• Aucun résultat trouvé

A note on some concentration inequalities under a non-standard assumption

N/A
N/A
Protected

Academic year: 2021

Partager "A note on some concentration inequalities under a non-standard assumption"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: hal-00419741

https://hal.archives-ouvertes.fr/hal-00419741v2

Preprint submitted on 19 Jun 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires

A note on some concentration inequalities under a non-standard assumption

Christophe Chesneau, Jan Bulla, André Sesboüé

To cite this version:

Christophe Chesneau, Jan Bulla, André Sesboüé. A note on some concentration inequalities under a non-standard assumption. 2010. �hal-00419741v2�

(2)

A note on some concentration inequalities under a non-standard assumption

Jan Bulla, Christophe Chesneau & Andr´e Sesbo¨u´e

19 June 2010

Abstract

We determine two bounds for the tail probability for a sum ofnindependent random variables. Our assumption on these variables is non-standard: we suppose that they have moments of order δ for some δ [1,2). Numerical examples illustrate the theoretical results.

1 Introduction

Letn be a positive integer and (Yi)i∈{1,...,n} benindependent random variables. For any t >0, we wish to determine the smallestpn(t) satisfying

P

n

X

i=1

Yit

!

pn(t). (1)

To reach this aim, numerous inequalities exist: Markov’s inequality, Tchebychev’s in- equality, Chernoff’s inequality, Berry-Esseen’s inequality, Bernstein’s inequality, Mac- Diarmid’s inequality, Fuk-Nagaev’s inequality, . . . See, e.g., [1, 2, 3, 4] and the references therein for details.

In this note, we investigate pn(t) in a non-standard case, as we merely suppose that supi∈{1,...,n}E |Yi|δ

exists for someδ[1,2). That is, we have no information on the existence of the variance and thus most of the common inequalities cannot be applied.

We determine two bounds: the first one is a direct consequence of Markov’s inequality and von Bahr-Esseen’s inequality (see Lemma 1 below), and the second one, which is more technical and original, offers a suitable alternative. Considering the Pareto distribution, we compare the quality of these bounds via a numerical study.

The note is organized as follows. Section 2 presents the result and the proof. Section 3 provides an application.

Mathematics Subject Classifications: 60E15.

Laboratoire de Math´ematiques Nicolas Oresme, Universit´e de Caen Basse-Normandie, Cam- pus II, Science 3, 14032 Caen, France, chesneau@math.unicaen.fr, andre.sesboue@math.unicaen.fr, bulla@math.unicaen.fr.

(3)

2 Results

Theorem 1. Let n be a positive integer and (Yi)i∈{1,...,n} be n independent random variables such that, for any i∈ {1, . . . , n},

E(Yi) = 0,

E |Yi|δ

exists for someδ[1,2) (we have no a priori information on the exis- tence of a moment of order2 or it does not exist).

Then, for anyt >0, we have the two following bounds.

Bound 1:

P

n

X

i=1

Yit

!

(2n−1)t−δ

n

X

i=1

E |Yi|δ .

Bound 2:

P

n

X

i=1

Yit

!

min

y>0gn(t, y), where

gn(t, y) = exp t2

8 Pn

i=1E Yi21{|Yi|<y}

+ty/3

!

+ 2(2n−1)t−δ

n

X

i=1

E

|Yi|δ1{|Yi|≥y}

.

The proof of Bound 1 uses Markov’s inequality and von Bahr-Esseen’s inequality, whereas the proof of Bound 2 is more technical (truncation techniques, Markov’s in- equality, Bernstein’s inequality, von Bahr-Esseen’s inequality,. . . ).

Proof of Theorem 1. We prove Bounds 1 and 2 in turns.

Proof of Bound 1. We need the following version of the von Bahr-Esseen inequality (see [5]).

Lemma 1. (von Bahr-Esseen’s inequality) Let n be a positive integer, p [1,2) and (Xi)i∈{1,...,n} be n independent random variables such that, for any i∈ {1, . . . , n},E(Xi) = 0andE(|Xi|p)<∞. Then

E

n

X

i=1

Xi

p!

(2n−1)

n

X

i=1

E(|Xi|p).

(4)

Using Markov’s inequality and von Bahr-Esseen’s inequality (see Lemma 1), we obtain

P

n

X

i=1

Yit

!

t−δE

n

X

i=1

Yi

δ

(2n−1)t−δ

n

X

i=1

E |Yi|δ .

Bound 1 is proved.

Proof of Bound 2. For any random eventA, let 1A be the indicator function onA.

Set

V =

n

X

i=1

Yi1{|Yi|≥y}E Yi1{|Yi|≥y}

and

W =

n

X

i=1

Yi1{|Yi|<y}E Yi1{|Yi|<y}

.

