• Aucun résultat trouvé

Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in $pp$ collisions at $\sqrt{s}$=8 TeV with the ATLAS detector

N/A
N/A
Protected

Academic year: 2021

Partager "Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in $pp$ collisions at $\sqrt{s}$=8 TeV with the ATLAS detector"

Copied!
21
0
0

Texte intégral

(1)

HAL Id: in2p3-01056200

http://hal.in2p3.fr/in2p3-01056200

Submitted on 1 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Fiducial and differential cross sections of Higgs boson

production measured in the four-lepton decay channel in

pp collisions at

s=8 TeV with the ATLAS detector

G. Aad, S. Albrand, J. Brown, J. Collot, S. Crépé-Renaudin, B. Dechenaux,

P.A. Delsart, C. Gabaldon, M.H. Genest, J.Y. Hostachy, et al.

To cite this version:

G. Aad, S. Albrand, J. Brown, J. Collot, S. Crépé-Renaudin, et al.. Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp colli-sions at √s=8 TeV with the ATLAS detector. Physics Letters B, Elsevier, 2014, 738, pp.234-253. �10.1016/j.physletb.2014.09.054�. �in2p3-01056200�

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Fiducial

and

differential

cross

sections

of

Higgs

boson

production

measured

in

the

four-lepton

decay

channel

in

pp collisions

at

s

=

8 TeV with

the

ATLAS

detector

.ATLASCollaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received14August2014

Receivedinrevisedform10September 2014

Accepted23September2014 Availableonline28September2014 Editor:W.-D.Schlatter

Measurements of fiducial and differential cross sections of Higgs boson production in the HZ Z∗→4 decay channel are presented. The cross sections are determined within a fiducial phase space and corrected for detection efficiency and resolution effects. They are based on 20.3 fb−1 of pp collision

data, produced at √s=8 TeV centre-of-mass energy at the LHC and recorded by the ATLAS detector. The differential measurements are performed in bins of transverse momentum and rapidity of the four-lepton system, the invariant mass of the subleading four-lepton pair and the decay angle of the leading four-lepton pair with respect to the beam line in the four-lepton rest frame, as well as the number of jets and the transverse momentum of the leading jet. The measured cross sections are compared to selected theoretical calculations of the Standard Model expectations. No significant deviation from any of the tested predictions is found.

Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

In2012theATLASandCMSCollaborations announcedthe dis-covery of a new particle [1,2] in the search for the Standard Model(SM)Higgsboson[3–8]attheCERNLargeHadronCollider (LHC) [9]. Since thisdiscovery,the particle’s massmH was

mea-sured by the ATLAS and CMS Collaborations [10–12]. The result oftheATLAS measurementbasedon 25fb−1 ofdatacollected at centre-of-massenergiesof7TeVand8TeVis125.36±0.41 GeV. Testsofthecouplingsandspin/CPquantumnumbershavebeen re-portedbybothcollaborations[11,13,14]andshowagreementwith thepredictedscalarnatureoftheSMHiggsboson.

In this Letter, measurements of fiducial and differential pro-duction crosssections forthe HZ Z∗→4 decaychannel are reported and compared to selected theoretical calculations. The event selection and the background determination are the same asinRef.[15],whereadetaileddescriptionisgiven.Forthis mea-surement,anintegratedluminosityof20.3 fb−1 ofpp collisionsis analyzed.Thedata werecollected attheLHC atacentre-of-mass energyof√s=8 TeV andrecordedwiththeATLASdetector[16].

The ATLAS detector covers thepseudorapidity range |η|<4.9 andthefullazimuthalangleφ.1Itconsistsofaninnertracking

de- E-mailaddress:atlas.publications@cern.ch.

1 ATLASusesaright-handed coordinatesystemwith itsoriginat thenominal

interactionpoint(IP)atthecentreofthedetectorandthez-axisalongthebeam

tectorcoveringthepseudorapidityrange|η|<2.5 surroundedbya superconductingsolenoid, electromagneticandhadronic calorime-ters,andanexternalmuonspectrometerwithlarge superconduct-ingtoroidalmagnets.

Fiducial cross sectionsare quoted to minimize the model de-pendenceoftheacceptancecorrectionsrelatedtotheextrapolation tophase-spaceregionsnotcoveredbythedetector.Themeasured fiducial crosssections are correctedfor detectoreffects tobe di-rectlycomparedtotheoreticalcalculations.

The differential measurements are performed in several ob-servables relatedto theHiggsbosonproductionanddecay.These include the transverse momentum pT,H and rapidity |yH| of the

Higgsboson,theinvariantmassofthesubleadingleptonpairm34

(the leadingandsubleadinglepton pairsaredefinedinSection 3) andthe magnitudeof thecosine ofthe decayangle ofthe lead-ing lepton pair in thefour-lepton rest frame withrespect to the beam axis |cosθ∗|. The number of jets njets and the transverse

momentum of the leading jet pT,jet are also included. The

dis-tribution of the pT,H observable is sensitive to the Higgs boson

productionmechanismsaswellasspin/CPquantumnumbers,and canbeusedtotestperturbativeQCDpredictions.Thisdistribution

pipe.Thex-axispointsfromtheIPtothecentreoftheLHCring,andthe y-axis

points upward.Cylindricalcoordinates(r,φ)areusedinthetransverseplane,φ

beingtheazimuthalanglearoundthebeampipe.Thepseudorapidityisdefinedin termsofthepolarangleθasη= − ln[tan(θ/2)].

http://dx.doi.org/10.1016/j.physletb.2014.09.054

(3)

hasbeenstudiedextensivelyandprecisepredictionsexist(seee.g. Refs.[17–21]),includingtheeffectoffinitequarkmasses.The dis-tributionofthe |yH|observable can beusedto probetheparton

distributionfunctions(PDFs)oftheproton.Thedistributionsofthe decayvariables m34 and |cosθ∗| are sensitive to the Lagrangian

structureofHiggsboson interactions, e.g.spin/CP quantum num-bers and higher-dimensional operators. The jet multiplicity and transversemomentumdistributionsaresensitivetoQCDradiation effectsandtotherelativeratesofHiggsbosonproductionmodes. The distribution of the transverse momentum of the leading jet probesquarkandgluonradiation.

2. Theoreticalpredictionsandsimulatedsamples

TheHiggsbosonproductioncrosssectionsanddecaybranching fractionsaswellastheiruncertaintiesaretakenfromRefs.[21,22]. The cross sections for the gluon-fusion (ggF) process have been calculated to next-to-leading order (NLO) [23–25], and next-to-next-to-leadingorder(NNLO)[26–28]inQCDwithadditional next-to-next-to-leadinglogarithm(NNLL) soft-gluonresummation[29]. ThecrosssectionvalueshavebeenmodifiedtoincludeNLO elec-troweak (EW) radiative corrections, assuming factorization be-tween QCD and EW effects [30–34]. The cross sections for the vector-bosonfusion (VBF) processes are calculated withfull NLO QCDandEWcorrections[35–37],andapproximateNNLOQCD cor-rections are included [38]. The cross sections for the associated W H/Z H production processes (V H ) are calculated at NLO [39]

andatNNLO [40]inQCD, andNLO EWradiative corrections[41]

areapplied.ThecrosssectionsforassociatedHiggsboson produc-tionwithatt pair¯ (tt H )¯ arecalculatedatNLOinQCD[42–45].

TheHiggs boson branching fractionsfor decaysto four-lepton finalstatesareprovidedby Prophecy4f[46,47],whichimplements thecompleteNLOQCD+ EWcorrectionsandinterferenceeffects betweenidenticalfinal-statefermions.

The HZ Z∗ →4 signal is modelled using the Powheg MonteCarlo(MC) eventgenerator[48–52], whichcalculates sep-aratelythe ggFandVBFproductionmechanismswithmatrix ele-ments up to NLO. The description of the Higgsboson transverse momentumspectrumintheggFprocessisadjustedtofollowthe calculationinRefs. [19,20],whichincludesQCD correctionsupto NLOandQCDsoft-gluonresummationsup toNNLL,aswellas fi-nite quark masses[53]. Powheg is interfacedto Pythia8 [54] for showeringandhadronization,which inturnisinterfacedto Pho-tos[55,56] to modelphoton radiation inthe final state. Pythia8 is used to simulate V H and t¯t H production. The response of the ATLAS detector is modelled in a simulation [57] based on GEANT4[58].

