• Aucun résultat trouvé

Search for the Standard Model Higgs boson decay to μ+μ− with the ATLAS detector

N/A
N/A
Protected

Academic year: 2022

Partager "Search for the Standard Model Higgs boson decay to μ+μ− with the ATLAS detector"

Copied!
20
0
0

Texte intégral

(1)

Article

Reference

Search for the Standard Model Higgs boson decay to μ+μ− with the ATLAS detector

ATLAS Collaboration

ALEXANDRE, Gauthier (Collab.), et al.

Abstract

A search is reported for Higgs boson decay to μ+μ− using data with an integrated luminosity of 24.8 fb−1 collected with the ATLAS detector in pp collisions at s=7and8 TeV at the CERN Large Hadron Collider. The observed dimuon invariant mass distribution is consistent with the Standard Model background-only hypothesis in the 120–150 GeV search range. For a Higgs boson with a mass of 125.5 GeV, the observed (expected) upper limit at the 95% confidence level is 7.0 (7.2) times the Standard Model expectation. This corresponds to an upper limit on the branching ratio BR(H→μ+μ−) of 1.5×10−3 .

ATLAS Collaboration, ALEXANDRE, Gauthier (Collab.), et al . Search for the Standard Model Higgs boson decay to μ+μ− with the ATLAS detector. Physics Letters. B , 2014, vol. 738, p.

68-86

DOI : 10.1016/j.physletb.2014.09.008

Available at:

http://archive-ouverte.unige.ch/unige:55783

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Search for the Standard Model Higgs boson decay to μ

+

μ

with the ATLAS detector

.ATLASCollaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received1July2014

Receivedinrevisedform2September2014 Accepted3September2014

Availableonline8September2014 Editor: H.Weerts

A search is reported for Higgs boson decay to μ+μ using data with an integrated luminosity of 24.8 fb1collectedwith theATLASdetector inpp collisions ats

=7 and 8 TeV atthe CERNLarge Hadron Collider. The observed dimuon invariant mass distribution is consistent with the Standard Model background-only hypothesis inthe120–150 GeV searchrange.For aHiggsbosonwithamass of 125.5 GeV, theobserved (expected) upper limitatthe 95% confidencelevel is 7.0 (7.2)times the StandardModelexpectation.ThiscorrespondstoanupperlimitonthebranchingratioBR(Hμ+μ) of1.5×103.

PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/3.0/).FundedbySCOAP3.

1. Introduction

The Standard Model (SM) describes a wide range of particle physics phenomena toa highdegree ofprecision. Inthe SM,the Brout–Englert–Higgs(BEH)mechanism[1–3]spontaneouslybreaks the electroweak(EW) gauge symmetry and generatesmasses for the W and Z gauge bosons as well asfor the chargedfermions via Yukawacouplings[4–6]. Insearchesforthe Higgsbosonpre- dictedbytheBEHmechanism,theATLAS andCMSCollaborations havediscoveredanewparticle,viadecaysintogaugebosons[7,8], withamassofapproximately125.5 GeVandmeasuredproperties consistentwiththosepredictedbytheSM[9–12].

Higgsbosondecaystobb,¯ τ+τ andμ+μ can bemeasured at the LHC with their SM branching ratios proportional to the squares of the fermion masses. The SM branching ratio for the Hμ+μ decayis21.9×105 foraHiggsbosonmass(mH)of 125GeV[13,14].TheHμ+μdecayhasacleanfinalstatesig- naturethatallowsameasurementoftheHiggsbosoncouplingto second-generationfermions.Thedominantirreduciblebackground isthe Z/γμ+μ process,whichhasanapproximatelythree orders of magnitudehigher production ratecompared to that of theexpectedsignal.

