• Aucun résultat trouvé

Development of an autonomous detector for sensing of nerve agents based on functionalized silicon nanowire field-effect transistors

N/A
N/A
Protected

Academic year: 2021

Partager "Development of an autonomous detector for sensing of nerve agents based on functionalized silicon nanowire field-effect transistors"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: cea-01344114

https://hal-cea.archives-ouvertes.fr/cea-01344114

Submitted on 11 Jul 2016

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Development of an autonomous detector for sensing of nerve agents based on functionalized silicon nanowire

field-effect transistors

Simon Clavaguera, Nicolas Raoul, Alexandre Carella, Michael Delalande, Caroline Celle, Jean-Pierre Simonato

To cite this version:

Simon Clavaguera, Nicolas Raoul, Alexandre Carella, Michael Delalande, Caroline Celle, et al.. Devel- opment of an autonomous detector for sensing of nerve agents based on functionalized silicon nanowire field-effect transistors. Talanta, Elsevier, 2011, 85, pp.2542-2545. �10.1016/j.talanta.2011.08.012�.

�cea-01344114�

(2)

Development of an autonomous detector for sensing of nerve agents based on functionalized silicon nanowire field-effect transistors

SimonClavaguera, NicolasRaoul,AlexandreCarella,MichaelDelalande,CarolineCelle, Jean-PierreSimonato

CEAGrenoble/LITEN/DTNM/LCRE,17ruedesMartyrs,38054GrenobleCedex9,France

a r t i c l e i n f o

Articlehistory:

Received27May2011

Receivedinrevisedform2August2011 Accepted6August2011

Available online 12 August 2011

Keywords:

Field-effecttransistor Nerveagent Organophosphorus Sensor

Siliconnanowire Prototype

a b s t r a c t

Theabilitytodetectminutetracesofchemicalwarfareagentsismandatorybothformilitaryforcesand homelandsecurity.Variousdetectorsbasedondifferenttechnologiesareavailablebutstillsufferfrom seriousdrawbackssuchasfalsepositives.Thereisstillaneedforthedevelopmentofinnovativereliable sensors,inparticularfororganophosphorusnerveagentslikeSarin.

Wereporthereinonthefabricationofaportable,battery-operated,microprocessor-basedprototype sensorsystemrelyingonsiliconnanowirefield-effecttransistorsforthedetectionofnerveagents.Afast, supersensitiveandhighlyselectivedetectionoforganophosphorusmoleculesisreported.Theresults showalsohighselectivityincomplexmixturesandoncontaminatedmaterials.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The highlethality and the ease of manufacturing Sarin-like moleculesfrominexpensivestartingmaterialsrendernerveagents aweaponofchoiceforterroristattacks[1,2].Consequently,coun- terterrorismactivitieshavebeenstrengthenedoverthepastdecade topreventsuchpotentialthreat.Onegoalistodevelopreliable,sen- sitiveandspecificsystemsforthedetectionoforganophosphorus moleculesinurbanareasandbattlefields.Severaltechnologiesare alreadyusedandsomeothersarebeingdevelopedforthesensing ofnerveagents:IMS[3],GC/MS[4],enzymaticassays[5],carbon- nanotubebaseddevices[6,7],etc.Howeverthecost,thelimited portability,theoperationalcomplexity,thefalsepositivesandthe slowresponsetimemakemostofthesemethodsinadequateforon- sitemonitoringdevices.Asaresult,thereisstillaneedforsensitive, compact,low-cost,andlowconsumptionportabledevicesfornerve agentdetectioninthefieldofdefenceandhomelandsecurity.

Siliconnanowire-basedfield-effecttransistors(NW-FETs)are wellstudiedstructures[8–12]thatgiverisetopowerfulsensors forthedetectionofchemicalspeciesinair[13–16].ForNWsensors operatedasFETs,thesensingmechanismisthefield-gatingeffectof chargedmoleculesonthecarrierconductioninsidetheNW[17,18].

Correspondingauthors.

E-mailaddresses:alexandre.carella@cea.fr(A.Carella), jean-pierre.simonato@cea.fr(J.-P.Simonato).