Themeasuredfiducialcross-sectiondistributionsarecompared tothreeggF theoreticalcalculations: Powheg withoutthe adjust-mentstothepT,H spectrumdescribedabove, Powheg interfacedto

Minlo(Multi-scaleimprovedNLO)[59] and HRes2(v.2.2)[19,20]. Powhegwith Minlo providespredictions forjet-relatedvariables at NLO for Higgs boson production in association with one jet. The HRes2 program computes fixed-order cross sections for ggF SM Higgs boson production up to NNLO. All-order resummation ofsoft-gluon effects atsmall transverse momenta is consistently includedup to NNLL, usingdynamic factorization and resumma-tionscales.Theprogramimplementstop- andbottom-quarkmass dependenceuptoNLL+NLO.AtNNLL+NNLOlevelonlythe top-quarkcontributionisconsidered. HRes2doesnotperform shower-ingandQEDfinal-stateradiationeffectsarenotincluded.

Thecontributionsfromtheother productionmodesareadded totheggFpredictions.Atacentre-of-massenergyof8TeVandfor a Higgsboson mass of 125.4 GeV, their relative contributions to

thetotalcrosssectionare87.3%(ggF),7.1%(VBF),3.1%(W H ),1.9% ( Z H )and0.6%(t¯t H ),respectively.

Alltheoretical predictionsarecomputedforaSM Higgsboson with mass 125.4 GeV. They are normalized to the most precise SMinclusivecross-sectionpredictionscurrentlyavailable[60], cor-rectedforthefiducialacceptancederivedfromthesimulation.

The Z Z , W Z , t¯t and Z +jets background events are mod-elledusingthesimulatedsamplesandcrosssectionsdescribed in Ref.[15].

3. Eventselection

The detector level physics object definitions of muons, elec-trons,andjets,andtheeventselectionappliedinthisanalysisare the same as inRef. [15], with the exception of the jet selection andtheadditionalrequirementonthe four-leptoninvariant mass describedbelow.Abriefoverviewisgiveninthissection.

Eventswithatleastfourleptonsareselectedwithsingle-lepton and dilepton triggers. The transverse momentum and transverse energythresholdsforthesingle-muonandsingle-electrontriggers are 24 GeV. Twodimuon triggers are used, one with symmetric thresholdsat13 GeVandtheotherwithasymmetricthresholdsat 18 GeVand8 GeV.Forthedielectrontriggerthesymmetric thresh-olds are 12 GeV. Furthermore there is an electron–muon trigger withthresholdsat12 GeV(electron)and8 GeV(muon).

Higgs boson candidates are formed by selecting two same-flavouropposite-sign(SFOS)leptonpairs(aleptonquadruplet).The leptons must satisfy identification, impact parameter, and track-based and calorimeter-based isolation criteria. Each muon (elec-tron) mustsatisfy transversemomentum pT>6 GeV (transverse

energy ET>7 GeV)andbe inthepseudorapidity range|η|<2.7

(2.47).The highest-pT lepton inthequadrupletmustsatisfy pT>

20 GeV, and the second (third) lepton in pT order must satisfy

pT>15 (10) GeV.The leptons arerequired tobe separatedfrom

eachotherbyR≡(η)2+ (φ)2>0.1 (0.2)whenhavingthe

same(different)leptonflavours.

Multiplequadrupletswithinasingleeventarepossible:forfour muons orfour electrons there are two waysto pairthe masses, andforfiveormoreleptonstherearemultiplecombinations.The quadrupletselectionisdoneseparatelyineachchannel:4μ,2e2μ, 2μ2e,4e, keepingonlya singlequadrupletper channel.Here the first flavour index refers to the leading lepton pair, which is the pairwiththeinvariantmassm12closesttothe Z bosonmass[61].

The invariant mass m12 is required to be between 50 GeV and

106 GeV. The subleading pair of each channel is chosen as the remaining pair with mass m34 closest to the Z boson mass and

satisfying the requirement 12<m34<115 GeV. Finally, if more

thanonechannelhasaquadrupletpassingtheselection,the chan-nelwiththehighestexpectedsignalrateiskept,intheorder:4μ, 2e2μ,2μ2e,4e.A J/ψ vetoisapplied:m(i,j)>5 GeV forSFOS

leptonpairs.Onlyeventswithafour-lepton invariantmassinthe range118–129 GeVare kept.This requirementdefinesthesignal masswindowandwaschosenby minimizingtheexpected uncer-tainty onthetotalsignal yielddetermination,takingintoaccount theexperimentaluncertaintyontheHiggsbosonmass.

Jets are reconstructed fromtopological clustersof calorimeter cellsusingtheanti-kt algorithm[62] withthedistanceparameter

R=0.4. Inthis analysis, jets[63] are selected by requiring pT>

30 GeV,|y|<4.4 and,inorderto avoiddoublecountingof elec-tronsthatarealsoreconstructedasjets,R(jet, electron)>0.2.

The events are divided into bins of the variables of interest, whichare computedwiththereconstructedfour-momenta ofthe selected lepton quadruplets or from the reconstructed jets: the transverse momentum precoT,H andthe rapidity |yrecoH | of the four-lepton system, the invariant mass of the subleading lepton pair

(4)

Table 1

Listofselectioncutswhichdefinethefiducialregionofthecrosssection measure-ment.Thesame flavour oppositesignleptonpairsaredenotedasSFOS,theleading leptonpairmassasm12,andthesubleadingleptonpairmassasm34.

Lepton selection

Muons: pT>6 GeV,|η| <2.7

Electrons: pT>7 GeV,|η| <2.47

Lepton pairing

Leading pair: SFOS lepton pair with smallest|mZm|

Subleading pair: Remaining SFOS lepton pair with smallest|mZm|

Event selection

Lepton kinematics: pT>20,15,10 GeV

Mass requirements: 50<m12<106 GeV, 12<m34<115 GeV

Lepton separation: R(i,j)>0.1(0.2)for

same-(different-)flavourleptons

J/ψveto: m(i, j) >5 GeV for all SFOS lepton pairs

Mass window: 118<m4<129 GeV

mreco

34 ,themagnitudeofthecosineofthedecayangleofthe

lead-ing lepton pair inthe four-lepton restframe with respect tothe beamaxis|cosθ∗reco|,thenumberofjetsnreco

jets,andthetransverse

momentumof theleading jet preco

T,jet. Inorderto distinguishthem

fromthe unfolded variables usedin the crosssection bin defini-tion,theyarelabelledwith“reco”.

4. Definitionofthefiducialregion

Thefiducialselection,outlinedinTable 1,isdesignedto repli-cateatsimulationlevel,beforeapplyingdetectoreffects,the anal-ysisselection asclosely aspossible inorder to minimize model-dependentacceptanceeffectsonthemeasuredcrosssections.

The fiducialselection is applied to electrons andmuons orig-inating from vector-boson decays before they emit photon radi-ation, referred to as Born-level leptons. An alternative approach would be to correct the lepton momenta by adding final-state radiationphotonswithinaconeofsizeR<0.1 aroundeach lep-ton(dressing).Forthisanalysistheacceptancedifferencebetween Bornanddressed-leptondefinitionsislessthan 0.5%.Particle-level jetsare reconstructedfrom allstable particlesexcept muonsand neutrinosusingtheanti-kt algorithmwiththedistanceparameter

R=0.4.

Jets are selected by requiring pT >30 GeV, |y|<4.4 and

R(jet, electron)>0.2. Muons (electrons) must satisfy pT >6

(7) GeVand|η|<2.7 (2.47).Eventsinwhichatleastoneofthe Z bosonsdecaysinto τ leptonsareremoved.Quadrupletsareformed fromtwopairsofSFOS leptons.Theleptons arepaired asin Sec-tion3,includingthepossibility ofincorrectlypairing theleptons, whichhappensinabout5%oftheselectedeventsforaSMHiggs boson with mass 125.4 GeV. The leading pair is defined as the SFOSlepton pairwithinvariant massm12 closest tothe Z boson

mass and the subleading pair is defined as the remaining SFOS leptonpairwithinvariantmassm34closesttothe Z bosonmass.

Thethreehighest-pT leptonsinthequadrupletare requiredto

have pT>20,15,10 GeV,respectively, andthelepton pairsmust

have50<m12<106 GeV and12<m34<115 GeV.

The separation between the leptons is required to be R(i,j)>0.1(0.2)forsame- (different-) flavourleptons.A J/ψ

vetois applied: m(i,j)>5 GeV for all SFOS lepton pairs.

Fur-thermore,the massof thefour-lepton systemm4 must be close tomH,i.e.118<m4<129 GeV.

For a SM Higgs boson mass of 125.4 GeV, the acceptance of the fiducial selection (with respect to the full phase space of HZ Z∗→22, where ,=e, μ) is 45.7%. The number of eventspassingtheeventselectiondividedbythenumberofevents passingthefiducialselectionis55.3%;about1%oftheevents pass-ingtheeventselectiondonotpassthefiducialselection.

