• Aucun résultat trouvé

HPLC-DAD profile of phenolic compounds and antioxidant activity of leaves extract of Rhamnus alaternus L.

N/A
N/A
Protected

Academic year: 2021

Partager "HPLC-DAD profile of phenolic compounds and antioxidant activity of leaves extract of Rhamnus alaternus L."

Copied!
9
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Industrial

Crops

and

Products

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / i n d c r o p

HPLC-DAD

profile

of

phenolic

compounds

and

antioxidant

activity

of

leaves

extract

of

Rhamnus

alaternus

L.

Kamal

Moussi

a,∗

,

Balunkeswar

Nayak

b

,

L.

Brian

Perkins

b

,

Farid

Dahmoune

a

,

Khodir

Madani

a

,

Mohamed

Chibane

c

aLaboratoiredeBiomathématiques,Biophysique,Biochimie,etScientométrie,FacultédesSciencesdelaNatureetdelaVie,UniversitédeBejaia,06000

Bejaia,Algeria

bFoodScienceandHumanNutrition,SchoolofFoodandAgriculture,UniversityofMaine,Orono,ME04469,UnitedStates

cLaboratoiredeGestionetdeValorisationdesRessourcesNaturelles,AssuranceQualité,FacultédesSciencesdelaNatureetdelaVieetdesSciencesdela

Terre”,UniversitédeBouira,Algeria

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received8January2015

Receivedinrevisedform2June2015

Accepted4June2015

Keywords:

RhamnusalaternusL.

Phenoliccompounds

Freeradicalscavengingactivity

HPLC-DAD

a

b

s

t

r

a

c

t

ThisresearchinvestigatedthepolyphenolsprofilingandantioxidativepropertiesofRhamnusalaternusL. AcomparativeanalysisofthedefattedandelutedfractionsofmethanolextractfromleavesofR. alater-nusL.wasperformedonhigh-performanceliquidchromatographycoupledtodiodearraydetection.The totalphenolic,flavonoid,monomericanthocyanincontents,andantioxidantactivityofallthefractions oftheleavesextractwerequantified.Allfractionsshowedthepresenceofphenoliccompoundsand exhibiteddifferentlevelsoffreeradicalscavengingactivity.Sevenindividualphenoliccompoundsand anthraquinonesasagroupofphenoliccompoundsinthesampleswereidentified.Luteolin, quercetin-3-rhamnoside,p-coumaricacid,ferulicacid,gallicacid,andrutinwerethenewlyidentifiedcompounds intheextract,confirmedbythepresenceofkaempferolandanthraquinones.Knowledgeofthese com-poundsintheleavesextractwillhelpinformulatingpharmaceuticalproductsforvariousdiseases.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Ethnomedicinehasbeenpracticed sinceprehistory by virtu-allyallhumanculturesaroundtheglobe,includingEurope,Asia, Americas,andAfrica(Slikkerveer,2006).NorthAfricahasoneof theoldestandrichesttraditionsassociatedwiththeuseof medic-inalplants (Batanouny etal.,2005),where Herodotus(430B.C) wrotethatmedicineinEgyptispracticedamongthemonaplan ofseparation,byusinganinfinitenumberofdrugsfrom medici-nalplants(RawlinsonandBlakeney,1910).Farther,NorthAfricais knownforitsillustrioussavantkingJubaIIofLibya(Mauritania), whodiedabouttheyear20AD,leavingatleastadozenscientific works.OneofhismostesteemedtreatiesisthatwhichPlinyand Galenattributedthetitle“Deherbaeuphorbia.¨,itisthevarietyof

∗ Corresponding author at: Laboratoire de Biomathématique, Biophysique,

Biochimie, et Scientométrie. Faculté desSciences de la Nature et de la Vie,

UniversitéAbderrahmane Mira,RouteTargaOuzemour,06000Bejaia.Algerie.

Fax:+21334214762.

E-mailaddresses:moussikamal2012@yahoo.fr(K.Moussi),

balunkeswar.nayak@maine.edu(B.Nayak),BPerkins@Maine.edu(L.B.Perkins),

farid.dahmoune@univ-bejaia.dz(F.Dahmoune),khodir.madani@univ-bejaia.dz

(K.Madani),chibane18156@yahoo.fr(M.Chibane).

medicinalplant,towhichhediscoveredthemedicinalpotential (Eugène-Humbert,1952).

InNorthAfrica,thereareabout10,000vascularplantspeciesand about70%foundinthewildhavemedicinal,aromatic,andother uses.InAlgeria,anestimatednumberof3164identifiedspecies arequalifiedastraditionalmedicinalplants(VasishtandKumar, 2004).Amongtheidentifiedplantspeciesontheearth,onlyasmall percentagehasbeenphytochemically investigatedandthe frac-tionsubmittedtobiologicalorpharmacologicalscreeningiseven smaller.Moreover,aplantextractmaycontainseveralthousand differentnaturalproductsandanyphytochemicalinvestigationof agivenplantwillrevealonlyanarrowspectrumofitsconstituents (Hostettmannetal.,2000).

Plantsrepresentarichsourceofnaturalproducts,withalmost infinitemoleculardiversity(HostettmannandMarston,2002),of whichactiveingredientsofmedicinalplantsaremostlysecondary metabolites(Zengetal.,2013).Thephenoliccompoundsarelarge andheterogeneousgroupsofthesesecondarymetabolites,thatare distributedthroughouttheplantkingdom(Maestrietal.,2006). Phenoliccompoundsareamongstthemostdesirable phytochem-icalsduetoantimicrobial,antiviral,anti-inflammatoryproperties, andhighantioxidantcapacities(Ignatetal.,2011).Antioxidants aredefinedascompoundsthatcandelay,inhibit,orpreventthe http://dx.doi.org/10.1016/j.indcrop.2015.06.015

(2)

oxidationofoxidizablematerialsbyscavengingfreeradicals. Phe-nolicshavebeenconsideredpowerfulantioxidantsinvitro(Daiand Mumper,2010).Manyeffortshavebeenmadetoprovideahighly sensitiveandselectiveanalyticalmethodforthedeterminationand characterizationofphenolic compounds.It isveryimportantto understandtheprofileofphenoliccompoundsinmedicinalplants byusinghighlyeffectiveextractionsandanalyticalmethods(Ignat etal.,2011).

RhamnusalaternusL.isafleshy-fruited,shrubofthe Mediter-ranean region (Ben Ammar et al., 2005). One of the species commonlyusedinreforestationprograms,due toitsfruit char-acteristics and ability to survive in xeric environments, which representsanimportantwaterandnutrientsourceforbirdsand smallmammals(Guliasetal.,2004).Ithastraditionallybeenused aslaxative;purgative;hypotensive;anditisalsousedfortreatment ofthedermatological,ocular,burning,odontological,hepatic(Ben Ammaretal.,2008;BenAmmaretal.,2005),psychological, depres-sion,andgoiterproblems(MatianddeBoer,2011).Thewoodhas beenalsousedascosmeticforsplithair(Lardos,2006)andasa dyeingagentfor wool(Guarrera,2006).Inaddition,ithasbeen reportedthattheleavesextractsofR.alaternusshowedthehighest antimutageniclevelinabacterialassaysystem,highxanthine oxi-daseinhibition(BenAmmaretal.,2008)andinhibitionofbothrat intestineandpurifiedporcinelivercarboxylesterase(Stockeretal., 2004).

