• Aucun résultat trouvé

Neutron diffraction studies at the Puerto Rico Nuclear center

N/A
N/A
Protected

Academic year: 2021

Partager "Neutron diffraction studies at the Puerto Rico Nuclear center"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00205801

https://hal.archives-ouvertes.fr/jpa-00205801

Submitted on 1 Jan 1964

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Neutron diffraction studies at the Puerto Rico Nuclear center

I. Almodovar, H.J. Bielen, B.C. Frazer, M.I. Kay

To cite this version:

I. Almodovar, H.J. Bielen, B.C. Frazer, M.I. Kay. Neutron diffraction studies at the Puerto Rico Nuclear center. Journal de Physique, 1964, 25 (5), pp.442-446. �10.1051/jphys:01964002505044200�.

�jpa-00205801�

(2)

442.

NEUTRON DIFFRACTION STUDIES AT THE PUERTO RICO NUCLEAR CENTER (1)

By I. ALMODUVAR, H. J. BIELEN (2), B. C. FRAZER (2) and M. I. KAY (2),

The Puerto Rico Nuclear Center, Mayaguez, Puerto Rico.

Résumé. 2014 Un programme de diffraction neutronique a été récemment établi au Centre d’Études Nucléaires de Puerto Rico. Les deux diffractomètres utilisés ont été assemblés avec l’aide de membres du Laboratoire National de Brookhaven.

Le premier programme de recherche était l’achèvement de l’analyse de la structure d’un mono-

cristal de CaWO4. En choisissant l’origine au site 4a) des atomes W dans la maille quadratique,

groupe I41/a, on trouve les paramètres suivants de l’oxygène dans les sites 16(f) :

x =

0,2413 ± 0,0005, y

=

0,1511 ± 0,0006,

z =

0,0861 ± 0,0001.

Les paramètres anisotropes de vibration ont été également déterminés pour tous les atomes dans

l’analyse aux moindres carrés de la structure.

La structure magnétique de CuSO4 a été déterminée en continuation d’une étude, commencee à Brookhaven en collaboration avec le Dr P. J. Brown. Dans la notation de Wollan-Koehler-Bertaut,

le mode de l’ordre antiferromagnétique des spins dans la maille orthorhombique du groupe Pbnm est Ax, c’est-à-dire sur les sites 0 0 0, 0 0 1/2 ; 1/2 1/2 0, 1/2 1/2 1/2, les spins se succèdent dans la suite + - +

-,

leur axe étant selon

a.

Un moment d’environ 1 03BCB a été trouvé pour l’ion Cu2+.

La structure cristalline de BaNiO2 a été réexaminée et le résultat obtenu par Lander aux rayons X d’une coordination carré coplanaire de Ni2+ a été confirmé. On a également cherché un ordre magnétique dans BaNiO2 à 4,2 °K, mais aucun résultat concluant n’a été obtenu.

Une transition magnétique a été trouvée dans Fe2SiO4 au voisinage de 30 °K. Ce composé a une

structure du type olivine avec huit ions Fe2+ dans les positions 4(a) et 4(c) du groupe d’espace

Pbnm. L’analyse de la structure magnétique continue, mais le mode dominant est C dans la notation W.-K.-B.

Abstract.

2014

A neutron diffraction program was initiated recently at the Puerto Rico Nuclear Center. The two double crystal spectrometers in use were assembled with the aid of staff mem-

bers of the Brookhaven National Laboratory.

The first research problem to be completed was a single crystal structure analysis of CaWO4.

Choosing the origin at the 4(a) tungsten site in the tetragonal I41/a cell, the 16(f) oxygen para- meters were found to be as follows :

x =

0.2413 ± 0.0005, y = 0.1511 ± 0.0006,

z =

0.0861 ± 0.0001. Anisotropic temperature parameters were also determined for all atoms in the least squares analysis of the structure.

The magnetic structure of CuSO4 has been determined in a continuation of a study started at

Brookhaven in collaboration with Dr. P. J. Brown. Using the Wollan-Koehler-Bertaut notation,

the antiferromagnetic spin ordering mode in the orthorhombic Pbnm cell is Ax, i.e., + - +

-

on the 0 0 0, 0 0 1/2, 1/2 1/2 0, 1/2 1/2 1/2 sites, with the spin axis parallel to

a.