In this Letter a search for the Hμ+μ decay of the SM Higgs boson is presented.This search for the presence of a nar- row Hμ+μ resonance, with a signal width determined by experimentalresolution,isperformedbyfittingtheinvariantmass distribution inthe 110–160 GeV region.This rangeallows deter- mining background shape and normalisation and setting a limit

E-mailaddress:atlas.publications@cern.ch.

on the dimuon decay of the SM Higgs boson with a mass of 125.5GeV.Section2givesadescriptionoftheexperimentalsetup and summarises the data sample andMonte Carlo (MC) simula- tion samplesusedtomodelthesignal process andto developan analytical model for the background processes. Sections3 and 4 describe the event selectionsand categorisation. Analytical mod- els used to describe invariant mass distributions for signal and background processes are discussed inSection 5, andsystematic uncertaintiesaredetailedinSection6.Theresultsarepresentedin Section7.

2. Experimentalsetup,dataandsimulatedsamples

Thissearch isperformedonthedatasamplerecordedin2011 and 2012 by the ATLAS detector in pp collisions at the LHC at

s=7 and 8 TeV, respectively. ATLAS [15] is a general-purpose particle detectorwithacylindrical geometryandconsistsofsev- eral subdetectors surroundingthe interaction point and covering almost the full solid angle.1 The trajectories and momenta of charged particles are measured within the pseudorapidity range of |η|<2.5 by multi-layer silicon pixel and microstrip detec- tors as well as a transition radiation tracker. The tracking sys- tem is immersed in a 2 T magnetic field produced by a su- perconducting solenoid, and is surrounded by a high-granularity

1 ATLAS usesaright-handedcoordinatesystemwithitsoriginatthe nominal interactionpoint(IP)inthecentreofthedetectorandthe z-axisalongthebeam pipe.Thex-axispointsfromtheIPtothecentreoftheLHCring,andthe y-axis points upward.Cylindricalcoordinates(r,φ)areusedinthetransverseplane,φ beingtheazimuthalanglearoundthebeampipe.Thepseudorapidityisdefinedin termsofthepolarangleθasη= −ln tan(θ/2).

http://dx.doi.org/10.1016/j.physletb.2014.09.008

0370-2693/PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/3.0/).FundedbySCOAP3.

(3)

liquid-argon (LAr) electromagnetic samplingcalorimeter covering

|η|<3.2.Anironandscintillatortilehadroniccalorimeterprovides coverageintherange|η|<1.7.TheLArcalorimetersalsoprovide measurements ofelectromagneticandhadronicenergydepositsin theregion1.5<|η|<4.9.The muonspectrometer surroundsthe calorimetersand consists ofthree large air-core superconducting magnetswithatoroidal fieldof0.5 Tinthebarrelregionand1 T intheforwardregions, anda systemofprecision trackingcham- bers; it provides coverage for |η|<2.7. The muon spectrometer alsoincludesfastdetectorsfortriggeringcovering|η|<2.4.

Events were recorded with a trigger [16] requiring at least onemuoncandidatewithtransversemomentum pT>18 GeV for 7 TeVdataandpT>24 GeV for8 TeVdata.Thistriggerisapprox- imately70%efficientformuonswith|η|<1.05 andapproximately 90%efficientformuonswith|η|>1.05.Thedifferencesintheef- ficiencyaremostly duetothedifferentgeometricalacceptanceof themuon triggersysteminthese regions.For8 TeV data,events were alsorecorded with a dimuontrigger requiring atleast two muon candidates with transverse momenta of pT>18 GeV and pT>8 GeV.Afterapplyingdataqualityrequirements,thetotalin- tegratedluminosity oftheselected datasample is4.5±0.1 fb1 for7 TeVdataand20.3±0.6 fb1 for8 TeVdata.Theassociated systematicuncertaintiesaresummarisedinSection6.

At the LHC, SM Higgs boson production is dominated by the gluonfusion(ggF)processwiththenexttwomostimportantcon- tributionsarising fromthevectorbosonfusion (VBF)process and productioninassociation withvector bosons(VH).Thesignal MC samples are generated in 5 GeV steps of the Higgs boson mass from120 GeV to 150 GeV. The ggF and VBF samples are gener- atedatnext-to-leading-order (NLO) inQCD withPowheg[17,18]

withthepartonshoweringmodelledbyPythia8[19]forthe8TeV samples and Pythia [20] for the 7 TeV samples. The CT10 [21]

parton distribution functions (PDFs) are used in Powheg, with the ATLAS Underlying Event Tune, AU2 [22]. The ggF Higgs bo- son pT spectruminPowhegistunedtoagreewiththeprediction fromHRES[23,24];thisprocedureshiftstheHiggsboson pT spec- trumtoslightlysmallervalues.TheVH samplesaregeneratedwith Pythia8,usingAU2andtheCTEQ6[25]PDFs.