Wereporthereinthedevelopmentandtheappraisalofasuper- sensitiveandfastreactingportablehybriddetectorofnerveagents basedonelectricaltransductionofachemicalreactionoccurringon thesurfaceofafunctionalizedsiliconnanowirefield-effecttransis- tor(SiNW-FET).Thisdevicebearingtheadequatefunctionalityon theSiNW-FET,apowersourceandamicrocontrollerfordatapro- cessingwasfabricatedtoinvestigateitsrelevanceforthedetection ofnerveagentsincomplexenvironments.Theexceptionalperfor- mancesoftheSiNWdevicesenablethedetectionofnerveagent simulantwithhighsensitivityandexcellentselectivity.

2. Materialsandmethods 2.1. Sensitivematerialfabrication

Aseriesofmolecularsensorswasdescribedelsewhereinwhich thereactionofaprimaryalcoholwithanorganophosphoruscom- pound(OP)initiatesanintramolecularcyclizationtogeneratea quaternaryammoniumspecieswhichcanbeidentified(Scheme1) [14,19].Inordertoinvestigatetheinfluenceofthechargegenera- tionontheelectricalpropertiesofaSiNW-FET,ananchoringunit maybeusedtolocalizethemolecularreceptorontothenanowire.

For instance, anethynyl anchoringgroupwas usedto perform covalentgraftingofthemolecularreceptorontheSi–Hsurfaceby hydrosilylation.

Compound1wassynthesizedinfourstepsstartingfromthe Kemp’s triacid with an overall yield of 40% accordingly to the 0039-9140/$seefrontmatter© 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.talanta.2011.08.012

(3)

Fig.1. (a)Imageofachipbearing36SiNW-FETsand(b)MEBimageofasingleSiNW-FET(70nmthick,200nmwideand2␮mlong).

syntheticprocedurepublishedelsewhere.FTIR,1Hand13CNMR, andmassspectrometryspectrawereinagreementwithliterature data[14].

2.2. Field-effecttransistorfabrication/portablehybriddetector fabrication/sensorarchitecture

The SiNW-FETs were fabricated from p-doped (1015Batom/cm3) silicon on insulator (SOI) wafers (Fig. 1).

SiNW-FETsof70nmthicknesswithdifferentlengthsandwidths (4m×4m; 4m×1m; 2m×1m and 2m×0.2m) wereobtainedbye-beamlithographyanddryreactiveionetch- ingsteps.Thethicknessof theSiO2 gatedielectric was140nm.

Ti/Au(10/100nm)source and draincontacts wereachieved by usinge-beamlithographyandlift-offprocess.TheSidegenerated substratewasusedasbackgateelectrode.

Thesemiconductingpartofthesensorwasfunctionalizedvia formationofacovalentgraftingthroughthermalhydrosilylationof 1ontoHF-pretreatedsubstrateinrefluxingmesitylenefor2h.We chosetodissociatetheelectronicpartofthedevicefromthesens- ingelement.Thusthetransistorchipisconnectedontoapluggable plasticcardbygoldwirebondingforsourceanddrainelectrodes andwithsilverpastedepositedontothebackgateelectrode(see Fig.2).Thenthesensingcardbearingthetransistorcanbecon- nectedtotheelectronicpartofthedevicethroughthreeelectrically activepins.

Thedrain-sourceandgate-sourcevoltages,respectivelyVDSand VGS,areappliedwhilethedrain-sourcecurrentismeasuredasa functionoftime(Fig.3).

Theprototypecanbedividedintothreemainparts:amicro- controller,a functionalizedSiNW-FETactingasthetransductor, and digital-analog converters with current-to-voltage circuits

N OH R

N R

N O R

P O

R2 R1 OPagent

X P O

R2 R1 1

R=

Scheme1.Reactivityofthemolecularreceptor1towardsOPs.Risananchoring groupusedtograftthemoleculeonaspecificsurface.

Fig.2. Pictureofthedevice.Insertshowsthefieldeffecttransistorwirebondedon acardwiththethreeconnectors.

interfacingtheFETwiththemicroprocessor.Theultralow-power mixedsignalmicrocontrollerfromTexasInstrumentswasinstalled ontheprintedcircuitboardequippedwithadigital-to-analogcon- verterandalogarithmicamplifierabletomeasureverylowcurrent overarangeofsixdecades.Thedrain-sourcecurrentIDSisthesignal processedbythemicrocontroller,and thesensor outputispro- portionaltoIDS.TheboardwasequippedwithaDC/DCconverter (±15V)thatoperatedfroma9Vbattery,andthreesecurityalert elements:aLCDtextdisplay,abuzzerandatwo-colorLED.