A moment of approximately

1 03BCB was found for the Cu2+ ion.

The crystal structure of BaNiO2 was re-examined in a neutron powder diffraction study and

Lander’s x-ray result of a coplanar square coordination of Ni2+ was confirmed. BaNiO2 was also investigated for magnetic order at 4,2 °K but conclusive results have not been obtained.

A magnetic transition has been found in Fe2SiO4 in the neighborhood of 30 °K. This compound

has an olivine type structure with eight Fe2+ ions in the 4(a) and 4(c) positions of the Pbnm space group. Analysis of the magnetic structure is still in progress, but the dominant mode is C in the W.-K.-B. notation.

PHYSIQUE 25, 1964,

History of neutron diffraction at the Puerto Rico Nuclear Center and technique employed.

---

While

definite plans for a neutron diffraction program at the Puerto Rico Nuclear Center began to take shape about

one and a half years ago, the first actual research measu- rcments were not made until January, 1963. At that

(1) Work performed under the auspices of the U. S.

Atomic Energy Commission.

(2) Guest scientists : H. J. Bielen from the University of Frankfurt, Frankfurt, Germany ; B. C. Frazer from Brook- haven National Laboratory, Upton, New York, U. S. A. ; I. Kay from Georgia Institute of Technology, Atlanta, Georgia, U. S. A.

time the installation and testing of a rather simple spec- trometer was completed at the Center’s one megawatt swimming pool type reactor. The in-pile collimation,

water shutter, monochromator mount, and shield for this first machine were all patterned after some of the

less elaborate installations at the graphite reactor of

the Brookhaven National Laboratory. The diffrac-

tometer was an old instrument that had been used at Brookhaven for several years until it was replaced by

one of more advanced design. It was literally

rescued from the scrap heap and rehabilitated for use

in Puerto Rico. In June the Westhinghouse Research

Laboratories donated an excellent diffractometer and

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:01964002505044200

(3)

443

several items of accessory equipment, including a

modified Varian magnet, to the University of Puerto

Rico. The original design for this machine was made

at Brookhaven by B. C. Frazer and T. Mullaney, but

modifications were made at Westinghouse by G. Shi-

rane, W. Takei, and R. Stuart. The old Brookhaven diffractometer was replaced by this fine piece of equip-

ment.

In July, installation was started of a second spec- trometer. This versatile and highly accurate instru-

ment is almost identical with the new U. S. I units

designed by A. Kevey for the Brookhaven High Flux

Beam Reactor. The cylindrical monochromator shield rests on a gun mount (obtained as surplus equipment

from the U. S. Navy) which can be rotated to permit

continuous angular settings for wavelength selection

over a range of approximately

-

500 to + 900. The diffractometer is on a cantilevered mount which is bolted to the gun mount, and hence remains in proper

alignment if changes are made in 20 of the mono-

chromator. The monochromator itself is 1 : 2 cou-

pled to the gun mount hy means of an angle divider

so that the crystal stays in reflecting position if a change in wavelength is made. It is possible to change

the collimation of the primary beam from the reactor by turning a crank. This rotates a steel cylinder

which has positions for three collimators and has a

fourth closed, or shutter, position. At present only

one collimator is mounted. This has 24’ soller slits.

A single crystal collimator and one with 18’ soller slits will be installed very soon. In addition to the mechan- ical shutter on the rotating collimator changer, which puts three feet of steel in the beam, an in-pile water

shutter is also available.

The U. S. I diffractometer is very similar to the

Westinghouse machine, since it is also an improved

version of the original Frazer and Mullaney design.

Both are very sturdy machines capable of taking over

2 000 pounds of direct loading, and have maximum accumulated angular errors of less than I’ of arc.

