• Aucun résultat trouvé

Quantifying slow diffusion in high capacity, multi-phase electrode materials

N/A
N/A
Protected

Academic year: 2021

Partager "Quantifying slow diffusion in high capacity, multi-phase electrode materials"

Copied!
20
0
0

Texte intégral

(1)

https://doi.org/10.4224/40002048

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=f76fa148-14df-4a7f-b652-d28f51643347 https://publications-cnrc.canada.ca/fra/voir/objet/?id=f76fa148-14df-4a7f-b652-d28f51643347

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Quantifying slow diffusion in high capacity, multi-phase electrode

materials

Early, Sara; Feygin, E.; Ghavidel, M. Z.; Ding, S.; Sendetskyi, O.;

Fleischauer, M. D.

(2)

NRC.CANADA.CA

Quantifying slow diffusion in high capacity,

multi-phase electrode materials

Sara Early,1,2 E. Feygin,1,3 M.Z. Ghavidel,4 S. Ding,1

O. Sendetskyi,4 and M.D. Fleischauer1,4

1 - National Research Council - Nanotechnology Research Centre 2 - Department of Chemistry, University of Waterloo

3 - Department of Physics, University of Waterloo 4 - Department of Physics, University of Alberta

michael.fleischauer@nrc.ca PRiME 2020 (A02-0406)

(3)

Role of Solid-State Diffusion

Batteries store and release energy via phase transitions

Phase transitions have thermodynamic and kinetic constraints

• Our goal: estimate diffusion rates within each phase to separate thermodynamic and kinetic effects

Modeling of cell capacity and voltage

Compare to (non) diffusion-limited experimental data

(4)

Lithium-Aluminum as example system

Metal alloy negative electrodes

• high capacities at lower costs Four phases of Lithium-Aluminum

• β-LiAl, Li3Al2, Li2−xAl, Li9Al4

Phases with a higher percent

composition of Lithium are less common

Slow diffusion may be the reason why

these phases are not regularly observed

Potential / capacity data:

(5)

Experimental Setup - 1D diffusion in to planar sample

Galvanostatic insertion of lithium into aluminum at defined current and temperature; continues until the specified potential is reached.

(6)

Our expectation of 1D diffusion

Lithiation proceeds until all phases have formed in sequence.

(7)

Simulation - fast 1D Fickian diffusion

Electrodes are treated as a series of distinct layers.

(8)

Simulation - slow 1D Fickian diffusion

The overall capacity (and thickness) is significantly reduced by slow diffusion.

(9)

Simulation - 1D Fickian diffusion

Variation of temperature and current density to produce multiple conditionsCompare results (potential, capacity, surface concentration) to ∼ 90

experimental data sets

13 µm thick, 1.3 cm2 area, 4.5 mg 1100-series aluminum disks

Cycling at fixed temperature: 30C - 150C

Very low to moderate current densities

µA 40 160 320 640 1280

C rate∗ C/280 C/70 C/35 C/18 C/9

(10)

Computational Process - Flux

Flux Between =⇒ Layer / Surface =⇒ Potential

Layers Concentration

J → Flux w

 [flux into electrode] t → Time

x → Displacement

Capacity T → Temperature

C → Concentration D → Diffusion φ →Potential

• Fick’s 1st Law of Diffusion

• Nernst-Planck

(11)

Computational Process - Flux

Fick’s 1st Law J(x , t) = −D(C, T ) ∗ ∂C(x ,t)∂t Nernst-Planck J(x , t) = −D(C, T ) ∗  ∂C(x ,t) ∂t + zF RTC(x , t) ∂φ ∂x  10

(12)

Computational Process - Concentration

Flux Between =⇒ Layer / Surface =⇒ Potential

Layers Concentration

J → Flux w

 [flux into electrode] t → Time

x → Displacement Capacity T → Temperature C → Concentration D → Diffusion φ →Potential Integration of Flux

• Cartesian or Spherical Coordinates

(13)

Computational Process - Potential

Flux Between =⇒ Layer / Surface =⇒ Potential

Layers Concentration

J → Flux w

 [flux into electrode] t → Time

x → Displacement Capacity T → Temperature C → Concentration D → Diffusion φ →Potential • Nernst Equation 12

(14)

Computational Process - Potential

Nernst Equation E = E0+ RTnF ln  1−xi xi 

where xi = max phase concentrationsurface concentration

E0˜βLiAl ∼ 0.35 V E0˜ Li3Al2 ∼ 0.15 V E0˜ Li2−x Al ∼ 0.05 V E0˜ Li9Al4 ∼ 0.005 V 13

(15)

Computational Process

Flux Between =⇒ Layer / Surface =⇒ Potential

Layers Concentration

J → Flux w

 [flux into electrode] t → Time

x → Displacement

Capacity T → Temperature

C → Concentration D → Diffusion φ →Potential

• Plot potential as a function of capacity

(16)

Results - 320 µA (C/35), 135

C

The measured plateau is flatter than predicted by the Nernst equation.

(17)

Results - 320 µA (C/35)

The measured ‘plateau’ in fact has features. Diffusion pathways may be changing.

(18)

Results - 640 µA (C/18)

Higher rates exaggerate transitions between pathways (e.g. bulk, pores, grain

(19)

Results - 160 µA (C/70)

Changes in potential may be very temperature-dependant when diffusion-limited.

(20)

Conclusions and Next steps

Diffusion-limited potential-capacity data has many unexpected features.

The Nernst equation may not be sufficient.

• Our nominally planar samples have some porosity, and grain boundaries. We need improved model samples.

Single crystal planar foil, spheres

Compare model results to diffusion rates estimated with alternate techniques.Verify model by quantifying diffusion in other material systems.

Références

Documents relatifs

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.. Access

Participation in a regional energy recovery project usually means relinquishing considerable local control over solid waste management decisions (such as whether to

Charged pion spectra measured in 58 Ni- 58 Ni collisions at 1.06, 1.45 and 1.93 AGeV are interpreted in terms of a thermal model including the decay of ∆ resonances.. The

A pooled genome-wide screening strategy to identify and rank influenza host restriction factors in cell-based vaccine production platforms..

Multifractal random walks are defined as integrals of infinitely divisible stationary multifractal cascades with respect to fractional Brownian motion.. Their key properties

Throughout this section we work in two dimensions, and consider the inverse spectral problem for a perturbation of the harmonic oscillator by a potential (at times

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

We have used a mouse model to study the genetic basis of susceptibility, using the inbred strains A/J and C57BL/6J, which are susceptible and resistant, respectively, based on