ThepredictedSMHiggsbosoncross-sectionsandbranchingra- tios are compiled in Refs. [13,14,26]. The cross section for the ggF processis calculatedat next-to-next-to-leading-order(NNLO) [27–32] in QCD and NLO electroweak (EW) corrections are ap- plied[33,34],assumingthattheQCDandEWcorrectionsfactorise.

Thecross section fortheVBF process iscalculated withfull NLO QCDandEWcorrections [35–37]andapproximateNNLOQCDcor- rections[38].ThecrosssectionfortheVH processiscalculatedat NNLO[39,40] inQCD, andNLO EWradiative corrections[41] are applied.Thebranchingratiosfor Hμ+μ decaysasafunction ofmH arecalculatedusingHdecay[42].

ThefollowingMC eventgeneratorsare usedto simulateback- ground processes: Alpgen [43] + Herwig [44] for W +jets, MC@NLO[45]+Herwigfortt,¯ t W andtb,AcerMC[46]+Pythia for tqb, Powheg + Pythia8 for Z/γ and qq¯W W , gg2WW [47]+HerwigforggW W ,Powheg[48]+PythiaforW Z and Z Z andMadGraph[49,50]+PythiaforWγ.W W ,W Z ,Z Z and Wγproductionarereferredtoasdibosonproductionlaterinthe text.Inaddition,contributionsfromW bosonproductioninasso- ciationwithoneormorejets(W+jets),whereoneofthejetsis misidentifiedasamuon,areestimatedusingadatacontrolregion containingsame-signdimuoneventsasdescribedinRef.[9].

ThesignalandbackgroundMC samplesareprocessedthrough theATLASdetectorsimulation[51]basedonGeant4[52],followed bythe samereconstruction algorithms that areused forcollision data.The effects arising from multiple collisions in the same or neighbouring bunch crossings (pile-up) are included in the MC

simulation, matching the pile-up conditions of the selected data sample.

3. Eventselection

Events are required to contain at least one reconstructed pp collisionvertexcandidatewithatleastthreeassociatedtrackseach withpT>0.4 GeV.Thevertexwiththelargestsumofp2T oftracks isconsidered tobethe primaryvertex. Muon candidates[53]are reconstructed by matchingtracks inthe inner detectorto tracks reconstructed in themuon spectrometer. Inaddition to stringent track quality requirements imposed for muon identification, the muon tracksmust be consistent withhavingoriginatedfromthe primary vertex. All selected muon candidates are required to be within|η|<2.5.Muoncandidatesmustpasstrackandcalorimeter isolation requirements that scalewith the pT of themuon track.

TheisolationiscalculatedasthescalarsumofthepTofadditional tracks or the ET of calorimeter energy deposits within cone of radius R=

(φ)2+(η2)=0.3 aroundthe muon track,nor- malisedbypμ

T.For8 TeVdata,eachmuonwithpμ

T >20(15)GeV isrequiredtohavea normalisedtrackisolationsmallerthan 0.12 (0.08)andanormalisedcalorimetricisolationlessthan0.30(0.18).

For7 TeVdata,equivalentvaluesforpμ

T >15 GeV are0.15and0.2 for trackandcalorimetric isolation, respectively. Due to different pile-up conditions, different isolation criteria are used for7 TeV and8 TeVdata.

Jets are reconstructed from clusters of calorimeter cells us- ing the anti-kt algorithm [54,55] witha radius parameter of0.4.