Data are collected semi-automatically by pre-deter-

mined count monitor controlled step scanning. Data output is printed on adding machine tape. All elec-

tronic components are transistorized. Eventually the spectrometers will be controlled by automatic pro- grammers, probably of the Brookhaven type, but

because of the reactor operating schedule semi-auto-

inatic operation is adequate for present work. The

reactor now operates on an 8-hour day and 5-day week

schedule. A 16-hour day and an increase in power to two megawatts is expected. Plans are being made

for 24-hour operation at five megawatts some time in 1965. The efficiency of data collection can be increased

greatly at that time by converting to fully automatic systems.

~

CaW04

The first neutron diffractioll problem under-

taken was a single crystal structure analysis of CaW04 (scheelite). While this structure is usually

considered to be typical of that adopted by an important series of AB04 compounds, the oxygen coordinates have been known with an accuracy of

only about ~.1 A [1]. The reason for this is that the B atom is always one of rather high atomic number, relative to oxygen, and hence the oxygen contributions to x-ray structure f actors are compar-

atively small. In the neutron case the oxygen scattering length does not differ greatly from those

of the other atoms. For CaWO4 the neutron scattering lengths are :

Accordingly, the structure analysis briefly desc-

ribed here was undertaken. In the course of this

analysis it was found that Zalkin and Tem-

pleton [2] were engaged in an independent study

of the structure using very accurate x-ray data and modern refinement techniques. Their results

are in excellent agreement with those reported

here.

CaWO4 crystallizes in the tetragonal space group

I41 la and has cell dimensions a = 5 . 243 -+- 0. 002~.

and c

=

11.376 ± 0.003 A[2]. The Ca and W

atoms are in the four-fold symmetry-fixed posi-

tions 4(b) and 4(a), respectively, and oxygen is in the 16( f ) general position.

Least squares refinement calculations, carried

out on (h 0 1) and (h h l) data collected from sam-

ples cut from a large synthetic crystal, led to a

final I~ value of 0.041. The oxygen parameters (with the cell origin chosen at the tungsten site) are

These yield a nearly regular, but measurably distorted, WO’4 group with a W-0 distance of 1.784 ~ 0.003 A. The latter has been corrected

by 0.003 A for vibrational motion. Anisotropic temperature parameters were determined for all atoms, as will be reported elsewhere in a detailed

publication of results.

Cuss 4

The anhydrous sulfates of the divalent transi- tion elements form a very interesting group of

magnetic compounds. Magnetic structures have

already been determined for FeSÛ4, NiSO~,

and [3-5]. Discussed here are

the results of a neutron diffraction study of CUS04-

This has been a continuation of a study begun by

two of the present authors (I. A. and B. C. F.) at

Brookhaven with Dr P. J. Brown, and a full

account of this work is to be published later under joint author ship.

Because of the low Cu2+ moment, and because

of troublesome peak overlaps in a neutron powder

pattern, the magnetic structure of CuSO4 should

really be investigated using single crystals. Single

(4)

444

crystals of suitable size are not easily grown,

however, so an attempt has been made to solve the problem using powder data. What can be said directly from the neutron data is not very satis-

fying, but if these data are considered along with

the magnetic measurements of Kreines [6] a struc-

ture can be proposed that is almost certainly

correct.

CUS04 has the orthorhombic ZnS04 type crystal

structure with space group Pbnm [7]. The four crystallographically equivalent ions are loca-

ted on the 0 0 0 0 1 11 I

0 I 11

sites. For

’ 2 22 ’ 222 2

the case where the magnetic cell is identical with

the chemical cell the possible collinear spin config-

urations for antiferromagnetic ordering are +20132013+,++2013-2013, and -~-- -- ~- -. In the Wollan-Koehler-Bertaut notation these arrange- ments are labeled G, C and A, respectively [8].

Each of these leads to a distinct set of magnetic

reflections.

.

In comparing diffraction patterns taken at 4.2 OK and 77 ~K only one clearly resolved new peak was found in the low temperature pattern.

This indexed as the (0 01 ) reflection, which is char-

acteristic of type A ordering. A small but defi-

nitely measurable change in intensity was also

found for the combination (0 2 1), (1 1 1) peak, again characteristic of type A. No other inten-

sity changes were statistically significant.