5. Backgroundestimate

The background estimatesused in this analysis are described in detail in Ref. [15]. The irreducible Z Z and the reducible W Z background contributions are estimatedusing simulated samples normalized to NLO predictions. For the jet-related variables, the simulation predictions are compared to data for m4>190 GeV wherethe Z Z backgroundprocessisdominant;shapedifferences betweenthedistributionsindataandsimulationareusedto esti-matesystematicuncertainties.

Thereducible Z+jets andtt background¯ contributionsare es-timated with data-driven methods. Their normalizations are ob-tained from data control regions and extrapolated to the signal regionusingtransferfactors.The+μμfinalstateisdominated by Z +heavy-flavourjetsandthe+ee finalstateby Z + light-flavour jets.The misidentificationoflight-flavourjetsaselectrons isdifficult tomodelinthesimulation.Thereforethedistributions for+ee aretakenfromdatacontrolregionsandextrapolatedto thesignal region,whilethebackgrounddistributions for+μμ

aretakenfromsimulatedsamples.

Aftertheanalysisselectionabout9backgroundeventsare ex-pected: 6.7events from irreducible Z Z and 2.2events from the reduciblebackground.

The observed distributions compared to the signal and back-ground expectations for the six reconstructed observables precoT,H

|yrecoH |,mreco34 ,|cosθ∗reco|,nrecojets,andprecoT,jetareshowninFig. 1.The signal prediction includes VBF, Z H , W H , tt H ,¯ and the Powheg ggFcalculationforaHiggsbosonwithmH =125 GeV andis

nor-malizedtothemostpreciseSMinclusivecross-sectioncalculation currentlyavailable[60].

6. Observeddifferentialyieldsandunfolding

The extractionof thesignal yield forthe measurement ofthe fiducialcrosssectionisperformedthroughafittothem4 distri-butionusingshapetemplatesforthesignalandbackground contri-butions[15].Inthisfit,theHiggsbosonmassisfixedto125.4 GeV andtheparameterofinterestisthetotalnumberofsignalevents. Theextractednumberofobservedsignal eventsinthemass win-dowis23.7+55..39(stat.)±0.6(syst.).

In the differential cross-section measurements, given the low numberofsignaleventsexpectedineachmeasuredbini,the sig-nalyieldsnsigi aredeterminedbysubtractingtheexpectednumber of background events fromthe observed numberof events. This is done within the mass window for each bin of the observable ofinterest.Thetotalnumberofobservedeventsinthemass win-dowis34andtheextractedsignalyieldis25.1+56..34(stat.)+00..64(syst.) events.

The difference betweenthenumberofsignal eventsextracted with the two methods is mainly due to fixing the Higgs boson massto125.4 GeVinthefitmethod.As reportedinRef.[10],the best fitmass inthe HZ Z∗→4 channel alone is124.5 GeV, causingsmallerweightsforsomeeventsinthefit.

After subtracting the background, the measured signal yields are corrected for detector efficiency and resolution effects. This unfoldingisperformedusingcorrectionfactorsderivedfrom sim-ulatedSM signal samples.The correctionfactor inthei-th binis calculatedas

ci=

Nireco Nfidi ,

where Nrecoi isthenumberofreconstructedeventsinthei-thbin of theobserved distribution and Nfid

(5)

Fig. 1. Datayielddistributionsforthetransversemomentumpreco

T,H andtherapidity |y reco

H |ofthefour-leptonsystem,theinvariantmassofthesubleadingleptonpairmreco34 ,

themagnitudeofthecosineofthedecayangleoftheleadingleptonpairinthefour-leptonrestframewithrespecttothebeamaxis | cosθ∗reco|,thenumberofjetsnreco jets,

andthetransversemomentumoftheleadingjetpreco

T,jetcomparedtosignalandbackgroundexpectations.ThesignalpredictionincludesVBF,Z H ,W H ,t¯t H ,andthe Powheg

ggFcalculationforaHiggsbosonwithmH=125 GeV andisnormalizedtothemostpreciseSMinclusivecross-sectioncalculationcurrentlyavailable[60].Thehatchedareas

denotethesystematicuncertaintiesonthebackgrounds.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthis article.)

the i-th bin of the particle-level distribution,within the fiducial region.

Theunfolded signalyield ineach binisthenconverted intoa differentialfiducialcrosssectionvia

dσfid,i dxi =

nsigi ci·Lint· xi

,

wherexiisthebinwidthandLinttheintegratedluminosity.

The correction factors usedin thisanalysis are obtainedfrom simulated samplesforall SM Higgsproduction modes, usingthe relativeratesaspredictedbytheSM.Theinclusivecorrection fac-torisc=0.553±0.002(stat.)±0.015(syst.).Thecorrectionfactors for the different production modes are 0.553 (ggF), 0.572 (VBF), 0.535 (W H ), 0.551 ( Z H )and 0.417 (t¯t H ). Int¯t H production the Higgs boson is accompanied by light- and heavy-flavour jets as well as possible additional leptons from the top-quark decays. Since leptonisolation is appliedto thereconstructed butnotthe

(6)

Table 2

Summaryofthe relativesystematicuncertaintiesonthe total back-ground contribution (top rows) and on the parameters that enter thesignalextraction(bottomrows).Therangesindicatethevariation acrossobservablesandbins.

Systematic uncertainties (%) Background Luminosity 1.4–2.3 Reducible background 1.6–34 Experimental, leptons 1.3–2.3 PDF/scale 3.0–24 Correction factors/conversion toσ Luminosity 2.8 Experimental, leptons 2.1–2.6 Experimental, jets 2.7–13 Production process 0.1–15 Higgs boson mass 0.4–2.7

fiducialobjects,thecorrectionfactorsfort¯t H differfromthosefor theotherproductionmodes.

Foreach bin,the number ofexpectedbackground events,the number of observed events, the luminosity, and the correction factors are used to calculate a profile likelihood ratio [64]. The likelihoodincludesshapeandnormalizationuncertaintiesof back-grounds and correction factors as nuisance parameters. For each variableallbinsareincludedinthelikelihoodandcorrelationsof uncertaintiesbetweenthedifferentbinsandbetweenbackgrounds andcorrection factors are taken intoaccount. The cross sections areextractedforeachbinbyminimizing twicethenegative loga-rithmofthe profilelikelihoodratio−2lnΛ.The uncertaintieson thecross sectionsarealso estimatedusing−2lnΛby evaluating its variationasa function ofthe parameterof interest(the cross sectionvalue ineach bin).Undertheasymptoticassumption[64],

−2lnΛbehavesasa χ2 distributionwithonedegreeoffreedom.

Forsomeofthefittedintervals,duetothelow numberofevents, the distribution of the profile likelihood ratio does not follow a

χ2 distribution and the uncertainties are derived using

pseudo-experiments.

The compatibility between the measured cross sections and the theoretical predictions is evaluated by computing the differ-encebetween the value of −2lnΛ at the best-fitvalue andthe valueobtainedbyfixing thecrosssectionsinallbinsto theones predicted by theory. Under the asymptotic assumption [64], this statisticalobservablebehavesasa χ2 withthenumberofdegrees

offreedomequaltothenumberofbins;itisusedasatest statis-tictocomputethe p-valuesquantifyingthecompatibilitybetween the observed distributions andthe predictions. For all measured observables the asymptotic assumption is verified with pseudo-experiments.

7. Systematicuncertainties

Systematicuncertainties arecalculatedfortheestimated back-grounds,thecorrectionfactors,andtheSMtheoreticalpredictions; thelatteronly havean impactonthe quantitativecomparison of themeasurements withdifferent predictions.An overviewofthe systematic uncertainties on the total background prediction and thecorrectionfactorsisshowninTable 2.

Theuncertaintyontheintegratedluminosityispropagatedina correlatedwaytothebackgroundsevaluatedfromtheMC predic-tionsandto theunfolding,whereitis usedwhenconvertingthe estimatedunfolded signal yield into afiducial cross section.This uncertaintyisderivedfollowingthesamemethodologyasthat de-tailedinRef.[65]fromapreliminarycalibrationoftheluminosity scalederivedfrombeam-separationscansperformedinNovember 2012.

Systematicuncertaintiesonthedata-drivenestimateofthe re-ducible backgrounds are assigned both to the normalizationand theshapesofthedistributionsbyvaryingtheestimationmethods

[15].

The systematicuncertainties onthe leptontrigger, reconstruc-tion and identification efficiencies [66,67] are propagated to the signal correction factorsandthe Z Z∗ background,takinginto ac-count correlations. For the correction factors, systematic uncer-tainties are assignedonthe jetresolution andenergyscales.The largestsystematicuncertaintyisduetotheuncertaintyinthe jet flavourcomposition[63,68,69].