Asaprominentlocalmedicinalplant,R.alaternusL.hasbeen widelydistributed intheNorthernAlgeria. Theleavesareused locallytoinKabyliabydecoctionaspurgativeandlaxative,andalso usedfreshfortreatmentofjaundice.Thepurposeofthisstudywas (i)defattingandfractionationofmethanolextractfromleavesofR. alaternusL.(ii)toinvestigateprofilingofthephenoliccompounds includingphenolicacids,flavonoids,andanthocyaninsby HPLC-DAD, and (iii) assessing total phenolic compounds, flavonoids, monomericanthocyaninsusingcolorimetricmethods,and antiox-idantactivityusingaradicalscavengingassayofallfractionsof defattingandfractionationstepsofmethanolleavesextract.

2. Materialsandmethods

2.1. Chemicals

Acetonitrile, hexane, acetic acid, sodium carbonate, Folin–Ciocalteau reagents,aluminium trichloride (AlCl3), potas-siumchloride,andsodiumacetatetrihydratewerepurchasedfrom FisherScientific(FairLawn,NJ,USA).EthylacetateandDPPH (2,2-diphenyl-1-picrylhydrazyl) were obtained from Sigma–Aldrich (St.Louis,MO,USA).Thephenolicstandards,i.e.,catechin,caffeic acid,quercetin-3-rhamnoside,p-coumaricacid,gallicacid,ferrulic acid,luteolin,apegenin,vanillicacid,and(–)epigallocatechinwere purchasedfromSigma–Aldrich(St,Louis,MO,USA).Chlorogenic acidandrutinwerepurchasedfromAcrosorganics(ThermoFisher Scientific,FairLawn,NJ,USA)andnaringeninandkaempferolfrom Sigma–Aldrich(Gillingham,Dorset,UnitedKingdom).Allsolvents usedforthisworkwereofHPLCgrade.

2.2. Preparationofmethanolextract

R. alaternus L. leaves were collected in March 2013, from Hengued,Adekar,North-WestpartofBejaiainKabylia (Algeria) (latitude:36◦4315.46Nand longitude: 4◦3454.15E) and kept fordryingundera forcedairovenat60◦Cuptomoisture con-tentofabout3.25%(determinedbydryweightinovenat105◦C untilconstantweight)(Spignoetal.,2007).Thedriedmaterialwas crushedtopreparepowder,whichwasmilledthrougha1mmsieve (finalpowder size<1mm).Fiftygrams of powderwere

macer-atedwith500mLofmethanolfor72hatroomtemperature.After filtrationthroughafilterpaper,methanolwasentirelyremoved usingarotaryevaporator(Buchi,Flawii,Switzerland)at45◦C(at 337mbar).Thedryextractwasweighedandthenre-dissolvedin methanoltoobtainasolution,withknownconcentrationwhich wasdesignatedas crude extract(CE).The extractivevalue was calculatedondryweightbasisfromtheformulagivenbelow: %extractivevalue(yield%)= WeighttakenforextractionWeightofdryextract ×100

2.3. Defattingandfractionationofextract

Allthestepsofextraction,defatting,andfractionationare sum-marizedinFig.1.Fiftymillilitersofcrudeextractweresubjectedto entireevaporationofthemethanolonarotaryevaporator(Buchi, Flawii,Switzerland)at45◦C(at337mbar).Theresultingdryextract wasdissolvedin90mLofUltrapurewater(Milli-Q)toobtain aque-oussolutionandwasdefattedseveraltimes,withthesamevolume ofhexane,untila clearsolutionofhexaneresulted.Thehexane inthesolutionwasevaporatedusingarotaryevaporatortoget dryextractat45◦C(at335mbar).Thedryextractwasre-dissolved in40mLofmethanolanddesignatedashexanefraction(HF).The insolublefractionformedbetweenhexaneandaqueoussolution waswashed severaltime withultrapurewater (Milli-Q),dried, dissolvedin25mLofmethanolandisdesignatedasintermediate fraction(INT).

C-18Sep-PakVac35-cc(Waters,Milford,MA,USA)columnwas sequentiallyrinsedwith50mLofethylacetate,acidifiedmethanol (0.01%v/vHCl),andacidifiedwater(0.01%v/vHCl),andcharged separatelywith20mLofdefattedaqueoussolutionofextract.The columnwasthenwashedwith60mLofacidifiedUltrapurewater (Milli-Q)(AW),toremoveanyorganicsugarsandacidsremaining inthesolution(fractionAW),followedbyelutionwith60mLof ethylacetateandwasdesignatedasfractionEA.Thefinalelution wasmadewith60mLofacidifiedmethanolandwasdesignated asfractionAM(Lacombeetal.,2012).Theethylacetatefraction EAcontainedasmallamountofwater,resultingfromtheprevious elutionwithacidifiedwater,whichledtotheseparationofethyl acetatesolutiondesignatedasEA1andwatersolutiondesignedas EA2.

ThesolventsofthefractionsHF,EA1,AMwereremoved com-pletelyonarotaryevaporator(Buchi,Flawii,Switzerland)at45◦C (at240mbar).FortheaqueoussolutionsAWandEA2,thesolvents wereremovedbylyophilization(VirTis,NewYork,USA).Alldry extractsHF,EA1,AM,AW,EA2,andINTfractionsweredissolvedin HPLCgrademethanolandweresubjectedtoHPLCanalysis, phyto-chemicaldosages,andantioxidantactivity.

2.4. Determinationoftotalphenoliccompounds

The total phenolic content of the standards, crude extract (2mg/mL)andallfractions(INT,HF,AW,EA1,EA2,andAM) with-outdilutionweredeterminedbyFolin–Ciocalteu’sphenolmethod followingtheproceduresofVeliogluetal.(1998).Briefly,20␮L of standard or samples were mixed separately with 150␮L of Folin–Ciocalteu reagents(previously diluted 1:10 withdistilled water)andallowedtostandat22◦Cfor5min.Afterincubation, 150␮Lofsodiumbicarbonate(6g/100mL)wereaddedandafter 90minat22◦C,theabsorbancewasread ontheBMGLABTECH FLUOstarOmegaplatereader(Germany)at725nmagainstablank. Theexperimentwascarriedoutintriplicateandtheconcentration oftotalphenoliccompoundsintheextractwereexpressedinmg gallicacidequivalent(GAE)pergramplantpowder(PPW)i.e.,(mg GAE/gPPW).