This small amount of information is sufficient to

identify the ordering scheme (although a multi-

axis spin structure with small cant angles cannot

be directly ruled out), but it is insufficient to yield

reliable information on the magnitude and orien-

tation of the Cu2+ moment. Here it is useful to consider the magnetic measurements of Kreines [6].

Kreines used small single crystals which were

oriented by morphology and x-rays. While the

setting was not specified in her paper, it can be identified from the cell dimensions as Pbmn. Her

figure 4 is drawn incorrectly, since the Cu sites are improperly assigned for this setting, but this does

not affect the conclusions which may be drawn from the measurements. According to Kreines

xl

=

xd

=

Xc and ZI, = xa. This of course sug-

gests a collinear spin structure with the spin axis parallel to a. With this assumption the CU2 +

moment calculated from the neutron diffraction data is 1 as expected for this ion. The spin ordering mode is Ax, i.e., + - + - on the 0 0 0,.

001 110, 111 sites, with the moment orienta- 2 22 ’222

tions along the a axis of the Pbnm cell.

BaNi02

While the results obtained on BaNiO2 have been largely negative in character, it still may be worth-

while to make a few remarks on this rather unusual

compound. There were several reasons why it

was chosen for study. In the first place Lander’s

trial-and-error determination of the oxygen posi-

tions from visually estimated x-ray data did not

seem overly convincing since the atomic number of Ba is quite high and even that of Ni is relatively high [9]. Some preliminary packing calculations revealed other possible structures which were not mentioned by Lander, and one of these in parti-

cular seemed more logical than the one he reported.

Also the square planar oxygen coordination by

Ni2+ was most unusual in view of Lander’s obser- vation of a nearly " normal " paramagnetic

moment corresponding to 1.8 unpaired electrons.

The explanation suggested byLander for the observ-

ed moment is that there are additional bonds between neighboring nickel ions, as evidenced by

the very short Ni-Ni distance of 2.36 A. Finally,

the orthorhombic Cmcm structure is similar in many respects to the anhydrous sulfate structures, and it was of interest to investigate possible magnetic ordering at low temperatures.

Essentially the structure investigation led to

confirmation of Lander’s structure. The refine- ment is still in progress, and it may be that some

significant parameter changes will be found (this

seems to be the case with the oxygen y parameter),

but there is no doubt that Lander’s general config-

uration is correct.

The magnetic studies have not been so conclu- sive. In a separate paper from his report on the DalVi02 structure, Lander quotes unpublished sus- ceptibility measurements of F. Morin [10]. The temperature range is not given, but it is stated that the Curie-Weiss law is obeyed with A

=

1.80~,

and that the calculated number of unpaired elec-

trons per nickel ion is 1.83. From this one might expect to find a Neel point well above the temper-

ature of liquid helium. However, there are no

obvious changes in the neutron powder patterns in going down to this temperature. Through the courtesy of Drs W. J. Takei and D. E. Cox [11], of

the Westinghouse Research Laboratories, the

authors were able to obtain magnetic susceptibility

data down to 4.2 OK. These data disagreed some-

what with Morin’s in giving A

==

720 and approxi- mately one unpaired electron per nickel ion. The Curie-Weiss law was obeyed very well down to liquid N~, but the 1 jx curve began to fall off from

a straight line at lower temperatures, suggestive of

an approaching transition. Unf ortunately, Takei

and Cox were unable to take data between 4.2 OK and approximately 50 °K, so there was no definite

evidence of a transition. Also unfortunately, the magnetic sample was found to be somewhat contam- inated with impurities, so not too much faith can

be placed in the differences from Morin’s measure-

ments. If the Ni moment is as low as 1 as

(5)

445

indicated by the data of Takei and Cox, it is possible that the neutron diffraction statistics were

not sufficiently good to observe ordering. This

would be particularly true if the ordering is type A,

since peak overlaps happen to be very bad for this

case.

This is as much as can be said on this problem

for the moment. Further magnetic measurements must be made at low temperatures on a pure

sample before continuing with neutron diffraction work.