2.3. Sensoroperation/testdescription

Asamplingcyclebeginsbyacalibrationstepwhichconsistsin swippingdrain-sourcecurrentversusgatevoltageoftheambipo- lartransistor,inair,ataconstantbiasvoltageVDS=1V.Oncethe transfercurveisacquired,theminimumvalueoftheoff-current isidentifiedwiththecorrespondinggatevoltage.Thisparticular valueofthegatevoltagecalledV0isthenappliedtomonitorthe drain-sourcecurrentasafunctionoftime.Ithasbeenshownin previousworkthat upon reactionwithOPs the V0 potentialof

Fig.3.Schemeofthefield-effecttransistorbasedsensor.(1)Highlydopedsilicon backgateelectrode,(2)SiO2dielectric,(3)Sisemiconductingchannel,(4)drain electrode,(5)sourceelectrode,(6)monolayerofgraftedreceptors.

(4)

20 15 10 5 0 -5 -10 -15 -20

VGS (V) IDS (A

Before exposure

After DPCP exposure V0 10-11 10-10 Detection

Threshold

Fig.4.FunctionalizedSiNW-FET,IDS–VGScurvesatVDS=−1Vbefore(redsolidline) andafterDPCPexposure(blackdottedline).(Forinterpretationofthereferencesto colorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

functionalizedFETisclearlyshiftedtomorepositivegatevoltages withanaveragevariationV0 of(7.3±3.5)V[14]. Asaconse- quence,thedetectionthresholdistheIDSvaluemeasuredduring thecalibrationprocessforVGS=[V03V](i.e.2.0VinFig.4).The alarmistriggeredwhenthedrain-sourcecurrentreachesthepre- determineddetectionthreshold(i.e.7×10−11at2.0VinFig.4).

ThesensitiveareaoftheFETisthenfedbyairthatmaycontain analytes.Whentheairholdsorganophosphoruscompoundslike diphenyldichlorophosphate(DPCP),agoodsimulantofSarin,then IDSmonitoredbythedeviceraises.Ifanincreaseindrain-source currentisdetectedandifIDSexceedsthepreviouslydetermined thresholdvalue,thentheoperatoriswarnedagainstthepossible presence of organophosphorus agents. The alarm status is dis- playedontheLCDreadoutalongwithablinkingLED,andthebuzzer setoff.Acomputationalalgorithmallowstheuseofalow-power andlow-costmicrocontrollerfordataacquisitionandanalysis.The generaltestingprocedureinthepresentstudywasfirsttoacquire anIDS–VGSsweepataconstantbiasvoltage(VDS=1V).Then,after stabilizationfor30sinairwhilemonitoringcontinuouslyIDSat constantbiasvoltages(VDS=1V;VGS=V0),thesensorisexposed toanalytesfor10s.Thesensoroutput,whichisproportionaltoIDS wasprocessedandanalyzedusingEq.(1),togivetheso-calledsen- sorresponse.IDS0 isthedrainsourcecurrentbeforeexposurewhile I10DSs is thedrain-sourcecurrentaftera 10sexposuretoanalyte vapors.

Sensor response=IDS0 I10DSs

IDS0 (1)

3. Resultsanddiscussion 3.1. ExperimentswithOPsimulants

The transfer characteristics of the functionalized SiNW-FET measuredwithanAgilent4155CSemiconductorAnalyzerbefore andafterexposuretovaporsofDPCPisdepictedinFig.4.Thiscurve showsaclearshifttomorepositivegatevoltagesofthetransfer curvewhenthetransistorisexposedtoDPCPvapors.Whensuchan experimentisrealizedwiththeportablehybriddetectortypically inambientairat20Cand45%relativehumidity,asteepincrease

8 N-methylpyrrolidone 430(25C)

9 Tetrahydrofuran 190,000

10 Ethanol 58,000

11 Iso-propanol 43,000

12 Pyridine 24,000

13 Propionicacid 4300(27.6C)

14 Water(100%relativehumidity) N/A 15 Hydrogenperoxide30%inwater N/A 16 Bleach/sodiumhypochlorite5%inwater N/A 17 Dimethylmethylphosphonate(DMMP) 1100(25C)

18 Dieselexhaustgases N/A

19 Bis-dichlorophenylchlorophosphate N/A 20 Diphenylchlorophosphate(DPCP) 0.5–0.8

oftheoutputsignal(i.e.proportionaltodrain-sourcecurrent)is recorded.Itshouldbenotedthatthesensorworksinacumulative way.Indeed,thereactionbetweenthegraftedreceptorsandthe reactivemoleculesisirreversible,thusV0shiftcanbeaffectedboth bytheconcentrationofanalyteandtimeexposure.Theincreasefor a10sexposuretovaporsofDPCP(500ppb)givesasensorresponse of78accordingtoEq.(1).Ithastobenotedthatwhenexposedto dryairorairwithvariousrelativehumiditycontents(intherange 0–90%),thesignalwasfoundtobeverystable.Wedidnotobserve neitherincreasenordecreaseoftheoutputsignal(Table1).