(3)

Washed with hexane several times 50 ml of crude extract(50 mg/mL)

Entire evaporation of methanol

Dry extract

Dissolved in 90 ml of Ultrapure water

Aqueous solution(AQ)(90 ml)

Insoluble material Hexane solution 20 ml of aqueoussolution(AQ)

Washed several times with ultrapurewater

Fraction INT (25 ml)

Evaporation of hexane

Fractionation through C-18 Sep-Pak Vac 35cc

Ethyl acetate solution + water

Acidified methanol solution Acidified

water solution

Ethyl acetate phase

Water phase

Evaporationof

ethyl acetate lyophilization

Dry material Dry material Dry material

Dry material

Dry material Dry material

lyophilization

Evaporation of methanol Re-suspended in methanol Fraction HF (40 ml) Fraction AW (10 ml)

Fraction EA1 (10 ml)

Fraction EA2 (10 ml)

Fraction AM (10 ml)

HPLC and phytochemical analysis

Fig.1. SchematicdiagramoffractionationofextractofRhamnusalaternusL.leaves.

2.5. Determinationoftotalflavonoid

The total flavonoid content was determined using the alu-miniumtrichloridemethod(Adedapoetal.,2008).Briefly,150␮Lof 2%aluminiumtrichloride(AlCl3)inmethanolweremixedwiththe samevolumeofastandardorcrudeextract(2mg/mL)orfractions (INT,HF,AW,EA1,EA2,andAM).Absorptionreadingsat430nm weretakenafter10minagainsta blankusinga BMGLABTECH FLUOstar Omega platereader. The experiment was carried out intriplicateand thetotal flavonoidcontentswereexpressedas milligramquercetin-3-rhamnosideequivalent(QE)pergramplant powder(PPW)i.e.,(mgQE/gPPW).

2.6. Determinationoftotalmonomericanthocyanin

Thetotal monomericanthoyanincontentwasdeterminedby thepHdifferentialmethodwithpH1.0buffer(potassiumchloride, 0.025M)andpH4.5buffer(sodiumacetate,0.4M)(Lee,2005).The crudeextractandallfractions(INT,HF,AW,EA1,EA2,andAM)were dilutedwithpH1.0andpH4.5buffers.350␮Lofbufferedsamples atpH1andpH4.5wereaddedseparatelytoappropriate

micro-platewellsand readingswererecorded, usingaBMG LABTECH FLUOstarOmegaplatereader(Germany).Theabsorbancewasthen measuredat520and700nm.Theexperimentwascarriedoutin triplicateandtheconcentrationofanthocyaninwascalculatedas follows:

Totalmonomericanthocyanin(cyd−3−glu,mg/L) =x=A×MW



×DF×103

×l

whereA=(A520nm–A700nm)pH1.0–(A520nm–A700nm)pH4.5;MW (molecularweight)=449.2g/molforcyanidin-3-glucoside (cyd-3-glu);DF=dilutionfactor establishedinD;l=pathlengthincm;



=26900molarextinctioncoefficient(L×mol−1×cm−1)for cyd-3-glu;and103=factorforconversionfromgtomg.

2.7. Determinationofantioxidantactivity

DPPHisastableradicalwithadeeppurplecolor.Reactionwith otherradicals,electrons,orhydrogenatomsleadstolossofcolor at515nmand lossoftheEPRfreeradicalsignal(Schaichetal., 2015).Theantioxidantactivityofcrudeextract andfractionsof

(4)

Table1

Totalphenolics,totalflavonoids,totalmonomericanthocyaninscontents,andantioxidantactivityofRhamnuslaternusL.leavesextractandfractions.

Fraction Totalphenolic contents (␮gGAE/mL) Totalflavonoids (␮gQE/mL) Totalmonomeric anthocyanins (mgc3g/L) Antioxidantactivity (%)DPPHinhibition) Crudeextract CE 155.60±0.77a2 60.22±5.76a3 0.0±0.0 66.83±3.88a3 Fractionsafter defatting INT 165.51±7.87a1 156.39±9.02a1 0.0±0.0 90.36±0.45a2 HF 245.53±11.58a2 163.29±12.55a1 0.0±0.0 80.14±0.52a1

FractionsthroughC–18 EA1 317.47±0.65b2 103.18±5.96b2 0.0±0.0 90.81±2.46b1

EA2 78.91±7.72b4 13.53±0.57b3 0.0±0.0 25.93±5.41b2

AM 712.58±4.35b1 705.30±2.04b1 0.0±0.0 86.04±0.09b1

AW 204.88±4.14b3 0.00±0.00b4 0.0±0.0 12.60±1.24b3

CE:crudeextract;INT:intermediatefraction;HF:hexanefraction;EA1:ethylacetatefraction1;EA2:ethylacetatefraction2(containingwater);AW:aqueousfraction (containingorganicsugars);AM:acidifiedmethanolfraction(seeFig.1fordetailedseparationmethod);GAE:gallicacidequivalent;QE:quercitinequivalent;C3G:

cyanindin-3-glucoside.a,barenotationsforcomparisonbetweensamplesand1-4arenotationsforthelevelofstatisticaldifferences.

theextractwasdeterminedbymeasuringtheDPPHfreeradical scavengingactivity(Dudonneetal.,2009).TheDPPH•solutionin methanol(6×10−5M)wasprepared,and300␮Lofthissolution wasmixedseparatelywith10␮Lofcrudeextractandallfractions (INT,HF,AW,EA1,EA2,andAM)inflatbottomwells,byusingBMG LABTECHFLUOstarOmegaplatereader(Germany)setat37◦C.After 20minofincubation,adecreaseintheabsorbanceat517nmwas measured(Asample).Acontrolcontaining10␮Lofmethanolinthe DPPH• solutionwaspreparedanditsabsorbancewasmeasured (Acontrol).DPPHisafreeradicalthatproducesablue–violet solu-tioninmethanol.Inthepresenceofantioxidantcompounds,DPPH radicalisreduced,producinganon-colormethanolsolution.The experimentwascarriedoutintriplicate.Radicalscavengingactivity wascalculatedusingthefollowingformula:

%inhibition= AbscontrolAbs−Abssample

control ×

100

whereAbscontrolwastheabsorbanceofcontrolandAbssamplewas theabsorbanceofsample.

2.8. HPLC-DADanalysis

Theanalysisforphenoliccompoundswasperformedonthe Agi-lent 1200seriesrapidresolution liquid chromatograph(Agilent Technologies,SantaClara,CA)consistingofavacuumdegasser,an auto-sampler,abinarypumpanddiode-arraydetection(DAD) sys-tem.DataanalysiswasperformedwithAgilentHPLCChem-Station software. This instrument was equipped with a Phenomenex Prodigy5ODS-2column(4.60mm×250mm,5micron,CA,USA). Sampleswere centrifugedat2655×g for10minprior toHPLC injection.Simultaneous monitoringwasperformedfor determi-nationat254,280,300,520,and640nm;andspectraldatawere collectedfrom200to700nm.Thecolumntemperaturewasset at30◦C,andtheinjectionvolumewas20␮L,withaflowrateof 0.5mL/min.Acidifiedwater(6%aceticacid,v/v)and acetonitrile wereusedasmobilephasesAandB,respectively(Chirinosetal., 2008).Thegradientwasprogrammedasfollows:0–40min,0–25% B;40–80min,25–85%B;80–90min,85–100%B;90–95min,100%B. Allidentifiedphenoliccompounds(phenolicacidsandflavonoids) werequantifiedwithexternalstandards,usingcalibrationcurves. Thestandardresponsecurvewasalinearregressionfittedtovalues obtainedateachconcentrationwithintherangeof12.5–200␮g/mL forphenolicacidsand20–350␮g/mLforflavonoids.