Fe2SiO 4

Until very recently very little has been known about the magnetic properties of the transition

metal olivine type compounds. Early in this year Kondo and Miyahara [12] published magnetic sus- ceptibility data on the orthosilicates of divalent

Mn, Fe, Co, and Ni between 77 oK and 300 OK.

The curves suggest that magnetic transitions will be found in all of these compounds at lower temper-

atures. A transition in Fe2SiO 4 has been found

by the present authors by neutron diffraction mea- surements, and by Takei and Cox [11.] by magnetic susceptibility measurements. Fayalite mineral samples kindly supplied by Dr Clifford Frondel of

Harvard~University, were used for both measure-

ments. The Néel point is not known accurately,

but it is in the vicinity of 30 OK. The magnetic

measurements also showed some evidence of weak

ferromagnetism, with about 0.05 although

this may not be real since the mineral sample was

rather impure.

The first diffraction data were taken using the powdered mineral sample. Several single crystals

which appeared to be of fairly good quality were

removed from the bulk material before grinding

the sample. The purity of the crystals should be considerably better than the powdered material,

and one of these has been cut and mounted for

study. So far the only measurements made have been of powder, samples. While this showed

only very small percentages of substitutional

impurities in a chemical analysis, the diffrac-

tion patterns disclosed an appreciable contami-

nation of FeSiO,. The latter material also has a

magnetic transition at low temperatures, so its

effects on the data cannot be completely eliminated by subtraction of liquid N2 and liquid He patterns.

This should not be a problem in the future, how-

ever, for in addition to the natural single crystals already mentioned, some very good synthetic powder samples have been obtained.

In the orthorhombic olivine structure [131, space group Pbnm(D§g), there are four formula units per iinit cell. The cell of Fe2SIO, has dimensions (14]

There are two four-fold sets of Fe2+ ions :

In the ideal olivine structure x

=

0 and y = 1 /4,

but the values observed [13] in olivine itself are

0.99 and 0.281, respectively. Each of the Fe 2+

ions is in octahedral coordination with oxygen, and

one may expect magnetic interactions of the same

nature as the B-B interaction in spinel structures.

In addition there are superexchange paths avail-

able via the covalent Si01+ groups.

If the magnetic and chemical cells are identical,

as proves to be the case in Fe2S’01, there are eight spin vectors in the cell, and hence there are very many possible antif erromagnetic configurations.

These can be reduced considerably by symmetry considerations, but even then there are 19 possible

collinear spin ordering modes, and of course there

are many more combination modes that become

possible for canted spin structures. The problem

of sorting through all of these possibilities to satisfy observed neutron intensities is complicated by the f ree x and y parameters of Fell. For one thing these parameters must be accurately deter-

mined as part of the analysis, but a more important difficulty is that the magnetic extinction rules which would apply for Feri spins in the ideal olivine structure are no longer valid. In this preli- minary stage of the problem, however, the ideal

structure is being assumed. This should be reason-

ably safe in determining the ,principal features of the magnetic structure, since the intensity contri-

butions arising from non-ideal shifts should be small.

Let the spins on the Fei 4(a) sites be numbered

1 through 4 in the same order as given above.

Assuming ideal positions for Fell, let the spins on

the 4(c) sites be numbered 5 through 8 in the following order :

If one calculates magnetic extinction conditions

y

for the various possible coliinear antiferromagnetic spin configurations it is found that none of these

can account for the observed data. Hence there must be at least two spin directions in the struc- ture. The proper spin vectors may be constructed from their components by using combinations of the collinear ordering modes.

The most intense reflection in the pattern is

the (100). This peak can arise from two different

·

modes but only one of these can yield a high inten-

sity :

~

i

1 2 3 4 5 6 7 8

(6)

446

In this ordering scheme the spin components

°

form alternating parallel sheets on the (200) planes.

This mode, wich is the dominent one in the

structure, is associated with the cristallo-

graphic b axis. Analysis of the data indicates a + - + - + - + - arrangement of spin components parallel to a. The components in

the c direction are small, if indeed they exist at

all. The Fe2+ moment was found to be approxi- mately 4 ~B for both Fei and Fell. In both cases

the spin vectors are approximately parallel to

the XY plane and are tilted from the b axis by

about 300, with the tilt alternating in sign as prescribed by the a axis ordering mode.