SinceE Yi1{|Yi|≥y}

+E Yi1{|Yi|<y}

=E(Yi) = 0, we haveV +W =Pn i=1Yi. Using{V +W t} ⊆ {V t/2} ∪ {W t/2}, we obtain

P

n

X

i=1

Yit

!

=P(V +W t)P

V t 2

W t 2

A+B, (2)

where

A=P

V t 2

=P

n

X

i=1

Yi1{|Yi|≥y}E Yi1{|Yi|≥y}

t 2

!

and

B=P

W t 2

=P

n

X

i=1

Yi1{|Yi|<y}E Yi1{|Yi|<y}

t 2

! .

We treat boundAandB in turn.

Upper bound forA. For anyi∈ {1, . . . , n}, set

Xi=Yi1{|Yi|≥y}E Yi1{|Yi|≥y}

.

We haveE(Xi) = 0. It follows from Markov’s inequality and von Bahr-Esseen’s inequality (see Lemma 1) applied with the independent variables (Xi)i∈{1,...,n}

that

A2δt−δE

n

X

i=1

Xi

δ

2δ(2n−1)t−δ

n

X

i=1

E |Xi|δ

. (3)

(5)

Using the elementary inequality|x+y|a2a−1(|x|a+|y|a), (x, y)R2, a1, and Jensen’s inequality with the convex functionϕ(x) =|x|δ,xR, we obtain

E |Xi|δ

2δ−1 E

|Yi|δ1{|Yi|≥y}

+

E Yi1{|Yi|≥y}

δ

2δ−1 E

|Yi|δ1{|Yi|≥y}

+E

|Yi|δ1{|Yi|≥y}

= 2δE

|Yi|δ1{|Yi|≥y}

. (4)

Thus, from (3) and (4) follows A2(2n−1)t−δ

n

X

i=1

E

|Yi|δ1{|Yi|≥y}

. (5)

The upper bound for B. We will utilize one of Bernstein’s inequalities (see, for instance, [3]), presented in the following.

Lemma 2. (Bernstein’s inequality) Let nbe a positive integer and(Xi)i∈{1,...,n}

ben independent random variables such that, for any i∈ {1, . . . , n},E(Xi) = 0 and|Xi| ≤M <∞. Then we have

P

n

X

i=1

Xiλ

!

exp

λ2

2 (Pn

i=1E(Xi2) +λM /3)

,

for anyλ >0.

For anyi∈ {1, . . . , n}, set

Xi=Yi1{|Yi|<y}E Yi1{|Yi|<y}

. We haveE(Xi) = 0 and

|Xi| ≤ |Yi|1{|Yi|<y}+E |Yi|1{|Yi|<y}

2y.

Therefore, Bernstein’s inequality (see Lemma 2) applied with the independent variables (Xi)i∈{1,...,n} and the parametersλ=t/2 andM = 2y gives

Bexp

t2

8 (Pn

i=1E(Xi2) +ty/3)

. SinceE Xi2

=V Yi1{|Yi|<y}

E Yi21{|Yi|<y}

for anyi∈ {1, . . . , n}, we have

Bexp t2

8 Pn

i=1E Yi21{|Yi|<y}

+ty/3

!

. (6)

Combining (2), (5) and (6), we obtain the inequality P

n

X

i=1

Yit

!

exp t2

8 Pn

i=1E Yi21{|Yi|<y}

+ty/3

!

+ 2(2n−1)t−δ

n

X

i=1

E

|Yi|δ1{|Yi|≥y}

.

(6)

Sincey >0 is arbitrary, we obtain the desired inequality.

2 Remark. For anyt >0, contrary to Bound 1, Bound 2 is always inferior to 1. Indeed, due to the dominated convergence theorem, we have limy→∞E

|Yi|δ1{|Yi|≥y}

= 0 and, since limy→∞Pn

i=1E Yi21{|Yi|<y}

+ty/3 =∞, P

n

X

i=1

Yit

!

min

y>0gn(t, y) lim

y→∞gn(t, y) = 1.

3 Application

Design of the study

Let (Yi)i∈{1,...,n}beni.i.d. random variables having the symmetric Pareto distribution with parametersi.e. Y1 has the probability density function

f(x) =

(((s1)/2)|x|−s, if |x| ≥1,

0 otherwise.

Ifs(1 +δ,3) withδ[1,2), then E(Y1) = 0, E |Y1|δ

= s1

sδ1, E |Y1|δ1{|Y1|≥y}

= s1

sδ1min(y−s+δ+1,1), E Y121{|Y1|<y}

= s1

3s max(y3−s,1)1 andE Y12

does not exist. For t >0 then holds by Theorem 1:

Bound 1:

P

n

X

i=1

Yit

!

