-normalextensionband

(that can hardly be recognized in Fig. 11) and of two conjugateshear bands (Fig.11a), thelatter propagating muchfasterthantheformer.Thenoneshearbanddiesand theotheronecutstheentiremodelandbecomesashear fracture(Fig.11e).Onecanseealargeprocesszoneinfront ofthepropagatingband(thesecondrowinFigs.11b–d). 5. Concludingdiscussion

Thereportedresultsshowthatnotonlythegeometrical attributes of fracture in geomaterials, but the fracture mechanism itself strongly depend on the presence of heterogeneities. Joints,which arebelievedtobeMode-I

Fig.6.Theinelasticstrainep

(a),theleaststresss3(b),andthemechanicalstate(c)patternsatthesameevolutionarystageofthemodelinFig.5;(d) correspondstothelaststageoffracturepropagationinFig.5e.

(8)

fractures, are supposed to form exclusively when the tensilestress

s

3reachesthetensilestrength

s

t(ormore

exactly,whenthestressintensityfactorreachesacritical value). Thisconceptworks fairlywellfor purelytensile fractures forming according to the brittle-tensile (BT) deformation/fracture mechanism. This mechanism is possible at a relatively low far-field stress level (or pressure P), when the inelastic process zone near the fracturetipisverysmallasinFigs.5and6.However,when P is high enough (comparedto

s

0

t), joints can form at j

s

3j<<

s

0t (Figs.8and9).Here

s

3isnotthestressatthe

micro-(granular)scale,butthe‘‘far-field’’stressappliedto theboundariesoftheobject(specimenorstructure).This corresponds to the nominal stress

s

3, which can be

measuredexperimentallyinthelaboratory.Atthe micro-scale,j

s

3jistensile,butlowerthan

s

0t.Purelytensile,

s

3

-normal fractures cannot propagate in this case. The damage (inelastic deformation) involves a wide zone (almost the entire model)emanating from the fracture front(Figs.10b–d).Thefailureofthematerialoccursinthis zoneaccordingtoashearductile(SD)mechanism,leading totheinitiationofobliqueshearbands.Thefracturetip tendstofollow theseobliquedirectionsalternately, but keeps general

s

3-normal orientation because of the

involvementoftheBTmechanisminthefailureprocess. Asaresult,thefracturezoneisnotlinear.Itisthickerand more heterogeneous than at lower P.This zone corres-pondstothedilation bands(embryonicjoints)obtained

Fig.7.Evolutionoftheep

(9)

experimentallyinChemendaetal.(2011a).Thewallsof theopenedbandcannotbesmooth(asinthecaseofthe ‘‘ideal’’Mode-Ifracture)andshouldbeartraces (irregular-ities) reflecting complex brittle-ductile failure process.

These traces are likely at the origin of a plumose morphologyofthewallsofnatural(aswellas experimen-tal,Fig.2c)joints,whichisusuallyinterpretedasaresultof mixedmode (IandIII, Fig.1)fracturingin thesenseof

Fig.8.Evolutionoftheep

andmechanicalstatepatternsinthemodelwithaGaussiandistributionofn.Theinitialstressesandboundaryconditionsarethe sameasinthepreviousmodel(thestressstatecorrespondstopoint2inFig.3a).

(10)

Linear Elastic Fracture Mechanics, LEFM, (Pollard and Aydin,1988).Bothopeningandshearareindeedpresentin thedescribeddilatancybanding(Fig.10),butthisprocess iswellbeyondthelimitsofapplicabilityofLEFM,which doesnottakeintoaccountexplicitlyinelasticdeformation. Noteagainthatthisfracturemodeispossibleonlyinthe presenceofstressconcentrators,whichcanberelatedto theheterogeneitiesofthematerial(caseanalyzedinthis work)typicalforrocksortostructuralheterogeneitiesalso widelypresentinsedimentarybasins.These heterogenei-tiesandtherelatedfractureinitiationpointsaretypicalfor naturaljointsandwereextensivelydiscussedingeological literature(e.g.,McConaughyandEngelder,2001;Pollard andAydin,1988).InFig.2c,theinitiationpoint(zone)is

located at theplace where theLVDT gage supportwas attachedtothesample(seecaptiontothisfigure).

Thenumericalmodelsthuspredictacomplicationof thefractureprocessandrougheningofthejointsurfaces (walls)withincreasingP.Thisisintotalagreementwith the experimental results reported in Chemenda et al. (2011a).Ifthestresslevelisstillhigher,theincipientshear bands (that do not evolve beyond the initiation stage duringthedescribeddilatancybanding)areresolvedinto macroshearbandsandthenshearfractures(Fig.11).The angle

c

betweenthesefracturesand

s

1isratherhighin

thisfigurebecausetheslopeoftheyieldenvelopeadopted intheconstitutivemodelchangesabruptlyattheBT-to-SD transition(Fig.3a).Inreality,theslopechangeisgradual

Fig.9.Evolutionoftheep

andmechanicalstatepatternsinthemodelwithaGaussiandistributionofnandaweakzonewithfollowingstrengthparameters:

st=0.03MPa;kc=0.3MPa.Theinitialstressesandboundaryconditionsarethesameasinthetwopreviousmodels(thestressstatecorrespondstopoint 2inFig.3a).