2.9. Statisticalanalysis

Theexperimentalresultswereexpressedasmeans±standard deviation for triplicate measurements. Correlation analysis of antioxidantactivity(Y)versusthetotalphenoliccontent(X)and flavonoidcontent(X)wascarriedoutusingthecorrelation

pro-graminMicrosoftExcelsoftware.Differencesbetweenfractions weredeterminedbyANOVAprocedures,followedbytheTukey’s honestly significantdifference(HSD)at P<0.05 usingstatistical software(SASVersion7.0,Trialversion8.0.7.1).

3. Resultsanddiscussion

3.1. Quantificationofphenoliccompounds

Solublephenoliccompoundscanbeisolatedeasilyfromplant tissue by extraction into methanol (Vermerris and Nicholson, 2007),whichisthemostsuitablesolventduetoitsabilitytoinhibit the action of polyphenol oxidase, that causes the oxidation of polyphenols(LimandQuah,2007).Themethanolextractivevalue (yield)fromleavesofR.alaternusL.was22%ofplantpowder(PPW). Thetotalphenolicandflavonoidcontentsofcrudeextract(CE)were 155.60±0.77␮gGAE/mLand60.22±5.76␮gQE/mL,respectively (Table1).Consideringtheextractionyield,theresultsrepresent 17.13±0.09mgGAE/gPPWand6.63±0.63mgQE/gPPW, respec-tively.

Determinationofthetotalmonomericanthocyanincontentsby thepHdifferentialmethodwasbasedontheanthocyaninstructural transformation,thatoccurswithachangeinpH(coloredatpH1.0 andcolorlessatpH4.5)(Lee, 2005).Theanalysisofmonomeric anthocyaninshowednochangeincolororabsorbancebetweenpH 1.0andpH4.5,whichindicatestheabsenceofmonomeric antho-cyaninincrudeextract(CE)ofR.alaternusL.

Plantcrude extractsusuallycontainlargeamountsof carbo-hydratesand/orlipoidalmaterial.Theconcentrationofphenolics in the crude extract may be low. To concentrate and obtain polyphenol-rich fractions before analysis, strategies including sequential extraction or liquid–liquid partitioning and/or solid phase extraction,basedonpolarityandacidityhavebeen com-monlyused. In general,elimination of lipoidal material can be achievedbywashingthecrude extractwithnon-polarsolvents, suchashexane,dichloromethane,orchloroform(DaiandMumper, 2010).However, in thepresent study, defatting step gave rise to three phases, HF,INT, and AQ (aqueous solution). The non-phenolic compounds were eliminated, but also the phenolic compoundswerefoundinHFandINTfractions,withthe quanti-tiesof245.53±11.58and165.51±7.87GAE␮g/mL,respectively (Table1).Consideringthedilution factor,theseamounts repre-sent3.44±0.16and1.45±0.07%oftotalphenoliccontentincrude extract(CE),respectively.Theflavonoidcontentwas66.51±5.11 and94.49±5.45%oftotalphenoliccontentinHFandINT, respec-tively.

ReversephaseC18cartridgeshavebeenmostwidelyusedin phenolic compounds separation (Nayak et al., 2011). After the aqueous sample was passed through preconditioned C18 car-tridges,thecartridgeswerewashedwithacidifiedwatertoremove

(5)

Fig.2. Linearcorrelationoffreeradicalscavengingactivity(Y)intermsof%DPPHinhibitionversusthetotalphenoliccompounds(TPC)(X)andversusflavonoidcontent

(X)inascendingorderconcentrations(a)and(b)forcrudeextract(CE),intermediatefraction(INT)andhexanefraction(HF),(c)and(d)forelutedfractionsthroughreverse

phaseC-18Sep-Pakcolumn.

sugar, organicacids, and other water-solubleconstituents (Dai andMumper,2010;Lacombeetal.,2012).Thepolyphenolswere thenelutedwithabsolutemethanoloraqueousacetone(Daiand Mumper,2010).Monomericphenolicacidswerethenelutedwith ethylacetatefollowedbyelutionofanthocyaninsand proantho-cyanidinswithacidifiedmethanol(Lacombeetal.,2012).

Theelutionofdefattedsolution(aqueoussolution(AQ))by C-18 Sep-Pakshowedthepresence of phenolic compoundsin all fractionsofEA1, EA2,AM,andAW.Thetotal phenolic contents of24.16±0.04, 6.01±0.59,54.24±0.33 and 15.59±0.22%were foundin EA1, EA2, AM, and AW fractions, respectively, with a highamountofelutioninAMfraction,whichisconstitutedwith 98.98±0.29%offlavonoidoftotalphenoliccontentinAMfraction. Itwasobservedthatasignificantamountofphenoliccompounds werelostduringwashingoftheC18columnwithacidifiedwater. Theflavonoidswerepresentinallelutedfractionsofextractexcept inAW.Theresultsconfirmedtheabsenceofanthocyanininall frac-tions,eveninthefractionthatelutedwithacidifiedmethanol(AM) (Table1).

3.2. Antioxidantactivity

TheantioxidantactivityusingscavengingofDPPHfreeradicals wascorrelatedwiththetotalphenolic,flavonoidcontentsofcrude extractandallfractions(INT,HF,AW,EA1,EA2,andAM).Thefree radicalscavengingactivityshowedthattheINTfractionhadthe higheractivity,witharateof90.36±0.45%,followedbyHFwith 80.14±0.52%andCEwith66.83±3.88%.Fortheelutedfractions derivedfromtheaqueoussolution(AQ),thehigheractivityoffree radicalscavengingwasobservedinEA1 fraction(90.81±2.46%) followed by AM (86.04±0.09%), EA2 (25.93±5.41%) and AW

(12.60±1.24%)fractiondespitethehigherquantitiesoftotal phe-nolicandflavonoidcontentsinAMfractioncomparedwithEA1 (Table1).Correlationanalysis(Fig.2)of freeradicalscavenging activityshoweddifferentlevelsoflinearpositivecorrelationwith totalphenolicandflavonoidcontentsinallfractions.Furthermore, thecorrelationresultsoftheantioxidantactivity(Y)versustotal phenolic(X)andflavonoid(X)incrudeextract(CE),INTandHF fractions(Fig.2aandb)suggestthatonly17.52%ofthe antioxi-dantcapacitydependonthetotalphenoliccontents.However,for flavonoid,theantioxidantactivitydependencewas87.36%,with partialaccordance tothestatisticallysignificantdifferencelevel (Table1).Theantioxidantactivityoftheelutedfractionsderived fromtheaqueoussolution(AQ)showedadependenceonthetotal phenoliccontent(Fig.2c)andflavonoid(Fig.2d),witharateof 72.43%and62.97%,respectively,whichwasinpartialaccordance withthestatisticallysignificantdifferenceleveloftotalphenolic contentandwithnoaccordanceforflavonoidcontent.