The selected jets must satisfy ET >25 GeV for |η|<2.4 and ET>30 GeV for 2.4≤ |η|<4.5. Muon candidates overlapping with the selected jets within a cone of radius R=0.4 are re- moved from the analysis. In the pseudorapidity range |η|<2.5, jetsoriginatingfromb-quarksareidentifiedusingab-taggingalgo- rithm[56,57]withanefficiencyofapproximately80%,determined fromtt MC¯ events,andwithamisidentificationrateforselecting light-quark orgluon jets ofless than 1%. The missingtransverse momentum[58],ETmiss,isthemagnitudeofthevectorsumofthe pT of muons, electrons, photons, jetsand clustersof calorimeter cellswith|η|<4.9 notassociatedwiththeseobjects.

Corrections are applied to simulated MC samples in order to account for differences betweendata and MC simulation for the triggerandidentificationefficiencyandforthemuonmomentum scaleandresolution.Thetriggerandreconstructionefficiencycor- rectionsare measuredusing Zμ+μ eventsandarefound to bewithin2%ofunity.Themuonmomentumcorrectionsaredeter- minedbycomparingthereconstructedinvariantmassdistribution of Zμ+μ events in data with that fromsimulated events;

thesecorrectionsarewithin0.1%ofunity.

Hμ+μ candidateeventsare selectedbyrequiringexactly twooppositelychargedmuonswithtransversemomentum pμ1

T >

25 GeV and pμ2

T >15 GeV for theleading andsubleadingmuon, respectively.Selectedeventsmustcontainatleastonemuoniden- tified by the trigger system within a cone of radius R=0.15 centredonthereconstructedmuoncandidate.Thedominantback- groundin this search is Z/γμ+μ production, followedby smallerbackgroundsfromsingleandpairproductionoftopquarks and diboson processes.To suppress backgrounds from top quark pairproductionanddibosonprocesses,eventsarerequiredtohave EmissT <80 GeV. The dimuon invariant mass distribution mμ+μ and the dimuon transverse momentum pμ+μ

T fordata and MC

eventspassing allthe selectionrequirementsso farare shownin Fig. 1.The numberof expectedsignal events formH =125 GeV, the expected background contributions, and the number of ob- served dataeventsinthemμ+μ regionfrom122.5to127.5 GeV

(4)

Fig. 1. Thedistributionofthedimuoninvariantmass(top)anddimuonmomentum (bottom)for7 TeVand8 TeVdatawithalltheselectionrequirementsdescribedin Section3.TheexpectedsignalisshownformH=125 GeV.

are shown in Table 1. The MC background yields are given to illustratetheexpectedbackgroundcomposition.Theselectioneffi- ciencytimesacceptanceforsignaleventswithmH=125 GeV after allselectioncriteriadescribedthusfarisapproximately55%.

The expected background processes produce smooth mμ+μ distributionsinthesearchwindow,allowing thetotalbackground normalisationandshape ineach categoryto be derivedfromfit- ting the data asdescribed in Section 5. The mμ+μ distribution isexamined inthe range110–160 GeV. Thisrangeis largerthan the 120–150 GeV search window in order to account for signal resolutioneffectsandtoallowsufficientsidebandsforbackground normalisation.

4. Eventcategorisation

Toincrease sensitivityto the Higgs bosonsignal, the selected eventsareseparatedintosevenmutuallyexclusivecategorieswith differentsignal-to-backgroundratiosbasedontheirmuonpseudo- rapidity(ημ), pμ+μ

T ,andVBF dijetsignature.Eventsproduced in theVBF process are characterisedby two forwardjetswith little hadronicactivitybetweenthem.The VBF categoryisthusdefined byrequiringtheeventstohaveatleasttwojetswithaninvariant massgreaterthan500GeV, |ηjet1ηjet2|>3 and ηjet1×ηjet2<0.

Ineventswithmorethan twojets,those withthehighest pT are used in the selection. Events with at least one jet identified as originatingfromab-quarkareexcludedfromtheVBFcategory.

