• Aucun résultat trouvé

Signs of life

N/A
N/A
Protected

Academic year: 2021

Partager "Signs of life"

Copied!
2
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Skygazing: Astronomy through the seasons, 2018-07-03

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/23003482

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Signs of life

Tapping, Ken

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=9cc9df9f-c562-4f95-9169-19ebfad2f1ac https://publications-cnrc.canada.ca/fra/voir/objet/?id=9cc9df9f-c562-4f95-9169-19ebfad2f1ac

(2)

SIGNS OF LIFE

Ken Tapping, 3rdJuly, 2018

In the shallow waters of Shark Bay, Australia are strange, mushroom-shaped rocks, called

stromatolites. These are produced by living creatures. Millions of bacteria form slimy mats which trap sand and mud particles. The bacteria then grow up through it to form a new layer, and the rocky structure grows larger and larger. A cross-section of one of the “mushrooms” shows the layers like tree rings. These structures are really robust and over time become incorporated into rocks as fossils. Their tree-ring like structures are found in rocks up to 3.7 billion years old, showing that liquid oceans existed back then, when the Sun was about 30% fainter and our planet should have been frozen solid. Conversely, if things were not frozen solid then, our brighter Sun means we should be frying now. That this is not the case indicates how living things change their environment to suit themselves, up to a point. This idea was first put forward by James Lovelock, who suggested that evolution in living creatures is not just a process of adapting themselves to their environments, but also one of changing their environments to suit themselves. In the case of the Earth, living creatures changed the atmosphere. When life first appeared, the atmosphere was rich in methane and carbon dioxide, both greenhouse gases. These made our planet warm when the Sun was fainter. Plants take in carbon dioxide, and use sunlight to convert it and water into

carbohydrates, releasing oxygen, which is not a greenhouse gas, as a waste product. Over time the Sun brightened, and plants removed more and more carbon dioxide, replacing it with oxygen, and incidentally stabilizing the Earth’s temperature. The idea that living creatures may involve

themselves in a little “terraforming” influences how we may search for life on other planets.

On Earth, to a large extent the proliferation of plant life is dependent on the carbon dioxide supply. Animals, like us, depend on oxygen to live, breathing out carbon dioxide. The more plants

there are, the more oxygen there is, allowing more animals to live, producing more carbon dioxide. Oxygen is highly reactive, which is why it is so useful to our life processes. It also means it would rapidly disappear from our atmosphere by

combining with iron and other elements, unless continuously topped up.

On Mars the atmosphere is very thin, but what there is of it is 95% carbon dioxide, with about 0.1% oxygen and occasional intriguing traces of methane. There is no real evidence of a

“biosphere”. Did Mars have a biosphere in the distant past? There is evidence that there was once liquid water on its surface, forming rivers and lakes, which in turn requires a thicker atmosphere than there is now. In addition, the fact that Mars is often referred to as the “Red Planet” is another clue. The red comes from iron oxide, which

suggests Mars originally had much more oxygen in its atmosphere. The red rocks in many parts of our world get their colour from iron oxide, formed when plants flooded the atmosphere with oxygen.

This environmental modification idea suggests that for life like ours to develop, we needed our Sun to brighten as we replaced greenhouse gases with oxygen. We often think of red dwarf stars as good places for life-bearing planets, because they are so stable. However, that would mean that life forms taking in the carbon dioxide would cool their worlds, making them less habitable. They would never share the fecundity of our world in producing plants and animals. We should look for life like ours on planets like ours orbiting Suns like ours. After sunset, Venus shines brightly in the west; Jupiter lies in the south and Saturn in the

Southeast. Mars, bright and red, and just past its closest approach to us, rises around midnight. The Moon will reach Last Quarter on the 4th.

Ken Tapping is an astronomer with the National Research Council's Dominion Radio Astrophysical Observatory, Penticton, BC, V2A 6J9.

Tel (250) 497-2300, Fax (250) 497-2355 E-mail: ken.tapping@nrc-cnrc.gc.ca

Références

Documents relatifs

Pr Joseph Mbede saw us grow, from fragile barely 19-year-old students to pre-adults ready to be sent all over Cameroon disseminating excellent and affordable child care.. Together

3.On peut aussi parler des circonstances dans lesquelles un évènement passé s’est déroulé Julie was phoning when her mother arrived. Julie was phoning (prétérit be v

Also, we cannot firmly constrain the origin of the detected carbon monoxide on Uranus as a cometary impact, ice grain ablation, or a combined source due to both processes can give

Some examples of hydrogenation reactions on Earth today include the production and consumption of methane in both abiotic and biotic reactions, the reduction of protons in

The problem scenario for the WePS-3 task, classification of tweets with respect to a company entity can be seen as a problem where one needs a machine learning technique

Similarly, the transfer of negative electric charges from the Material Individual Consciousnesses of human bodies to the Human Consciousnesses, which they are incorporated, it

The objective of this study is to experimentally measure adhesion strength between ice and concrete with various applied pressure and contact duration time under constant

c- Classify these words according to their sound: steamed- added- helped- walked?. You are a Journalist and you have to write an interview with