Inpreviousstudies,ithasbeenreportedthattheantioxidant activitiesofmanyplantextractswereproportionaltotheir phe-noliccontent,suggestingacausativerelationshipbetweenthem (Nayak etal., 2013), which ismainly due totheredox proper-tiesofphenoliccompounds,whichallowthemtoactasreducing agents,hydrogendonors,andsingletoxygenquenchers.Theymay alsohaveametalchelatingpotential(Javanmardietal.,2003).The antioxidantactivityisstronglydependentonthemodel system inwhichitisevaluated,andasingleanalyticalassaytomeasure theantioxidantactivitymaybeinadequate.Thepolarityofboth theextractingandthereactingmediumduringtheassaysis usu-allydeterminedfortheprotectionagainstoxidation(Moureetal., 2001).Forthis,theevaluationofantioxidantsmustbefollowed byassayswithothersystems,aslipidsinmicellarsystems,bulk

(6)

Table2

Identificationofindividualphenoliccompoundsandanthraquinonesasagroupofphenoliccompoundsat280nmusingHPLC-DADsystem.

Nameofphenolics Compoundnotations Retentiontimes Maximumabsorbance(200–700nm)

Rutin 1 38.03 256,355 Antraquinones 2 a a Quercetin-3-rhamnoside 3 54.55 231,255,371 Kaempferol 4 59.34 232,265,336 Gallicacid 5 8.73 232,270 p-Coumaricacid 6 36.20 214,234,312 Ferulicacid 7 39.52 220,226,238,323 Luteolin 8 54.34 230,253,347

a17peaksofanthraquinoneswithadifferentretentiontimesandabsorbance.Identificationofspectraabsorbanceofanthraquinonesbycomparingwithbibliography

(Markovi ´cetal.,2008).

oils,foods,etc.,becausethemorepotentprotondonorisnot nec-essarily thebestantioxidantin differentsystems(Franco etal., 2008).However,phenoliccompoundsdonotcontributeto100%of antioxidantactivityinplantextracts.Somecontributionmayalso comefromthepresenceofotherantioxidantsecondary metabo-lites,suchasvolatileoils,carotenoids,andvitamins(Javanmardi etal.,2003).Moreover,ithasbeenreportedthatthecontentof chlorophyllscontributedtotheantioxidantcapacityandstudies haveshownthatchlorophyllsactaselectrondonors,reducingfree radicalssuchasDPPH(Fernandez-Orozcoetal.,2011).Thestudy concludedthatthesolubilityofphenoliccompoundsderivedfrom defattingandfractionationintheevaluatedantioxidantsystem, qualitativeeffectofphenoliccompoundsindifferentfractions,the presenceofchlorophyllinCE,INT,andHFandtheeventual pres-enceofothermetabolitesmayberesponsiblefortheantioxidant capacity.

3.3. DeterminationofphenoliccompoundsHPLCanalysis

TheHPLC-DADmethoddevelopedforthis studyachievedan appropriate separation among the fourteen standards and the methodvalidationdataobtainedforthesevenindividualidentified phenoliccompoundsandanthraquinonesasagroupofphenolic compoundsat280nmisshowninTable2.HPLCprofileofall frac-tionsis summarizedinTable3andchromatogramsrecordedat 280nmfor allfractionsareshown inFig.3.Thepeaksof inter-estwere identified by theirretention time and UV–vis spectra insamplesandstandards.TheHPLCprofileofallfractionsofthe resultingsolutionsofthedefatting(INTandHF)andfractionation oftheretainedcompoundsofaqueoussolution(AQ)bytheC-18 Sep-Pak(EA1,EA2,AW,AM)showedseveralpeakscorresponding todifferentphenolic compoundswithquantitativeand qualita-tivedifferenceofidentifiedcompounds.Presenceofhighamounts oftotalphenolicandflavonoidcontentsinAMfraction(Table1) were confirmed by HPLC analysis with reference to the peaks recorded(36–53min), withveryhighabsorbance(Fig.3F),with characteristicspectraabsorbanceofflavonoids,withclearspectra forpeakswithretentiontimesof36.885,43.458,and52.638min (Supplement Fig.1a). For the qualitative, theidentified pheno-liccompoundswererutin(HFandEA2),quercetin-3-rhamnoside (HF,INT,and EA1,)kaempferol (HF,INT,EA1,EA2, and AM), p-coumaricacid(EA1),ferulicacid(EA1),gallicacid(AW),luteolin (AM),antraquinones(HF,INT,EA1,EA2,andAM)andintheend chlorophyll(HFandINT)asnophenoliccompounds.

Anthocyaninsareresponsibleforthered,purple,andbluehues presentinfruit,vegetables,andgrains;have typicalabsorbance inthevisibleband400and600,withamaximumaround520nm (Lee,2005).Inthepresentstudy,theresultsofcolorimetricmethod fortotalmonomericanthocyaninwereconfirmedbyrecordingthe chromatogramsofallfractionsat520nm,whicharecharacterized bytheabsenceofpeaks.

Anthraquinone derivatives are a group of phenolic com-pounds, present in plants, usually in theform of oxidised 1,8-dihydroxyanthronewitha specificsubstitutionpattern(Kosalec etal.,2013).Emodin isabiologicallyactive,naturally-occurring anthraquinonederivativefromplant(Suchetaetal.,2011),presents spectraabsorbanceinmethanolbetween200and580nm,with absorption maxima (Amax) located at 203.10, 221.72, 253.59, 263.85, 289.43, and 436.83nm (Markovi ´c et al., 2008). In the presentstudy,17peakswithdifferentretentiontimesand absorp-tionmaximaweredetected(Table3)andconstitute6.18%ofthe areaoftotalfractions,withtypicalspectraofanthraquinones,for example,thepeakwithretentiontimesat75.88min,which repre-sents20.98%oftheareaofHFfraction,presentsspectraabsorbance between200and510nm,withabsorptionmaxima(Amax)located at204,230,253,266,288,and440nm(SupplementFig.1.b).

Chloroplasticpigmentsarelipophiliccompounds( Fernandez-Orozcoetal.,2011)andchlorophyllsasnophenoliccompound(in allknownforms)havetwomajorabsorptionbandsinthevisible range,“red”and“blue”andabsorptionmaxima(Amax)for Chloro-phyll“a”and“b”inacetonearelocatedat662.10and645.50nm, respectively(Zvezdanovi ´cetal.,2009).Inthiscontext,theINTand lipophilicHFfractionspresentthepeaksatdifferentretentiontimes (between88and92min)withtypicalspectraofchlorophyll (Sup-plementFig.1.c).