(2n−1)t−δn s1

sδ1. (7)

Bound 2:

P

n

X

i=1

Yit

!

min

y>0gn(t, y), (8)

where

gn(t, y) = exp

t2

8 (n(s1) (max(y3−s,1)1)/(3s) +ty/3)

+ 2(2n−1)t−δn s1

sδ1min(y−s+δ+1,1).

(7)

Numerical results

In what follows, we present numerical results for the bounds (7) and (8). We consider two examples: first, a large value of n (5000), secondly a small value of n (50). For the sake of simplicity, we takes= 310−10. Following the philosophy of reproducible research, the programs are made available freely for download at the address

http://www.math.unicaen.fr/∼chesneau/concentration2final.r

This code contains the scripts to reproduce Figures 1 and 2, and it requires at least R [6] to run properly.

(8)

Figure 1: Empirical boundary values for largen

This figure displays the values of Bound 1 and 2 for varying values oftandδ. For all four panels,n equals 5000. The horizontal gray line represents bound value of 1.

delta = 1.0

t

p

2000 4000 6000 8000 10000 12000 14000

0.050.21 Bound 1

Bound 2

delta = 1.3

t

p

2000 4000 6000 8000 10000 12000 14000

0.050.21

delta = 1.6

t

p

2000 4000 6000 8000 10000 12000 14000

0.050.21

delta = 1.9

t

p

2000 4000 6000 8000 10000 12000 14000

0.050.21

Figure 1 displays the first case, in which n takes the value 5000. The three panels display the evolution of Bound 1 and 2 for different values of δ. More precisely, the values are 1.0, 1.3, 1.6 and 1.9 from top to bottom in the four panels. Note that, for

(9)

δ= 1.0 and the considered values oft, Bound 1 is greater than 1.

Figure 2: Empirical boundary values for smalln

This figure displays the values of Bound 1 and 2 for varying values oftandδ. For all four panels,n equals 50. The horizontal gray line represents a bound value of 1.

delta = 1.0

t

p

500 1000 1500 2000

0.050.21 Bound 1

Bound 2

delta = 1.3

t

p

500 1000 1500 2000

0.050.21

delta = 1.6

t

p

500 1000 1500 2000

0.050.21

delta = 1.9

t

p

500 1000 1500 2000

0.050.21

It is visible that Bound 2 is (clearly) lower than Bound 1 for values of δ lying closer

(10)

to 1, whereas Bound 1 should be preferred when δ approaches two. Subsequently, Figure 2 deals with the case of smalln, more precisely the value isn= 50. The results correspond to those of n= 5000, although the switch from Bound 2 to Bound 1 for increasing δ should be carried out earlier. However, for practical purposes, this case may only be of limited interest.

References

[1] F.Chung and L. Lu, Concentration inequalities and martingale inequalities — a survey, Internet Math., 3 (2006-2007), 79–127.

[2] D.H. Fuk and S.V. Nagaev, Probability inequalities for sums of independent random variables, Theor. Probab. Appl., 16(1971), 643–660.

[3] V.V. Petrov, Limit Theorems of Probability Theory, Clarendon Press, Oxford, 1995.

[4] D. Pollard, Convergence of Stochastic Processes, Springer, New York, 1984.

[5] B. von Bahr and C-.G. Esseen, Inequalities for therth Absolute Moment of a Sum of Random Variables, 1r2, The Annals of Mathematical Statistics, 36 (1965), 299-303.

[6] R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna (Austria), 2010, http://www.R-project.org.

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Parmi les demandeurs d’emploi en catégories A, B, C sortis pour reprendre un emploi en septembre 2016, 65,8 % ont accédé à un emploi durable (CDI, autre contrat de 6 mois ou

juridique) dont bénéficie l’action syndicale en France, des situations de discrimination syndicale ou, plus largement, des pratiques anti-syndicales loin d’être minoritaires. •

This inequality, based on partitions of the set of diameters, provides better numerical estimates than the results of Section 3 for intermediate values of the

The proofs lead to a moderate deviation principle for sums of bounded random variables with exponential decay of the strong mixing coefficients that complements the large

Sharp inequalities on circular and hyperbolic functions using a Bernoulli inequality type..

While the impact of inequality on environmental crises and degradations may be harder to grasp, the more intuitive reverse relation is easier to understand and

(iv) The importance of these best constants is, when r = q, to generalize an isoperimetric inequality known as Wulff theorem, cf.. One of the aims of the present article is, by