The uncertainties onthe correction factors dueto PDF choice as well asQCD renormalizationandfactorizationscale variations are evaluated in signal samples using the procedure described in Ref. [15] and found to be negligible. A similar procedure is followed for most variables for the irreducible Z Z background. For the jet-related observables an uncertainty is derived instead by comparing the data with the predicted Z Z distributions for m4>190 GeV,afternormalizingtheMCestimatetotheobserved data yield. The systematicuncertainty is estimated as the larger of the data-MC difference and the statistical uncertainty on the data.Thissystematicuncertaintyaccountsforboththetheoretical andexperimentaluncertaintiesinthemodellingofthe Z Z jet dis-tributions. Systematic uncertainties due to the modellingof QED final-stateradiationarefoundtobenegligiblewithrespecttothe totaluncertainty.

The correction factors are calculated assuming the predicted relativecrosssectionsofthedifferentHiggsproductionmodes.The correspondingsystematicuncertaintyisevaluatedbyvaryingthese predictionswithin thecurrentexperimentalbounds[14].TheVBF and V H fractionsare variedby factors of0.5and2withrespect totheSMpredictionandthet¯t H fractionisvariedbyfactorsof0 and5.

The experimentaluncertaintyonmH [10]ispropagated tothe

correction factorsby studyingtheir dependenceontheHiggs bo-sonmass.

The systematicuncertainties onthe theoretical predictions in-cludethePDFandQCDscalechoicesaswellastheuncertaintyon the HZ Z∗ branching fraction[60].Theprocedure describedin Ref.[70]isusedtoevaluatethescaleuncertaintiesofthepredicted njetsdistribution.

The upper edges of the uncertainty ranges in Table 2 are in mostcasesduetothehighestbinsinthenjetsand pT,jet

distribu-tions. The background systematicuncertainties are large insome binsduetothelimitedstatisticsinthedatacontrolregions. 8. Results

ThecrosssectioninthefiducialregiondescribedinTable 1is σtotfid=2.11+00..5347(stat.)±0.08(syst.)fb.

ThetheoreticalpredictionfromRef.[60]foraHiggsbosonmassof 125.4GeVis1.30±0.13 fb.

The differential cross sectionsasa function of pT,H, yH,m34,

|cosθ∗|,njets, andpT,jet areshowninFig. 2.Forall variablesand

binsthetotaluncertaintiesonthecross-sectionmeasurementsare dominatedby statisticaluncertainties. Powheg, Minlo and HRes2 calculationsofggF,addedtoVBF,Z H/W H andt¯t H (seeSection2), are overlaid. The HRes2calculation was developed formodelling the Higgs kinematicvariables andis only usedfor pT,H and yH.

ThetheoreticalcalculationsarenormalizedtothemostpreciseSM inclusivecross-sectionpredictionscurrentlyavailable[60].

The p-values quantifying the compatibilitybetween data and predictions,computedwiththemethoddescribedinSection6,are showninTable 3.Nosignificantdiscrepancyisobserved.

(7)

Fig. 2. DifferentialunfoldedcrosssectionsforthetransversemomentumpT,HandrapidityyHoftheHiggsboson,theinvariantmassofthesubleadingleptonpairm34,the

magnitudeofthecosineofthedecayangleoftheleadingleptonpairinthefour-leptonrestframewithrespecttothebeamaxis | cosθ∗|,thenumberofjetsnjets,andthe

transversemomentumoftheleadingjetpT,jetintheHZ Z∗→4decaychannelcomparedtodifferenttheoreticalcalculationsoftheggFprocess: Powheg, Minlo and

HRes2.ThecontributionsfromVBF,Z H/W H andt¯t H aredeterminedasdescribedinSection2andaddedtotheggFdistributions.Alltheoreticalcalculationsarenormalized tothemostpreciseSMinclusivecross-sectionpredictionscurrentlyavailable[60].Theerrorbarsonthedatapointsshowthetotal(stat.⊕syst.)uncertainty,whilethegrey bandsdenotethesystematicuncertainties.Thebandsofthetheoreticalpredictionindicatethetotaluncertainty.(Forinterpretationofthereferencestocolourinthisfigure legend,thereaderisreferredtothewebversionofthisarticle.)

9. Conclusion

Measurementsoffiducial anddifferential crosssectionsinthe HZ Z∗→4 decaychannel are presented. Theyare based on 20.3 fb−1 of pp collision data, produced at √s=8 TeV centre-of-massenergy at the LHC and recorded by the ATLAS detector. Thecrosssectionsarecorrectedfordetectoreffectsandcompared to selected theoretical calculations. No significant deviationfrom thetheoreticalpredictionsisobservedforanyofthestudied vari-ables.

Acknowledgements

We thank CERN forthe very successfuloperation of the LHC, aswell as thesupport staff fromour institutionswithout whom ATLAScouldnotbeoperatedefficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia;ARC,Australia;BMWFandFWF,Austria; ANAS, Azerbai-jan; SSTC,Belarus;CNPqandFAPESP,Brazil; NSERC,NRCandCFI, Canada;CERN;CONICYT,Chile;CAS,MOSTandNSFC,China; COL-CIENCIAS,Colombia;MSMTCR,MPOCRandVSCCR,Czech

(8)

Repub-Table 3

Compatibilitytestsofdatawith Powheg, Minlo and HRes2ggFcalculationsofSM Higgsbosonproduction.Thecompatibilityp-valuesareobtained,asexplainedin thetext,fromthedifferencebetween −2lnΛatthebest-fitvalueand −2lnΛwith thecrosssectionsfixedtothetheorycomputations.

Variable p-values

Powheg Minlo HRes2

pT,H 0.30 0.23 0.16 |yH| 0.37 0.45 0.36 m34 0.48 0.60 – |cosθ∗| 0.35 0.45 – njets 0.37 0.28 – pT,jet 0.33 0.26 –

lic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Founda-tion,Germany;GSRTandNSRF,Greece;ISF,MINERVA,GIF,DIPand BenoziyoCenter,Israel;INFN,Italy;MEXTandJSPS,Japan;CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW,Poland;GRICESandFCT,Portugal;MERYS(MECTS), Roma-nia;MESofRussiaandROSATOM,RussianFederation;JINR;MSTD, Serbia; MSSR,Slovakia; ARRSandMIZŠ,Slovenia;DST/NRF, South Africa; MICINN, Spain; SRC andWallenberg Foundation, Sweden; SER,SNSFandCantonsofBernandGeneva,Switzerland;NSC, Tai-wan;TAEK,Turkey;STFC,theRoyalSocietyandLeverhulmeTrust, UnitedKingdom;DOEandNSF,UnitedStatesofAmerica.

The crucial computingsupport fromall WLCG partners is ac-knowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy),NL-T1(Netherlands),PIC(Spain),ASGC (Taiwan),RAL(UK) andBNL(USA)andintheTier-2facilitiesworldwide.

References

[1]ATLASCollaboration,Observationofanewparticleinthesearchforthe stan-dardmodelHiggsbosonwiththeATLASdetectorattheLHC,Phys.Lett.B716 (2012)1–29,arXiv:1207.7214.

[2]CMSCollaboration,Observationofanewbosonatamassof125GeVwiththe CMSexperimentattheLHC,Phys.Lett.B716(2012)30–61,arXiv:1207.7235.

[3]F.Englert,R.Brout,Brokensymmetryandthemassofgaugevectormesons, Phys.Rev.Lett.13(1964)321–323.

[4]P.W.Higgs,Brokensymmetries,masslessparticlesandgaugefields,Phys.Lett. 12(1964)132–133.

[5]P.W.Higgs,Brokensymmetriesandthemassesofgaugebosons,Phys.Rev.Lett. 13(1964)508–509.

[6]G.S.Guralnik,C.R.Hagen,T.W.B.Kibble,Globalconservationlawsandmassless particles,Phys.Rev.Lett.13(1964)585–587.

[7]P.W.Higgs,Spontaneoussymmetrybreakdownwithoutmasslessbosons,Phys. Rev.145(1966)1156–1163.

[8]T.Kibble,Symmetrybreakinginnon-Abeliangaugetheories,Phys.Rev.155 (1967)1554–1561.

[9]L.Evans,P.Bryant,LHCMachine,JINST3 (08)(2008)S08001.

[10]ATLASCollaboration,MeasurementoftheHiggsbosonmassfromtheHγ γ

andHZ Z∗channelswiththeATLASdetectorusing25 fb−1ofppcollision data,Phys.Rev.D90(2014)052004,arXiv:1406.3827.

[11]CMSCollaboration, Measurementofthe propertiesofaHiggsbosoninthe four-leptonfinalstate,Phys.Rev.D89(2014)092007,arXiv:1312.5353.

[12]CMSCollaboration,ObservationofthediphotondecayoftheHiggsbosonand measurementofitsproperties,arXiv:1407.0558.

[13]ATLASCollaboration,Evidenceforthespin-0natureoftheHiggsbosonusing ATLASdata,Phys.Lett.B726(2013)120–144,arXiv:1307.1432.