Polyphenols are hydrophilic (Fernandez-Orozco et al., 2011) andinordertoeliminatethelipophiliccompoundssuchaslipids, carotenoids,andchlorophyllfromtheplantextract,hexanewas used(DaiandMumper,2010).In contrast,theresultsof colori-metric method for total phenolic and flavonoid contents were confirmedinHPLCprofileofINTand HFfractions,bythe pres-enceofpeakswithspectracharacteristicofphenoliccompounds. Indeed,substantialquantitativelosseswererecordedupon defat-ting.60.88%ofanthraquinones,53.47%ofkaempferoland49.43% ofquercetin-3-rhamnosidewerelost,whichrepresentsa distribu-tionrespectivelyinINTandHFwith46.93and13.96%;21.46and 32.01%;12.43and37.00%.Forfractionsderivedfromtheaqueous solution(AQ)(C-18Sep-Pakelutedfractions),thesecompounds arepresentrespectivelyinEA1,EA2,andAMwith32.94,4.43,and 1.75%foranthraquinones,33.13,7.62,and5.79%forkaempferol and50.57%onlyinEA1forquercetin-3-rhamnoside.Unlikethese results,thefractionsderivedfromtheaqueoussolution(AQ),100% ofrutin(withtracesinHF)wasfoundinEA2;100%ofluteolinin AM;100%ofp-coumaricacidandferulicacidpresentinEA1and 100%ofqualitativelossesofgallicacidwasrecordeduponwashing (AW).

Around 12.85% of the total areaof total peaks detectedby HPLC-DADat280nmofidentifiedcompoundsforallfractionsis constitutedby48.06% ofanthraquinones,26.12% ofkaempferol, 9.46%ofluteolin,7.97%ofquercetin-3-rhamnoside,5.53%of gal-licacid,1.26%ofp-coumaricacid, 0.99%offerulicacid,0.34%of rutinand0.27%ofchlorophyll.

(7)

K. Moussi et al. / Industrial Crops and Products 74 (2015) 858–866 Table3

Quantificationofidentifiedindividualphenoliccompoundsandanthraquinonesasagroupofphenoliccompoundsat280nmusingHPLC-DADsystem.

Fractions280nm TotalareamAUas Identifiedcompounds Time(min) Area(mAUas) Area(%)infraction Quantity(␮g/gPPW)

HF 59858.500 Rutin 38.80 90.30 0.15 UQa Antraquinonesa 53.7555.5158.00 58.6065.3866.60 75.8886.7293.33 68.80 557.90104.80 574.90561.90 879.4012,559.90 3539.50207.40 0.12 0.93 0.18 0.96 0.94 1.4720.985.91 0.35 – Quercetin-3-rhamnoside 54.41 780.00 1.30 43.35 Kaempferola 59.45 3490.20 5.83 INT 103010.000 Quercetin-3-rhamnoside 54.55 3993.30 3.88 272.63 Antraquinonesa 58.72 75.66 3152.10 6598.30 3.06 6.41 – Kaempferola 59.45 8960.60 8.70 Obtainedfractionsby C-18Sep-PakVac fractionation AW 13594.100 Gallicacid 8.66 6973.10 51.30 470.50 p-coumaricacid 36.48 1391.80 1.82 19.79 Ferulicacid 39.78 1097.80 1.44 28.45 Quercetin-3-rhamnoside 54.49 4052.20 5.30 276.84 EA1 7,650,000.000 Antraquinonesa 55.54 58.72 61.74 75.85 3659.1 9404.60 1510.80 2510.00 4.79 12.30 1.98 3.28 – Kaempferola 59.46 6883.60 9.00 Rutin 38.83 283.30 4.71 24.06 AE2 6016.595 Antraquinonea 58.59 181.00 3.01 Kaempferola 59.40 124.70 2.07 AM 602701.000 Antraquinonea 53.82 7157.00 1.19 Luteolina 54.29 10480.10 1.74

(8)

Fig.3.Identificationofselectedindividualphenoliccompoundsandanthraquinonesasagroupofphenoliccompoundsindifferentfractionsofextracti.e.(A)HF,(B)INT,

(D)EA1,(E)EA2,and(F)AMfromleavesofR.alaternusL.Thephenoliccompoundswereidentifiedat280nmusingaHPLC-DADsystem.Phenoliccompoundsidentifiedwere

Rutin(1),antraquinone(2),quercetin-3-rhamnoside(3),kaempferol(4),gallicacid(5),p-coumaricacid(6).ferulicacid(7),andluteolin(8).Phenoliccompoundsofother

peakswereeitherunknown.

At present, the composition of phenolic compounds in R. alaternus L. is still limited. From the previous studies, it is known that the extracts from R. alaternus L. are rich in compounds as anthraquinones and flavone heterosides (Stocker et al., 2004). In addition, four anthraquinine agly-cones (emodin, chrysophanol, alaternin, and physcion) were isolated (Ben Ammar et al., 2008; Izhaki et al., 2002) from the above-ground parts of the plant, with emodin being the most abundant of these (Izhaki et al., 2002). Moreover, the leaves extracts showed the presence of various quantities of anthraquinones;coumarins;tannins;andflavonoids(BenAmmar etal.,2005), askaempferol3-O-isorhamninoside, rhamnocitrin-3-O-isorhamninoside, rhamnetin-3-O-isorhamninoside, apigenin (BenAmmaretal.,2009),kaempferolandquercetin(BenAmmar etal.,2008,2009).Incomparison,thepresenceofanthraquinones

andkaempferolwasconfirmed;apigeninwasabsent;andluteolin, quercetin-3-rhamnoside,p-coumaricacid,ferulicacid,gallicacid, andrutinarethenewlyidentifiedcompoundsinR.alaternusL.The previousstudiesshows,thattheanthraquinonederivativespresent inplantsexhibitlaxativeeffects(Kosalecetal.,2013).Infact,theuse ofR.alaternusL.intraditionalmedicineaslaxativemayberelated principallytothepresenceofanthraquinones.

4. Conclusion

Inthisstudy,HPLC-DADanalysisofmethanolextractofleaves shows thecharacterizationofsix newphenolic compounds.All fractionsobtainedindefatting(INTandHF)andfractionationby C-18Sep-Pakcartridges(EA1,EA2,AW,AM)ofmethanolextract ofR.alaternusL.showedthepresenceofphenoliccompoundswith

(9)

qualitativeandquantitativedifferences.Inordertoeliminatethe lipoidalmaterialusinghexane,considerablequalitative,and quan-titativelossesofphenoliccompoundswereobservedintheINTand HFfractions.InthewashingstepofC-18Sep-Pakcartridges con-tainedaqueoussolution(AQ),inordertoremovesugarandorganic acids;theresultingacidifiedwatershowstheeliminationof phe-noliccompounds.Forantioxidantsactivity,allobtainedfractions exhibitedfreeradicalscavengingactivity.Anthraquinonescanbe consideredasmultipotentantioxidants.Inadditiontotheir antiox-idantactivity,theyareshowntopossessotherbiologicalactivities, includingantibacterial, antiviral,antifungal, anticancer (Kosalec etal.,2013),andpossesspotentantimicrobialactivityagainstskin infectingpathogenicorganisms(Suchetaetal.,2011).R.alaternus L.,byitsrichnessofanthraquinones,canbeapotentialcandidate forinvestigationandtherapyasantimicrobialandanticancer.