Acknowledgements.

-

In closing, the authors would like to acknowledge the valuable assistance and advice of the Brookhaven National Laboratory

staff members in starting this program.

Discussion

Pr JAMES.

-

Pouvez-vous me pr6ciser l’impor-

tance de l’impuret6 FeSi03 dans votre Fe2SiO4 et

comment la d6terminez-vous ?

Dr KAY. - Environ 15 % et peut-être 20 %,

par diagrammes aux neutrons et aux rayons X.

Pr BERTAUT.

-

11 y a des tables des repr6sen-

tations irr6ductibles pour les sites b) et c) dans le

groupe Pbnm qui est aussi le groupe des p6rovskites

des terres rares FeR03 ~R

==

terre rare). Avez-vous

6tudl6 si les configurations de FeI et Fei, sont eoupl6es en quel cas elles doivent appartenir a la

même representation ?

Dr KAY. - Jusqu’ici nous avons suppose lay eompatibilité avec les repr6sentations de groupes pour trouver la structure approch6e. Mais nous

devrons d’abord raffiner la structure avec des donn6es meilleures avant de r6pondre d6finiti-

vement a la question.

,

REFERENCES

[1] SILLEN (L. G.) and NYLANDER (A.), Arkiv Kemi Min.

Geol., 1943, 17 A, n° 4.

[2] ZALKIN (A.) and TEMPLETON (D. H.), Private commu-

nication.

[3] FRAZER (B. C.) and BROWN (P. J.), Phys. Rev., 1962, 125, 1283.

[4] BROWN (P. J.) and FRAZER (B. C.), Phys. Rev. 1963, 129, 1145.

[5] BERTAUT (E. F.), COING-BOYAT (J.) and DELAPALME

(A.), Phys. Letters, 1963, 3, 178.

[6] KREINES (N. M.), Zhur. Eksp. i Teoret., Fiz., 1958, 35, 1391 (Eng. transl : Sov. Phys., JETP, 1959, 8, 972).

[7] KOKKOROS (P. A.) and RENTZPERIS (P. J.), Acta Cryst., 1958, 11, 361.

[8] BERTAUT (E. F.), J. Appl. Phys., Suppl., 1962, 33,

1138.

[9] LANDER (J. J.), Acta Cryst., 1951, 4, 148.

[10] LANDER (J. J.), J. Am. Chem. Soc., 1951, 73, 2450.

[11] TAKEI (W. J.) and Cox (D. E.), Unpublished data.

[12] KONDO (H.) and MIYAHARA (S.), J. Phys. Soc. Japan, 1963, 18, 305.

[13] BELOV (N. V.), BELOVA (E. N.), ANDRIANOVA (N. H.) and SMIRNOVA (P. F.), Dokl. Akad. Nauk, SSSR, 1951, 81, 399.

[14] WINCHELL (H.), Amer. Cryst. Assoc. Meeting Abstr.,

p.14 (April 10-12, 1950).

Références

Documents relatifs

Abstract - Neutron diffraction techniques have been employed to Investigate the structure of PbO-PbCl, glasses as a functlon of composltlon In the nomlnal range

To examine whether the oxygen deficiency 8 which destroys super- conductivity in going from 6 = 0 to 6 = 1 in this class of compounds [5] also plays any significant role

— Magnetization and neutron diffraction studies of USb 0 9Te 0 .i single crystal lead to the determina- tion of a multiaxial magnetic structure at low temperature whereas

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

— The magnetization measurements on single crystals demonstrate that the magnetic moments are confined to the (111) direction, even in fields up to 90 kOe ; the saturated

Mo and 0 atoms of Mo03 and its parameters refined in the monoclinic unit cell (the atomic positions and.. widths at half height of the

Abstract. 2014 We develop a theoretical analysis of the influence of domains in ordered nuclear spin systems on the neutron diffraction pattern. In a first part, we

We report here on some powder neutron diffraction studies of the aluminum manganese icosahedral phase since no large singly oriented single phase specimens are available.. We