[14]ATLASCollaboration,MeasurementsofHiggsbosonproductionandcouplings indibosonfinalstateswiththeATLASdetectorattheLHC,Phys.Lett.B726 (2013)88–119,arXiv:1307.1427.

[15]ATLASCollaboration,MeasurementsofHiggsbosonproductionandcouplings inthefour-leptonchannelinppcollisionsatcenter-of-massenergiesof7and 8 TeVwiththeATLASdetector,Phys.Rev.D(2014),submittedforpublication, arXiv:1408.5191.

[16]ATLASCollaboration,TheATLASexperimentattheCERNLargeHadronCollider, JINST3(2008)S08003.

[17]G.Bozzi,S.Catani,D.deFlorian,M.Grazzini,Transverse-momentum resumma-tionandthespectrumoftheHiggsbosonattheLHC,Nucl.Phys.B737(2006) 73–120,arXiv:hep-ph/0508068.

[18]D.deFlorian,G.Ferrera, M.Grazzini,D.Tommasini,Transverse-momentum resummation:Higgsbosonproductionat theTevatronand theLHC,J.High EnergyPhys.1111(2011)064,arXiv:1109.2109.

[19]D.deFlorian,G.Ferrera,M.Grazzini,D.Tommasini,Higgsbosonproduction attheLHC:transversemomentumresummationeffectsintheH→2γ,H

W WlνlνandHZ Z4l decaymodes,J.HighEnergyPhys.1206(2012) 132,arXiv:1203.6321.

[20]M.Grazzini,H.Sargsyan,Heavy-quarkmasseffectsinHiggsbosonproduction attheLHC,J.HighEnergyPhys.1309(2013)129,arXiv:1306.4581.

[21]LHCHiggsCrossSectionWorkingGroup,S.Dittmaier,C.Mariotti,G.Passarino, R.Tanaka(Eds.),HandbookofLHCHiggsCrossSections:2.Differential Distri-butions,2012(andreferencestherein)CERN-2012-002,arXiv:1201.3084.

[22]LHCHiggsCrossSectionWorkingGroup,S.Dittmaier,C.Mariotti,G.Passarino, R.Tanaka(Eds.),HandbookofLHCHiggsCrossSections:1.Inclusive Observ-ables,2011(andreferencestherein),CERN-2011-002,arXiv:1101.0593.

[23]A.Djouadi,M.Spira,P.M.Zerwas,ProductionofHiggsbosonsinproton collid-ers:QCDcorrections,Phys.Lett.B264(1991)440–446.

[24]S.Dawson,RadiativecorrectionstoHiggsbosonproduction,Nucl.Phys.B359 (1991)283–300.

[25]M.Spira,A.Djouadi,D.Graudenz,P.M.Zerwas,Higgsbosonproductionatthe LHC,Nucl.Phys.B453(1995)17–82,arXiv:hep-ph/9504378.

[26]R.V.Harlander,W.B.Kilgore,Next-to-next-to-leadingorderHiggsproductionat hadroncolliders,Phys.Rev.Lett.88(2002)201801,arXiv:hep-ph/0201206.

[27]C.Anastasiou,K.Melnikov,HiggsbosonproductionathadroncollidersinNNLO QCD,Nucl.Phys.B646(2002)220–256,arXiv:hep-ph/0207004.

[28]V.Ravindran,J.Smith,W.L.vanNeerven,NNLOcorrectionstothetotalcross sectionforHiggsbosonproductioninhadron–hadron collisions,Nucl.Phys.B 665(2003)325–366,arXiv:hep-ph/0302135.

[29]S.Catani,D.deFlorian,M.Grazzini,P.Nason,Soft-gluonresummationforHiggs bosonproductionathadroncolliders,J.HighEnergyPhys.0307(2003)028, arXiv:hep-ph/0306211.

[30]U.Aglietti, R. Bonciani, G.Degrassi, A.Vicini, Two-loop light fermion con-tributiontoHiggsproductionanddecays,Phys.Lett.B595(2004)432–441, arXiv:hep-ph/0404071.

[31]S.Actis, G.Passarino,C. Sturm,S. Uccirati, NLOelectroweak correctionsto HiggsBosonproductionathadroncolliders,Phys.Lett.B670(2008)12–17, arXiv:0809.1301.

[32]D.deFlorian,M.Grazzini,HiggsproductionattheLHC:updatedcrosssections at√s=8 TeV,Phys.Lett.B718(2012)117–120,arXiv:1206.4133.

[33]C. Anastasiou, S. Buehler, F. Herzog, A. Lazopoulos, Inclusive Higgs boson cross-sectionfor theLHC at 8TeV, J. HighEnergy Phys. 1204(2012) 004, arXiv:1202.3638.

[34]J.Baglio,A.Djouadi,HiggsproductionatthelHC,J.HighEnergyPhys.1103 (2011)055,arXiv:1012.0530.

[35]M.Ciccolini,A.Denner,S.Dittmaier,Strongandelectroweakcorrectionstothe productionofHiggs+2jets viaweakinteractionsattheLHC,Phys.Rev.Lett. 99(2007)161803,arXiv:0707.0381.

[36]M.Ciccolini,A.Denner,S.Dittmaier,ElectroweakandQCDcorrectionstoHiggs productionviavector-bosonfusionattheLHC,Phys.Rev.D77(2008)013002, arXiv:0710.4749.

[37]K. Arnold, et al., VBFNLO: a parton level MonteCarlo for processes with electroweakbosons,Comput. Phys. Commun.180(2009) 1661–1670,arXiv: 0811.4559.

[38]P.Bolzoni,F.Maltoni,S.-O.Moch,M.Zaro,Higgsproductionviavector-boson fusionatNNLOinQCD,Phys.Rev.Lett.105(2010)011801,arXiv:1003.4451.

[39]T.Han,S.Willenbrock,QCDcorrectiontothepp→WHandZHtotal cross-sections,Phys.Lett.B273(1991)167–172.

[40]O. Brein, A. Djouadi, R. Harlander, NNLO QCD corrections to the Higgs-strahlungprocesses at hadron colliders, Phys. Lett. B579(2004) 149–156, arXiv:hep-ph/0307206.

[41]M.L.Ciccolini,S.Dittmaier,M.Krämer,Electroweakradiativecorrectionsto as-sociatedW H andZ H productionathadroncolliders,Phys.Rev.D68(2003) 073003,arXiv:hep-ph/0306234.

[42]W.Beenakker,etal.,HiggsradiationofftopquarksatthetevatronandtheLHC, Phys.Rev.Lett.87(2001)201805,arXiv:hep-ph/0107081.

[43]W.Beenakker,etal.,NLOQCDcorrectionstottH production¯ inhadron colli-sions,Nucl.Phys.B653(2003)151–203,arXiv:hep-ph/0211352.

[44]S.Dawson,L.Orr,L.Reina,D.Wackeroth,Next-to-leadingorderQCD correc-tionstopptth at¯ theCERNLargeHadronCollider,Phys.Rev.D67(2003) 071503,arXiv:hep-ph/0211438.

[45]S.Dawson,C.Jackson,L.H.Orr,L.Reina,D.Wackeroth,AssociatedHiggs pro-ductionwithtopquarksattheLargeHadronCollider:NLOQCDcorrections, Phys.Rev.D68(2003)034022,arXiv:hep-ph/0305087.

[46]A.Bredenstein,A.Denner,S.Dittmaier,M.M.Weber,Precisepredictionsforthe Higgs-bosondecayHW W/Z Z→4 leptons,Phys.Rev.D74(2006)013004, arXiv:hep-ph/0604011.

(9)

[47]A. Bredenstein,A. Denner, S. Dittmaier, M.M. Weber,Radiative corrections to the semileptonic and hadronic Higgs-bosondecays HW W/Z Z→4 fermions,J.HighEnergyPhys.0702(2007)080,arXiv:hep-ph/0611234.

[48]P.Nason,AnewmethodforcombiningNLOQCDwithshowerMonteCarlo algorithms,J.HighEnergyPhys.0411(2004)040,arXiv:hep-ph/0409146.

[49]S.Frixione,P.Nason,C.Oleari,MatchingNLOQCDcomputationswithparton showersimulations:thePOWHEGmethod,J.HighEnergyPhys.0711(2007) 070,arXiv:0709.2092.

[50]S.Alioli,P.Nason,C.Oleari,E.Re,AgeneralframeworkforimplementingNLO calculationsinshowerMonteCarloprograms:thePOWHEGBOX,J.High En-ergyPhys.1006(2010)043,arXiv:1002.2581.

[51]S.Alioli,P.Nason,C.Oleari,E.Re,NLOHiggsbosonproductionviagluon fu-sionmatchedwithshowerinPOWHEG,J.HighEnergyPhys.0904(2009)002, arXiv:0812.0578.