We also used a solid simulant named bis- dichlorophenylchlorophosphatewhichexhibitsthesamechemical reactivitythanOPsandDPCP.Toourknowledge,thevaporpres- sureof thiscompound hasnever beenreported.Howeverwith regardtoitsknownphysicalproperties(meltingpoint51–56C), itseemsreasonabletoassumethatverylowcontentofmolecules are presentin thegasphase (probablyfew ppbor evenlower, andcertainlymuchlessthanforDPCP).Neverthelessthesensor givesverysatisfactoryresultsandactuallydetectstracesofsuch material(seeFig.5).

3.2. ExperimentswithDMMP

Diphenylchlorophosphate(DPCP)whichisthemainsimulant usedin thisstudy,appearsasa goodmimic forwarfare agents likeSarinorSomansinceithasbothgoodstructuralandchemical reactivity analogies with organophosphorus agents. Dimethyl- methylphosphonate(DMMP)is oftenusedas OPsimulant.This moleculeisclearlyagoodstructuralanalogtoOPsbutitschemical

Fig.5.SensorresponsecalculatedfromEq.(1)fora10sexposureat20Ctoseveral analytes.TheanalytenamesandtheirvaporpressuresarereportedinTable1.

(5)

reactivitydoesnotmimicwelltheelectrophilicbehaviourofreal nerveagents(methoxygroupisapoornucleofuge).Moreover,due tothefactthatthismoleculeiswidelyusedasaflameretardant, plasticizer,antistaticagentoradditiveforgasoline,itcancompete withthedetectionofnerveagentsincomplexenvironments.In thepresentstudy,itis remarkablethattheprototypeisableto detectveryquicklyandwithanextremesensitivityDPCP,anddoes notrespondtoastructuralanalogthatdoesnotpresentasimilar reactivitytonerveagentslikeDMMP(Fig.5).

3.3. Testswithinterferents

Fig. 5 shows the sensor response for several analytes that couldinterferewiththesensoroperation.Nosignificanteffectwas observedwhenthedetectorwasexposedtohighconcentrations oforganicsolventsandotherdomesticvolatilecompounds.The selectivityofthesensor wasthus excellenteven withcomplex atmospheressuchasvaporsofperfumes(e.g.HugoMan®perfume, Faconnable®perfume,Soupline®softener)ordieselexhaustgases (entry18).

3.4. Demonstrationinarelevantenvironment

Wepointoutthatthesensorisabletodetectthepresenceof DPCPinvariousenvironments,representativeofrealconditions.No positiveresponsewasobservedwhenthedetectorwasexposedto cottoncloth,paperorsoilparticlespollutedwithsolvents,butthe sensorsetoffalarmwhenexposedtoDPCP-taintedcloths,DPCP- taintedpaperorDPCP-pollutedsoil(1%,w/wDPCPinsand).The sensorwasalsoexposed for10stovariousmixturescomposed ofvaporsoforganicsolventsandattimesDPCP.Thealarmwas triggeredonlywhentheSarinsimulantwaspresent.

4. Conclusion

Inconclusion,thepresentstudydescribesthefabricationofa portable,battery-operated,microprocessor-basedprototypesen- sorsystem based on SiNW-FET for detection of a nerve agent simulants. An extremely rapid, sensitive and highly selective detection of a Sarin-like molecule is reported. Moreover, our resultsshowsthatDPCPcanbedistinguishamongotherrelated

compounds,incomplexmixturesoroncontaminated materials.

Wehavenowdevelopedmoresensitivedevices[18]thatwillbe integratedinthesameprototype,whichshouldleadtoafurther increaseinperformances.Toourknowledge,thisapproachrepre- sentsthefirstfullyintegratedportabledeviceforthedetectionof Sarin-likemoleculesbasedonnanotechnologies.