Theeventsthatarenot selectedfortheVBF category areclas- sifiedusing pμ+μ

T .Signaleventshaveonaveragelargervaluesof pμ+μ

T thantheZ/γ backgroundevents.Therefore,theremaining

Table 1

NumberofexpectedsignaleventsformH=125 GeV,numberofexpectedback- groundeventspredictedbytheMCsimulation,andnumberofobserveddataevents withinawindowof|mHmμ+μ|2.5 GeV afterallselectioncriteriaareapplied.

Onlystatisticaluncertaintiesaregiven.Thetheoreticalsystematicuncertaintyon thedominantZ/γbackgroundisabout4%.TheMCbackgroundyieldsaregiven toillustratetheexpectedbackgroundcomposition.

7 TeV 8 TeV

Signal (125 GeV) 5.6±0.1 32.7±0.2

Z/γ 3110±40 16 660±270

W Z/Z Z/Wγ 2.2±0.2 12.3±0.7

t¯t 75.6±1.8 509.2±2.7

W W 23.2±0.5 123.3±1.6

Single top 7.2±0.9 54.5±0.6

W+jets 3.2±1.5 38±4

Total Bkg. 3220±40 17 390±270

Observed 3344 17 745

Table 2

Expectedsignalyields(NS)formH=125 GeV andtheratioNS/

NBusingthesim- ulatedMCbackgroundyields(NB)withinawindowof|mHmμ+μ|2.5 GeV for eachoftheeventcategoriesunderstudy.Inaddition,thefullwidthathalfmaxi- mum(FWHM)ofthesignalmμ+μdistribution,modelledasdescribedinSection5, isgiven.Alsoshownareχ2/ndof ofthestandalonefitstothemμ+μdistribution ineachcategoryusingmodelsdescribedinSection5.The7 TeV VBFcategorydoes notincludeasufficientnumberofeventstocomputeameaningfulχ2value.The goodnessoffitforthebackgrounddescriptioninthiscategorywasverifiedusing MCsimulationtoensurethatthebackgroundmodelprovidesaconsistentdescrip- tionofthe7 TeVand8 TeVVBFcategories.

s [TeV]

Category NS NS

NB FWHM

[GeV]

χ2/ndof

8 non-cen. low pμT+μ 6.1 0.07 6.6 49.8/48

8 cen. low pμT+μ 2.6 0.06 5.5 52.8/48

8 non-cen. medium pμT+μ 10.4 0.15 6.6 45.1/48

8 cen. medium pμT+μ 4.7 0.13 5.6 36.7/48

8 non-cen. high pμT+μ 5.5 0.13 7.2 26.7/48

8 cen. high pμT+μ 2.6 0.10 6.0 32.3/48

8 VBF 0.8 0.09 7.0 18.6/19

7 non-cen. low pμT+μ 1.0 0.03 6.8 42.0/48

7 cen. low pμT+μ 0.5 0.03 5.3 43.5/48

7 non-cen. medium pμT+μ 1.8 0.06 6.9 41.2/48

7 cen. medium pμT+μ 0.8 0.05 5.5 34.4/48

7 non-cen. high pμT+μ 0.9 0.05 7.5 60.0/48

7 cen. high pμT+μ 0.5 0.05 5.9 56.2/48

eventsareseparatedintothree pμ+μ

T categories:low(<15 GeV), medium (15–50 GeV) and high (>50 GeV). To further improve the search sensitivity, each of these threecategories is also sub- divided intoa central category with|ημ1|<1 and |ημ2|<1 and anon-central categorycontainingall remainingevents.Thisvalue forthe ημ boundaryhasbeenchosen by scanninga rangeofημ values and selecting a value with the highest signal sensitivity.

Themuonmomentummeasurementforthecentralmuonsismore precise,producinganarrowermμ+μ distributionforsignalevents inthecentralcategoryandthusresultinginahigheroverallsignal sensitivity. Table 2showsthe signaleventyields, NS/

NB ratios, approximate signal width andresults ofthe fits to the data, de- scribedinSection5,forallanalysiscategories.

5. Signalandbackgroundmodels

Analytical models are used to describe the mμ+μ distribu- tions for signal and background processes. The simulated sam- ples detailedinSection2areusedtodevelopbackgroundmodels

Références

Documents relatifs

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 93 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 93 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,