[52]P. Nason, C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG, J. HighEnergy Phys. 1002(2010) 037, arXiv:0911.5299.

[53]E.Bagnaschi,G.Degrassi,P.Slavich,A.Vicini,Higgsproductionviagluonfusion inthePOWHEGapproachintheSMandintheMSSM,J.HighEnergyPhys. 1202(2012)088,arXiv:1111.2854.

[54]T.Sjostrand,S.Mrenna,P.Z.Skands,AbriefintroductiontoPYTHIA8.1,Comput. Phys.Commun.178(2008)852–867,arXiv:0710.3820.

[55]P.Golonka,Z.Was,PHOTOSMonte,Carlo:aprecisiontoolforQEDcorrections inZ andW decays,Eur.Phys.J.C45(2006)97–107,arXiv:hep-ph/0506026.

[56]N.Davidson,T.Przedzinski,Z.Was,PHOTOS interfaceinC++:technicaland physicsdocumentation,arXiv:1011.0937.

[57]ATLAS Collaboration,TheATLAS simulationinfrastructure,Eur.Phys.J.C70 (2010)823–874,arXiv:1005.4568.

[58]S.Agostinelli,etal.,GEANT4:asimulationtoolkit,Nucl.Instrum.MethodsA 506(2003)250–303.

[59]K.Hamilton,P.Nason,G.Zanderighi,MINLO:multi-scaleimprovedNLO,J.High EnergyPhys.1210(2012)155,arXiv:1206.3572.

[60]LHCHiggsCross SectionWorkingGroup,S.Heinemeyer,C.Mariotti,G. Pas-sarino,R.Tanaka(Eds.),HandbookofLHCHiggsCrossSections:3.Higgs Prop-erties,2013,CERN-2013-004,arXiv:1307.1347.

[61]J.Beringer,etal.,Reviewofparticlephysics,Phys.Rev.D86(2012)010001.

[62]M.Cacciari,G.P.Salam,G.Soyez,Anti-ktjetclusteringalgorithm,J.HighEnergy

Phys.0804(2008)063,arXiv:0802.1189.

[63]ATLASCollaboration,Jetenergymeasurementanditssystematicuncertaintyin proton–protoncollisionsat√s=7 TeV withtheATLASdetector,Eur.Phys.J.C (2014),submittedforpublication,arXiv:1406.0076.

[64]G.Cowan,K.Cranmer,E.Gross,O.Vitells,Asymptoticformulaefor likelihood-basedtestsofnewphysics,Eur.Phys.J.C71(2011)1554,arXiv:1007.1727.

[65]ATLAS Collaboration, Improvedluminosity determinationin pp collisionsat s=7 TeV usingthe ATLASdetector atthe LHC,Eur.Phys. J.C73(2013) 2518,arXiv:1302.4393.

[66] ATLASCollaboration,ElectronefficiencymeasurementswiththeATLAS detec-torusingthe2012LHCproton–protoncollisiondata,ATLAS-CONF-2014-032,

http://cds.cern.ch/record/1706245,May2014.

[67]ATLASCollaboration,Measurementofthemuonreconstructionperformanceof theATLASdetectorusing2011and2012LHCproton–protoncollisiondata,Eur. Phys.J.C(2014),submittedforpublication,arXiv:1407.3935.

[68]ATLASCollaboration,Jetenergyresolutioninproton–protoncollisionsat√s=

7 TeV recordedin2010withtheATLASdetector,Eur.Phys.J.C73(2013)2306, arXiv:1210.6210.

[69]ATLAS Collaboration, Jet energy measurement with the ATLAS detector in proton–protoncollisionsat√s=7 TeV,Eur.Phys.J.C73(2013)2304,arXiv: 1112.6426.

[70]I.W.Stewart,F.J.Tackmann,TheoryuncertaintiesforHiggsandothersearches usingjetbins,Phys.Rev.D85(2012)034011,arXiv:1107.2117.

ATLASCollaboration

G. Aad85,B. Abbott113, J. Abdallah153, S. Abdel Khalek117, O. Abdinov11,R. Aben107,B. Abi114,

M. Abolins90, O.S. AbouZeid160,H. Abramowicz155, H. Abreu154, R. Abreu30, Y. Abulaiti148a,148b,

B.S. Acharya166a,166b,a, L. Adamczyk38a, D.L. Adams25, J. Adelman178, S. Adomeit100, T. Adye131,

T. Agatonovic-Jovin13a,J.A. Aguilar-Saavedra126a,126f,M. Agustoni17,S.P. Ahlen22,F. Ahmadov65,b,

G. Aielli135a,135b, H. Akerstedt148a,148b, T.P.A. Åkesson81,G. Akimoto157, A.V. Akimov96,

G.L. Alberghi20a,20b, J. Albert171,S. Albrand55,M.J. Alconada Verzini71, M. Aleksa30, I.N. Aleksandrov65,

C. Alexa26a,G. Alexander155, G. Alexandre49,T. Alexopoulos10, M. Alhroob166a,166c, G. Alimonti91a,

L. Alio85,J. Alison31,B.M.M. Allbrooke18, L.J. Allison72,P.P. Allport74,A. Aloisio104a,104b, A. Alonso36,

F. Alonso71,C. Alpigiani76,A. Altheimer35,B. Alvarez Gonzalez90, M.G. Alviggi104a,104b, K. Amako66,

Y. Amaral Coutinho24a,C. Amelung23,D. Amidei89, S.P. Amor Dos Santos126a,126c,A. Amorim126a,126b,

S. Amoroso48, N. Amram155,G. Amundsen23, C. Anastopoulos141,L.S. Ancu49,N. Andari30,

T. Andeen35, C.F. Anders58b,G. Anders30,K.J. Anderson31, A. Andreazza91a,91b, V. Andrei58a,

X.S. Anduaga71, S. Angelidakis9,I. Angelozzi107,P. Anger44, A. Angerami35, F. Anghinolfi30,

A.V. Anisenkov109,c, N. Anjos12, A. Annovi47,A. Antonaki9,M. Antonelli47, A. Antonov98, J. Antos146b,

F. Anulli134a,M. Aoki66,L. Aperio Bella18, R. Apolle120,d, G. Arabidze90, I. Aracena145,Y. Arai66,

J.P. Araque126a,A.T.H. Arce45,J-F. Arguin95, S. Argyropoulos42, M. Arik19a, A.J. Armbruster30,

O. Arnaez30,V. Arnal82,H. Arnold48,M. Arratia28, O. Arslan21,A. Artamonov97,G. Artoni23, S. Asai157,

N. Asbah42,A. Ashkenazi155,B. Åsman148a,148b, L. Asquith6, K. Assamagan25,R. Astalos146a,

M. Atkinson167, N.B. Atlay143, B. Auerbach6, K. Augsten128,M. Aurousseau147b, G. Avolio30,

G. Azuelos95,e,Y. Azuma157,M.A. Baak30,A.E. Baas58a,C. Bacci136a,136b, H. Bachacou138,K. Bachas156,

M. Backes30, M. Backhaus30,J. Backus Mayes145,E. Badescu26a,P. Bagiacchi134a,134b,P. Bagnaia134a,134b,

Y. Bai33a, T. Bain35,J.T. Baines131, O.K. Baker178, P. Balek129,F. Balli138,E. Banas39,Sw. Banerjee175,

A.A.E. Bannoura177,V. Bansal171,H.S. Bansil18, L. Barak174,S.P. Baranov96,E.L. Barberio88,

D. Barberis50a,50b,M. Barbero85, T. Barillari101,M. Barisonzi177, T. Barklow145,N. Barlow28,

B.M. Barnett131,R.M. Barnett15, Z. Barnovska5,A. Baroncelli136a,G. Barone49,A.J. Barr120, F. Barreiro82,

J. Barreiro Guimarães da Costa57, R. Bartoldus145,A.E. Barton72, P. Bartos146a, V. Bartsch151,

A. Bassalat117, A. Basye167, R.L. Bates53,J.R. Batley28, M. Battaglia139,M. Battistin30,F. Bauer138,

H.S. Bawa145,f,M.D. Beattie72, T. Beau80, P.H. Beauchemin163,R. Beccherle124a,124b,P. Bechtle21,

H.P. Beck17,K. Becker177, S. Becker100,M. Beckingham172,C. Becot117,A.J. Beddall19c, A. Beddall19c,

(10)

K. Behr120, C. Belanger-Champagne87,P.J. Bell49,W.H. Bell49,G. Bella155,L. Bellagamba20a,

A. Bellerive29, M. Bellomo86, K. Belotskiy98,O. Beltramello30, O. Benary155,D. Benchekroun137a,

K. Bendtz148a,148b, N. Benekos167, Y. Benhammou155,E. Benhar Noccioli49, J.A. Benitez Garcia161b,

D.P. Benjamin45, J.R. Bensinger23, K. Benslama132, S. Bentvelsen107, D. Berge107,