(11)

Fig.10.Evolutionofep

,oftheoctahedralstrainrate ˙g(incrementofthetotaloctahedralstrainduringonecalculationstep),ofthetensilestrengthst,andof themechanicalstatepatternsinthemodelwithGaussiandistributionofnandaweakzonewithst=0.03MPa,kc=0.3MPa.Theinitialstressescorrespond topoint3inFig.3a(s2=s1=0.6MPa).Onlycentralsegmentsoftheimageswithepandg˙patternsareshown,asbeyondthesesegments,strainsandstrain ratesarenegligible.

(12)

(Fig. 2a), which shouldbe taken intoaccount in future models. The impact of structural heterogeneities and notablythoserelatedtomultilayernatureofthe sedimen-tarybasins(McConaughyandEngelder,2001)shouldbe addressedaswell.

Acknowledgements

Thispaperisinvitedintheframeoftheprizesawarded by the ‘Acade´mie des sciences’ in 2017. It has been reviewed and approved by Jean-Paul Poirier and by VincentCourtillot

References

Bahat,D.,1991.Tectono-fractography.Springer-Verlag,Berlin,354p.

Be´suelle,P.,Desrues,J.,Raynaud,S.,2000.Experimentalcharacterisation ofthelocalisationphenomenoninsideaVosgessandstoneinatriaxial cell.Int.J.Rock.Mech.Min.Sci.37(8),1223–1237.

Chemenda,A.I.,2007.Theformationofshear-band/fracturenetworks fromaconstitutiveinstability:theoryandnumericalexperiment.J. Geophys.Res.112,B11404,http://dx.doi.org/10.1029/2007JB005026. Chemenda,A.I.,Mas,D.,2016.DependenceofrockpropertiesontheLode angle:experimentaldata,constitutivemodel,andbifurcation analy-sis.J.Mech.Phys.Solids.96,477–496.

Chemenda,A.I.,Nguyen,S.-H.,Petit,J.-P.,Ambre,J.,2011a.ModeIcracking versusdilatancybanding:experimentalconstraintsonthe mecha-nismsofextensionfracturing.J.Geophys.Res.SolidEarth116,no.B4.

Chemenda,A.I.,Nguyen,Si-H.,Petit,J.-P.,Ambre,J.,2011b.Experimental evidencesoftransitionfrommodeIcrackingtodilatancybanding. Fig.11.Evolutionoftheep

andmechanicalstatepatternsinthemodelwithGaussiandistributionofnandaweakzonewithst=0.03MPa;kc=0.3MPa.The initialstressescorrespondtopoint4inFig.3a(s2=s1=0.66MPa).

(13)

conditions.RockMech.RockEng.51(5),1321–1345.

Ma,X.,Rudnicki,J.W.,Haimson,B.C.,2017.Failurecharacteristicsoftwo poroussandstonessubjectedtotruetriaxialstresses:Appliedthrough a novel loading path. J. Geophys. Res. Solid Earth122 , http:// dx.doi.org/10.1002/2016JB013637.

Mas,D.,Chemenda,A.I.,2015.Anexperimentallyconstrainedconstitutive modelforgeomaterialswithsimplefriction–dilatancyrelationin

BlackieAcademicandProfessional,NewYork,462p.

Wong,T.F.,David,C.,Zhu,W.,1997.Thetransitionfrombrittlefaultingto cataclasticflowinporoussandstones:Mechanicaldeformation.J. Geophys.Res.102(B2),3009–3025.

Woodworth,J.B.,1896.Thefracturesystemofjoints,withremarkson certaingreatfractures.BostonNatl.Hist.Proc.27,163–183.

Figure

Fig. 1. Fracture modes.
Fig. 2. Results from conventional (axisymmetric) extension tests of Granular Rock Analogue Material, GRAM (from Chemenda et al., 2011a)
Fig. 4 shows the evolution of fracturing, which occurs exclusively according to the BT mechanism as expected (Fig
Fig. 4. (a–d) Evolution of the inelastic strain, e p , pattern during vertical unloading ( s 3 reduction) of the model at constant s 2 = s 1 = 0.3 MPa, corresponding to point 1 in Fig
+3

Références

Documents relatifs

Dans cette perspective, le « retour » - spirituel mais aussi physique - en Afrique apparaît dès lors comme nécessaire pour nombre d’intellectuels antillais de cette

Et nous allons donner du temps à cette diversité et à cette réflexion parce que, dans notre métier, le temps est de plus en plus rétréci, et ce rétrécissement nous écarte

We see that the ground pattern of the EXTASIS antennas has a much larger area than the pattern of the CODALEMA stations: this confirms the more extended lateral width of the signal

Clas- sical method, Mono-TI, for CBF quantification is averaging repetitions with only one Inversion Time (TI) - the time delay between labeling and acquisition to allow the

Cost-killing processes performed at the end of the project’s pre-conceptual design phase (AVP1) [7] confirmed the objective of minimising the S/A height to

Variables related to perceptions of health, self image, substance use and experimental behaviours, which appeared to be statistically associated with the level of physical

Demographic inference using genetic data from a single individual: separating population size variation from population structure4. Mazet Olivier * , Rodr´ıguez Valcarce Willy * ,

The main results of this study indicate that the performance and safety of current low-earth orbit space manipulator operations, could be improved by working on the control