Acknowledgements

WeacknowledgeKatherineDavis-DenticiandMikeDougherty fortheirtechnicalsupportinanalyzingsomeofthephenolic com-pounds.TheauthorsalsothankKaitlynE.Feeneyforherhelpin conductingHPLCanalysis.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.indcrop.2015.06. 015

References

Adedapo,A.A.,Jimoh,F.O.,Koduru,S.,Afolayan,A.J.,Masika,P.J.,2008.Antibacterial

andantioxidantpropertiesofthemethanolextractsoftheleavesandstemsof Calpurniaaurea.BMCComplement.Altern.Med.8,1–8.

Batanouny,K.,abdulRahman,F.,Benhouhou,S.,Chemli,R.,Ghrabi,Z.,Hammouda,

F.,Ismail,S.I.,Abdel-azim,N.S.,Shams,K.A.,Rais,C.,Lamnaouer,D.,2005.A

guidetomedicinalplantsinnorthAfrica.IUCNcentreforMediterranean Cooperation,Malaga(Spain).

BenAmmar,R.,BenSghaier,M.,Boubaker,J.,Bhouri,W.,Naffeti,A.,Skandrani,I.,

Bouhlel,I.,Kilani,S.,Ghedira,K.,Chekir-Ghedira,L.,2008.Antioxidantactivity

andinhibitionofaflatoxinB(1)-,nifuroxazide-,andsodiumazide-induced mutagenicitybyextractsfromRhamnusalaternusL.Chem.Biol.Interact.174, 1–10.

BenAmmar,R.,Bhouri,W.,BenSghaier,M.,Boubaker,J.,Skandrani,I.,Neffati,A.,

Bouhlel,I.,Kilani,S.,Mariotte,A.M.,Chekir-Ghedira,L.,Dijoux-Franca,M.G.,

Ghedira,K.,2009.Antioxidantandfreeradical-scavengingpropertiesofthree

flavonoidsisolatedfromtheleavesofRhamnusalaternusL.(Rhamnaceae):a structure-activityrelationshipstudy.FoodChem.116,258–264.

BenAmmar,R.,Kilani,S.,Abdewahed,A.,Hayder,N.,Mahmoud,A.,Chibani,J.,

Chekir-Ghedira,L.,Ghedira,K.,2005.Invitromutagenicity,antimutagenicity,

andfreeradicalscavengingactivitiesofRhamnusalaternusL.(Rhamnaceae) extracts.Pak.J.Biol.Sci.8,439–445.

Chirinos,R.,Campos,D.,Costa,N.,Arbizu,C.,Pedreschi,R.,Larondelle,Y.,2008.

Phenolicprofilesofandeanmashua(TropaeolumtuberosumRuíz&Pavón) tubers:identificationbyHPLC-DADandevaluationoftheirantioxidant activity.FoodChem.106,1285–1298.

Dai,J.,Mumper,R.J.,2010.Plantphenolics:extraction,analysisandtheir

antioxidantandanticancerproperties.Molecules15,7313–7352.

Dudonne,S.,Vitrac,X.,Coutiere,P.,Woillez,M.,Merillon,J.-M.,2009.Comparative

studyofantioxidantpropertiesandtotalphenoliccontentof30plantextracts ofindustrialinterestusingDPPH,ABTS,FRAP,SOD,andORACassays.J.Agric. FoodChem.57,1768–1774.

Eugène-Humbert,G.,1952.Unroiqui,selonPlutarque,futleplussavantdes

ècrivainsgrecs.Revued’histoirePharm.40,353.

Fernandez-Orozco,R.,Roca,M.,Gandul-Rojas,B.,Gallardo-Guerrero,L.,2011.

DPPH-scavengingcapacityofchloroplasticpigmentsandphenoliccompounds ofolivefruits(cv.Arbequina)duringripening.J.FoodCompos.Anal.24, 858–864.

Franco,D.,Sineiro,J.,Rubilar,M.,Sánchez,M.,Jerez,M.,Pinelo,M.,Costoya,N.,

Nú ˜nez,M.J.,2008.Polyphenolsfromplantmaterials:extractionand

antioxidantpower.EJEAFChe7,3210–3216.

Guarrera,P.M.,2006.Householddyeingplantsandtraditionalusesinsomeareas

ofItaly.J.Ethnobiol.Ethnomed.2,1–7.

Gulias,J.,Traveset,A.,Riera,N.,Mus,M.,2004.Criticalstagesintherecruitment

processofRhamnusalaternusL.Ann.Bot.(Lond.)93,723–731.

Hostettmann,K.,Marston,A.,2002.Twentyyearsofresearchintomedicinal

plants:resultsandperspectives.Phytochem.Rev.1,275–285.

Hostettmann,K.M.,Marston,A.,Ndjoko,K.,Wolfender,J.L.,2000.Thepotentialof

Africanplantsasasourceofdrugs.Curr.Org.Chem.4,973–1010.

Ignat,I.,Volf,I.,Popa,V.I.,2011.Acriticalreviewofmethodsforcharacterisationof

polyphenoliccompoundsinfruitsandvegetables.FoodChem.126,1821–1835.

Izhaki,I.,Tsahar,E.,Paluy,I.,Friedman,J.,2002.Withinpopulationvariationand

interrelationshipsbetweenmorphology,nutritionalcontent,andsecondary compoundsofRhamnusalaternusfruits.NewPhytol.156,217–223.

Javanmardi,J.,Stushno,C.,Lockeb,E.,Vivanco,J.M.,2003.Antioxidantactivityand

totalphenoliccontentofIranianOcimumaccessions.FoodChem.83,547–550.

Kosalec,I.,Kremer,D.,Locatelli,M.,Epifano,F.,Genovese,S.,Carlucci,G.,Randic,

M.,Koncic,M.Z.,2013.Anthraquinoneprofile,antioxidant,andantimicrobial

activityofbarkextractsofRhamnusalaternus,R.,fallax,R.intermediaandR. pumila.FoodChem.136,335–341.

Lacombe,A.,Wu,V.C.H.,White,J.,Tadepalli,S.,Andre,E.E.,2012.Theantimicrobial

propertiesofthelowbushblueberry(Vacciniumangustifolium)fractional componentsagainstfoodbornepathogensandtheconservationofprobiotic Lactobacillusrhamnosus.FoodMicrobiol.30,124–131.

Lardos,A.,2006.ThebotanicalmateriamedicaoftheIatrosophikon—acollectionof

prescriptionsfromamonasteryinCyprus.J.Ethnopharmacol.104,387–406.