E. Bergeaas Kuutmann168,N. Berger5,F. Berghaus171, J. Beringer15,C. Bernard22,P. Bernat78,

C. Bernius79,F.U. Bernlochner171,T. Berry77, P. Berta129,C. Bertella85,G. Bertoli148a,148b,

F. Bertolucci124a,124b,C. Bertsche113,D. Bertsche113, M.I. Besana91a, G.J. Besjes106,

O. Bessidskaia148a,148b, M. Bessner42,N. Besson138,C. Betancourt48,S. Bethke101,W. Bhimji46,

R.M. Bianchi125, L. Bianchini23,M. Bianco30,O. Biebel100,S.P. Bieniek78,K. Bierwagen54,J. Biesiada15,

M. Biglietti136a, J. Bilbao De Mendizabal49, H. Bilokon47, M. Bindi54,S. Binet117, A. Bingul19c,

C. Bini134a,134b,C.W. Black152,J.E. Black145, K.M. Black22,D. Blackburn140,R.E. Blair6,

J.-B. Blanchard138,T. Blazek146a,I. Bloch42,C. Blocker23,W. Blum83,∗,U. Blumenschein54,

G.J. Bobbink107,V.S. Bobrovnikov109,c, S.S. Bocchetta81,A. Bocci45, C. Bock100, C.R. Boddy120,

M. Boehler48,T.T. Boek177, J.A. Bogaerts30, A.G. Bogdanchikov109,A. Bogouch92,∗,C. Bohm148a,

J. Bohm127,V. Boisvert77, T. Bold38a,V. Boldea26a, A.S. Boldyrev99, M. Bomben80,M. Bona76,

M. Boonekamp138, A. Borisov130,G. Borissov72,M. Borri84, S. Borroni42,J. Bortfeldt100,

V. Bortolotto136a,136b,K. Bos107, D. Boscherini20a,M. Bosman12, H. Boterenbrood107, J. Boudreau125,

J. Bouffard2,E.V. Bouhova-Thacker72, D. Boumediene34,C. Bourdarios117, N. Bousson114,

S. Boutouil137d, A. Boveia31, J. Boyd30, I.R. Boyko65,I. Bozic13a, J. Bracinik18, A. Brandt8,G. Brandt15,

O. Brandt58a,U. Bratzler158, B. Brau86,J.E. Brau116, H.M. Braun177,∗, S.F. Brazzale166a,166c,B. Brelier160,

K. Brendlinger122,A.J. Brennan88,R. Brenner168, S. Bressler174, K. Bristow147c, T.M. Bristow46,

D. Britton53, F.M. Brochu28,I. Brock21, R. Brock90,C. Bromberg90,J. Bronner101, G. Brooijmans35,

T. Brooks77,W.K. Brooks32b,J. Brosamer15,E. Brost116,J. Brown55, P.A. Bruckman de Renstrom39,

D. Bruncko146b, R. Bruneliere48,S. Brunet61,A. Bruni20a, G. Bruni20a, M. Bruschi20a, L. Bryngemark81,

T. Buanes14, Q. Buat144, F. Bucci49,P. Buchholz143, R.M. Buckingham120,A.G. Buckley53,S.I. Buda26a,

I.A. Budagov65,F. Buehrer48,L. Bugge119, M.K. Bugge119,O. Bulekov98,A.C. Bundock74,H. Burckhart30,

S. Burdin74, B. Burghgrave108,S. Burke131,I. Burmeister43, E. Busato34,D. Büscher48,V. Büscher83,

P. Bussey53, C.P. Buszello168,B. Butler57, J.M. Butler22,A.I. Butt3,C.M. Buttar53,J.M. Butterworth78,

P. Butti107,W. Buttinger28,A. Buzatu53,M. Byszewski10,S. Cabrera Urbán169, D. Caforio20a,20b,

O. Cakir4a, P. Calafiura15,A. Calandri138, G. Calderini80,P. Calfayan100, R. Calkins108, L.P. Caloba24a,

D. Calvet34, S. Calvet34,R. Camacho Toro49,S. Camarda42,D. Cameron119,L.M. Caminada15,

R. Caminal Armadans12, S. Campana30,M. Campanelli78,A. Campoverde150, V. Canale104a,104b,

A. Canepa161a, M. Cano Bret76,J. Cantero82,R. Cantrill126a, T. Cao40, M.D.M. Capeans Garrido30,

I. Caprini26a,M. Caprini26a, M. Capua37a,37b, R. Caputo83,R. Cardarelli135a,T. Carli30,G. Carlino104a,

L. Carminati91a,91b,S. Caron106,E. Carquin32a,G.D. Carrillo-Montoya147c,J.R. Carter28,

J. Carvalho126a,126c, D. Casadei78,M.P. Casado12,M. Casolino12,E. Castaneda-Miranda147b,

A. Castelli107,V. Castillo Gimenez169,N.F. Castro126a,P. Catastini57,A. Catinaccio30, J.R. Catmore119,

A. Cattai30, G. Cattani135a,135b, J. Caudron83, V. Cavaliere167,D. Cavalli91a,M. Cavalli-Sforza12,

V. Cavasinni124a,124b,F. Ceradini136a,136b,B.C. Cerio45,K. Cerny129,A.S. Cerqueira24b,A. Cerri151,

L. Cerrito76, F. Cerutti15, M. Cerv30,A. Cervelli17, S.A. Cetin19b,A. Chafaq137a, D. Chakraborty108,

I. Chalupkova129,P. Chang167, B. Chapleau87,J.D. Chapman28,D. Charfeddine117,D.G. Charlton18,

C.C. Chau160, C.A. Chavez Barajas151, S. Cheatham87, A. Chegwidden90,S. Chekanov6,

S.V. Chekulaev161a, G.A. Chelkov65,g,M.A. Chelstowska89,C. Chen64,H. Chen25, K. Chen150,

L. Chen33d,h, S. Chen33c,X. Chen33f, Y. Chen67,Y. Chen35,H.C. Cheng89, Y. Cheng31,A. Cheplakov65,

R. Cherkaoui El Moursli137e,V. Chernyatin25,∗,E. Cheu7, L. Chevalier138,V. Chiarella47,

G. Chiefari104a,104b, J.T. Childers6, A. Chilingarov72,G. Chiodini73a, A.S. Chisholm18,R.T. Chislett78,

A. Chitan26a, M.V. Chizhov65,S. Chouridou9,B.K.B. Chow100, D. Chromek-Burckhart30,M.L. Chu153,

J. Chudoba127, J.J. Chwastowski39, L. Chytka115,G. Ciapetti134a,134b,A.K. Ciftci4a,R. Ciftci4a, D. Cinca53,

V. Cindro75, A. Ciocio15,P. Cirkovic13b,Z.H. Citron174,M. Citterio91a,M. Ciubancan26a,A. Clark49,

P.J. Clark46,R.N. Clarke15, W. Cleland125,J.C. Clemens85,C. Clement148a,148b,Y. Coadou85,

M. Cobal166a,166c,A. Coccaro140, J. Cochran64, L. Coffey23,J.G. Cogan145,J. Coggeshall167, B. Cole35,

(11)

P. Conde Muiño126a,126b, E. Coniavitis48, M.C. Conidi12,S.H. Connell147b,I.A. Connelly77,

S.M. Consonni91a,91b, V. Consorti48,S. Constantinescu26a, C. Conta121a,121b,G. Conti57,F. Conventi104a,i,

M. Cooke15,B.D. Cooper78,A.M. Cooper-Sarkar120, N.J. Cooper-Smith77,K. Copic15, T. Cornelissen177,

M. Corradi20a, F. Corriveau87,j, A. Corso-Radu165, A. Cortes-Gonzalez12,G. Cortiana101, G. Costa91a,

M.J. Costa169,D. Costanzo141, D. Côté8, G. Cottin28, G. Cowan77, B.E. Cox84,K. Cranmer110,G. Cree29,

S. Crépé-Renaudin55, F. Crescioli80, W.A. Cribbs148a,148b, M. Crispin Ortuzar120,M. Cristinziani21,

V. Croft106, G. Crosetti37a,37b, C.-M. Cuciuc26a, T. Cuhadar Donszelmann141, J. Cummings178,

M. Curatolo47, C. Cuthbert152, H. Czirr143,P. Czodrowski3,Z. Czyczula178,S. D’Auria53,M. D’Onofrio74,

M.J. Da Cunha Sargedas De Sousa126a,126b,C. Da Via84,W. Dabrowski38a,A. Dafinca120,T. Dai89,