Acknowledgement

WethankDr.StéphaneLenfantandDr.DominiqueVuillaumefor thefabricationofSiNW-FETandforhelpfuldiscussions.Thiswork wassupportedinpartbytheprojectCAMIGAZANR-10-CSOSG-003.

References

[1] J.A.Romano,B.J.Lukey,H.Salem,ChemicalWarfareAgents:Chemistry,Phar- macology,Toxicology,andTherapeutics,2nded.,CRCPressInc.,BocaRaton, FL,2007.

[2]A.T.Tu,ToxinRev.26(2007)231–274.

[3]M.A.Makinen,O.A. Anttalainen,M.E.T.Sillanpaaa, Anal.Chem.82(2010) 9594–9600.

[4]W.E.Steiner,S.J.Klopsch,W.A.English,B.H.Clowers,H.H.Hill,Anal.Chem.77 (2005)4792–4799.

[5]M.Pohanka,J.Z.Karasova,K.Kuca,J.Pikula,O.Holas,J.Korabecny,J.Cabal, Talanta81(2010)621–624.

[6]K.Cattanach,R.D.Kulkarni,M.Kozlov,S.K.Manohar,Nanotechnology17(2006) 4123–4128.

[7]M.Delalande,S.Clavaguera,M.Toure,A.Carella,S.Lenfant,D.Deresmes,D.

Vuillaume,J.-P.Simonato,Chem.Commun.47(2011)6048–6050.

[8]Y. Cui, Z.Zhong,D. Wang, W.U.Wang, C.M.Lieber,Nano Lett.3(2003) 149–152.

[9]N.S.Ramgir,Y.Yang,M.Zacharias,Small6(2010)1705–1722.

[10] C. Celle,A. Carella,D. Mariolle,N.Chevalier, E.Rouviere, J.P. Simonato, Nanoscale2(2010)677–680.

[11]M.W.Shao,D.D.D.Ma,S.T.Lee,Eur.J.Inorg.Chem.27(2010)4264–4278.

[12]C.M.Lieber,Z.L.Wang,MRSBull.32(2007)99–104.

[13] Y.Engel,R.Elnathan,A.Pevzner,G.Davidi,E.Flaxer,F.Patolsky,Angew.Chem.

Int.Ed.49(2010)6830–6835.

[14]S.Clavaguera,A.Carella,L.Caillier,C.Celle,J.Pecaut,S.Lenfant,D.Vuillaume, J.P.Simonato,Angew.Chem.Int.Ed.49(2010)4063–4066.

[15] M.C. McAlpine, H. Ahmad, D. Wang, J.R. Heath, Nat. Mater. 6 (2007)379.

[16]K.Skucha,Z.Fan,K.Jeon,A.Javey,B.Boser,Sens.ActuatorsB145(2011) 232–238.

[17] Y.Cui,Q.Q.Wei,H.K.Park,C.M.Lieber,Science293(2001)1289–1292.

[18] V.Passi,F.Ravaux,E.Dubois,S.Clavaguera,A.Carella,C.Celle,J.-P.Simonato, L.Silvestri,S.Reggiani,J.-P.Raskin,D.Vuillaume,IEEEElectronDeviceLett.32 (2011)976–978.

[19] T.J.Dale,J.Rebek,J.Am.Chem.Soc.128(2006)4500–4501.

Références

Documents relatifs

These are the demonstration of perovskite based field effect transistors (FET) operational at room temperature and the fabrication of perovskite solar cells under air

For the further analysis of our data we will define a surface potential Φ of the graphene channel (position x 4 in the circuit diagram in figure 6) as the energy of the Dirac

Quantum transport, non-equilibrium Green’s function formalism, electron-phonon interactions, two-dimensional materials, tunnel field effect transistors, van der

Electrical detection of dengue virus (DENV) DNA oligomer using silicon nanowire biosensor with novel molecular gate control. Ultrasensitive Silicon Nanowire for Real-World Gas

Nerve Agent Sensors Sub-ppm Detection of Nerve Agents Using Chemically Functionalized Silicon Nanorib- bon Field-Effect Transistors**... Nerve Agent Sensors

Phthalocyanines and related molecules have been used in molecular FET structures as sensing materials for various gases. Dynamic procedures using short exposure periods led to the

A strong correlation between channel length and transistor parameters (OFF current, ON current, ON-to-OFF ratio and subthreshold slope) were highlighted. According to these

(a) Simulated transfer characteristics of the trap-free BC and TC OFETs with two different injection barrier heights, (b) simulated transfer curves with exponential traps.