Lee,J.,2005.Determinationoftotalmonomericanthocyaninpigmentcontentof

fruitjuices,beverages,naturalcolorants,andwinesbythepHdifferential method:collaborativestudy.J.AOACInt.88,1269–1278.

Lim,Y.Y.,Quah,E.P.L.,2007.Antioxidantpropertiesofdifferentcultivarsof

Portulacaoleracea.FoodChem.103,734–740.

Maestri,D.M.,Nepote,V.,Lamarque,A.L.,Zygadlo,J.A.,2006.Naturalproductsas

antioxidants.In:Imperato,F.(Ed.),Phytochemistry:AdvancesinResearch. ResearchSignpot,Trivandrum,India,pp.105–135.

Markovi ´c,Z.,Manojlovi ´c,N.,Zlatanovi ´c,S.,2008.Electronicabsorptionspectraof

substitutedanthraquinonesandtheirsimulationusingZINDO/Smethod.J. Serb.Soc.Comput.Mech.2,73–79.

Mati,E.,deBoer,H.,2011.EthnobotanyandtradeofmedicinalplantsintheQaysari

Market,KurdishAutonomousRegion,Iraq.J.Ethnopharmacol.133,490–510.

Moure,A.,Franco,D.,Sineiro,J.,Domı´ınguez,H.,Nú ˜nez,M.a.J.,Lema,J.M.,2001.

AntioxidantactivityofextractsfromGevuinaavellanaandRosarubiginosa defattedseeds.FoodRes.Int.34,103–109.

Nayak,B.,Berrios,J.D.J.,Powers,J.R.,Tang,J.,2011.Thermaldegradationof

anthocyaninsfrompurplepotato(Cv.PurpleMajesty)andimpacton antioxidantcapacity.J.Agric.FoodChem.59,11040–11049.

Nayak,B.,Liu,R.H.,Tang,J.,2013.Effectofprocessingonphenolicantioxidantsof

fruits,vegetablesandgrainsareview.Crit.Rev.FoodSci.Nutr.,http://dx.doi.

org/10.1080/10408398.2011.654142

Rawlinson,G.,Blakeney,E.H.,1910.TheHistoryofHerodotus.J.M.Dent&Sons

Ltd,London.

Schaich,K.M.,Tian,X.,Xie,J.,2015.Hurdlesandpitfallsinmeasuringantioxidant

efficacy:acriticalevaluationofABTS,DPPH,andORACassays.J.Funct.Foods 14,111–125.

Slikkerveer,L.,2006.Thechallengeofnon-experimentalvalidationofmacplants,

towardsamultivariatemodeloftransculturalutilizationofmedicinal, aromaticandcosmeticplants.In:Bogers,R.J.,Craker,L.E.,Lange,D.(Eds.), MedicinalandAromaticPlants:Agricultural,Commercial,Ecological,Legal, Pharmacological,andSocialAspects.Springer,pp.1–28.

Spigno,G.,Tramelli,L.,DeFaveri,D.M.,2007.Effectsofextractiontime,

temperatureandsolventonconcentrationandantioxidantactivityofgrape marcphenolics.J.FoodEng.81,200–208.

Stocker,P.,Yousfi,M.,Djerridane,O.,Perrier,J.,Amziani,R.,ElBoustani,S.,Moulin,

A.,2004.EffectofflavonoidsfromvariousMediterraneanplantsonenzymatic

activityofintestinalcarboxylesterase.Biochimie86,919–925.

Sucheta,G.A.,Asha,K.A.,Tushar,G.V.,Nirmala,D.R.,Jyoti,S.P.,2011.

Standardizationofemodin-anbioactivemolecule,usingspectralmethods.Int. J.DrugDev.Res.3,259–265.

Vasisht,K.,Kumar,V.,2004.CompendiumofMedicinalandAromaticPlants

AFRICA.UnitedNationsIndustrialDevelopmentOrganizationandthe InternationalCentreforScienceandHighTechnology.

Velioglu,Y.,Mazza,G.,Gao,L.,Oomah,B.,1998.Antioxidantactivityandtotal

phenolicsinselectedfruits,vegetablesandgrainproducts.J.Agric.FoodChem. 46,4113–4117.

Vermerris,W.,Nicholson,R.L.,2007.Isolationandidentificationofphenolic

compounds.In:PhenolicCompoundBiochemistry.Springer,pp.151–190.

Zeng,Y.,Guo,L.-P.,Chen,B.-D.,Hao,Z.-P.,Wang,J.-Y.,Huang,L.-Q.,Yang,G.,Cui,

X.-M.,Yang,L.,Wu,Z.-X.,Chen,M.-L.,Zhang,Y.,2013.Arbuscularmycorrhizal

symbiosisandactiveingredientsofmedicinalplants:currentresearchstatus andprospectives.Mycorrhiza23,253–265.

Zvezdanovi ´c,J.,Cveti ´c,T.,Veljovi ´c-Jovanovi ´c,S.,Markovi ´c,D.,2009.Chlorophyll

bleachingbyUV-irradiationinvitroandinsitu:absorptionandfluorescence studies.Radiat.Phys.Chem.78,25–32.

Figure

Fig. 1. Schematic diagram of fractionation of extract of Rhamnus alaternus L. leaves.
Fig. 2. Linear correlation of free radical scavenging activity (Y) in terms of % DPPH inhibition versus the total phenolic compounds (TPC) (X) and versus flavonoid content (X) in ascending order concentrations (a) and (b) for crude extract (CE), intermediat
Fig. 3. Identification of selected individual phenolic compounds and anthraquinones as a group of phenolic compounds in different fractions of extract i.e

Références

Documents relatifs

Hence, it was shown that the lipase-assisted generation of percaprylic acid in the presence of hydrogen peroxide is more efficient for the epoxidation of allylic double bonds of the

Formation of Haloacetonitriles, Haloacetamides, and Nitrogenous Heterocyclic Byproducts by Chlo- ramination of Phenolic Compounds... All molecules led to the

The contrast ratio C(λ) versus the wavelength is reconstructed and shown in Figure 4f), and the maximal contrast value are 1783 and 1910 for s with 53 and 58 nm GST thickness

Digital records with a diagnosis of jaundice were classi- fied into three categories: i) clinical jaundice without la- boratory confirmation (excluded from the analysis), ii)

Finally, the evolution of the NS central density and rota- tion angular velocity (spin-up) is followed computing the equilibrium configurations from the numerical solution of

In particular, under strong disruptive viability selection ( s  0:2), mutual mate choice evolves even if choosy males reallocate little courtship effort toward preferred females (α

As for any traits, expression levels of different genes may be genetically correlated, to an extent that depends on their regulation mechanism: cis-regulatory sequences that

Indeed, we found that HACE1(S385E) is catalytically active on Rac1 in vitro (Fig.  4f ), though it displays low activity in cells (Fig.  4b ), suggesting the combined involvement of