O. Dale14,F. Dallaire95,C. Dallapiccola86,M. Dam36, A.C. Daniells18,M. Dano Hoffmann138, V. Dao48,

G. Darbo50a, S. Darmora8, J.A. Dassoulas42,A. Dattagupta61,W. Davey21, C. David171, T. Davidek129,

E. Davies120,d,M. Davies155,O. Davignon80,A.R. Davison78,P. Davison78, Y. Davygora58a, E. Dawe144,

I. Dawson141,R.K. Daya-Ishmukhametova86, K. De8,R. de Asmundis104a,S. De Castro20a,20b,

S. De Cecco80, N. De Groot106, P. de Jong107,H. De la Torre82, F. De Lorenzi64, L. De Nooij107,

D. De Pedis134a, A. De Salvo134a,U. De Sanctis151,A. De Santo151, J.B. De Vivie De Regie117,

W.J. Dearnaley72,R. Debbe25,C. Debenedetti139, B. Dechenaux55, D.V. Dedovich65,I. Deigaard107,

J. Del Peso82,T. Del Prete124a,124b,F. Deliot138,C.M. Delitzsch49,M. Deliyergiyev75,A. Dell’Acqua30,

L. Dell’Asta22,M. Dell’Orso124a,124b,M. Della Pietra104a,i, D. della Volpe49, M. Delmastro5,

P.A. Delsart55,C. Deluca107,S. Demers178,M. Demichev65,A. Demilly80, S.P. Denisov130,

D. Derendarz39,J.E. Derkaoui137d,F. Derue80, P. Dervan74, K. Desch21, C. Deterre42,P.O. Deviveiros107,

A. Dewhurst131,S. Dhaliwal107,A. Di Ciaccio135a,135b,L. Di Ciaccio5, A. Di Domenico134a,134b,

C. Di Donato104a,104b, A. Di Girolamo30, B. Di Girolamo30, A. Di Mattia154,B. Di Micco136a,136b,

R. Di Nardo47,A. Di Simone48,R. Di Sipio20a,20b,D. Di Valentino29,F.A. Dias46,M.A. Diaz32a,

E.B. Diehl89,J. Dietrich42,T.A. Dietzsch58a,S. Diglio85, A. Dimitrievska13a, J. Dingfelder21,

C. Dionisi134a,134b,P. Dita26a, S. Dita26a,F. Dittus30,F. Djama85,T. Djobava51b,J.I. Djuvsland58a,

M.A.B. do Vale24c,A. Do Valle Wemans126a,126g, D. Dobos30,C. Doglioni49,T. Doherty53,T. Dohmae157,

J. Dolejsi129,Z. Dolezal129, B.A. Dolgoshein98,∗, M. Donadelli24d,S. Donati124a,124b, P. Dondero121a,121b,

J. Donini34,J. Dopke131,A. Doria104a, M.T. Dova71,A.T. Doyle53, M. Dris10, J. Dubbert89,S. Dube15,

E. Dubreuil34, E. Duchovni174, G. Duckeck100, O.A. Ducu26a,D. Duda177, A. Dudarev30, F. Dudziak64,

L. Duflot117,L. Duguid77,M. Dührssen30, M. Dunford58a,H. Duran Yildiz4a,M. Düren52,

A. Durglishvili51b, M. Dwuznik38a, M. Dyndal38a,J. Ebke100,W. Edson2,N.C. Edwards46,

W. Ehrenfeld21,T. Eifert145,G. Eigen14, K. Einsweiler15,T. Ekelof168,M. El Kacimi137c,M. Ellert168,

S. Elles5,F. Ellinghaus83, N. Ellis30, J. Elmsheuser100,M. Elsing30,D. Emeliyanov131, Y. Enari157,

O.C. Endner83,M. Endo118, R. Engelmann150, J. Erdmann178, A. Ereditato17,D. Eriksson148a,G. Ernis177,

J. Ernst2,M. Ernst25,J. Ernwein138,D. Errede167,S. Errede167,E. Ertel83, M. Escalier117,H. Esch43,

C. Escobar125,B. Esposito47,A.I. Etienvre138, E. Etzion155,H. Evans61,A. Ezhilov123,L. Fabbri20a,20b,

G. Facini31, R.M. Fakhrutdinov130, S. Falciano134a,R.J. Falla78, J. Faltova129,Y. Fang33a, M. Fanti91a,91b,

A. Farbin8, A. Farilla136a, T. Farooque12,S. Farrell15,S.M. Farrington172, P. Farthouat30,F. Fassi137e,

P. Fassnacht30,D. Fassouliotis9,A. Favareto50a,50b,L. Fayard117,P. Federic146a,O.L. Fedin123,k,

W. Fedorko170,M. Fehling-Kaschek48,S. Feigl30, L. Feligioni85,C. Feng33d,E.J. Feng6, H. Feng89,

A.B. Fenyuk130,S. Fernandez Perez30,S. Ferrag53,J. Ferrando53, A. Ferrari168, P. Ferrari107,

R. Ferrari121a, D.E. Ferreira de Lima53, A. Ferrer169, D. Ferrere49, C. Ferretti89, A. Ferretto Parodi50a,50b,

M. Fiascaris31,F. Fiedler83, A. Filipˇciˇc75, M. Filipuzzi42, F. Filthaut106, M. Fincke-Keeler171,

K.D. Finelli152,M.C.N. Fiolhais126a,126c, L. Fiorini169,A. Firan40,A. Fischer2,J. Fischer177,W.C. Fisher90,

E.A. Fitzgerald23,M. Flechl48, I. Fleck143,P. Fleischmann89,S. Fleischmann177,G.T. Fletcher141,

G. Fletcher76,T. Flick177,A. Floderus81,L.R. Flores Castillo60a,A.C. Florez Bustos161b,

M.J. Flowerdew101,A. Formica138,A. Forti84,D. Fortin161a,D. Fournier117,H. Fox72, S. Fracchia12,

P. Francavilla80, M. Franchini20a,20b, S. Franchino30, D. Francis30, L. Franconi119, M. Franklin57,

S. Franz62,M. Fraternali121a,121b,S.T. French28,C. Friedrich42, F. Friedrich44, D. Froidevaux30,

J.A. Frost28,C. Fukunaga158, E. Fullana Torregrosa83, B.G. Fulsom145, J. Fuster169, C. Gabaldon55,

O. Gabizon177,A. Gabrielli20a,20b,A. Gabrielli134a,134b, S. Gadatsch107,S. Gadomski49,

(12)

B.J. Gallop131, P. Gallus128,G. Galster36, K.K. Gan111,J. Gao33b,h,Y.S. Gao145,f, F.M. Garay Walls46,

F. Garberson178,C. García169,J.E. García Navarro169,M. Garcia-Sciveres15, R.W. Gardner31,N. Garelli145,

V. Garonne30,C. Gatti47,G. Gaudio121a, B. Gaur143,L. Gauthier95,P. Gauzzi134a,134b,I.L. Gavrilenko96,

C. Gay170, G. Gaycken21, E.N. Gazis10, P. Ge33d,Z. Gecse170,C.N.P. Gee131, D.A.A. Geerts107,

Ch. Geich-Gimbel21,K. Gellerstedt148a,148b, C. Gemme50a,A. Gemmell53,M.H. Genest55,

S. Gentile134a,134b,M. George54,S. George77,D. Gerbaudo165,A. Gershon155,H. Ghazlane137b,

N. Ghodbane34, B. Giacobbe20a,S. Giagu134a,134b,V. Giangiobbe12,P. Giannetti124a,124b, F. Gianotti30,

B. Gibbard25,S.M. Gibson77,M. Gilchriese15,T.P.S. Gillam28,D. Gillberg30,G. Gilles34, D.M. Gingrich3,e,

N. Giokaris9,M.P. Giordani166a,166c,R. Giordano104a,104b, F.M. Giorgi20a, F.M. Giorgi16,P.F. Giraud138,

D. Giugni91a,C. Giuliani48, M. Giulini58b, B.K. Gjelsten119,S. Gkaitatzis156, I. Gkialas156,l,

L.K. Gladilin99, C. Glasman82,J. Glatzer30, P.C.F. Glaysher46, A. Glazov42,G.L. Glonti65,

M. Goblirsch-Kolb101, J.R. Goddard76, J. Godlewski30, C. Goeringer83,S. Goldfarb89,T. Golling178,

D. Golubkov130,A. Gomes126a,126b,126d, L.S. Gomez Fajardo42,R. Gonçalo126a,

J. Goncalves Pinto Firmino Da Costa138,L. Gonella21, S. González de la Hoz169,G. Gonzalez Parra12,

S. Gonzalez-Sevilla49, L. Goossens30,P.A. Gorbounov97,H.A. Gordon25,I. Gorelov105, B. Gorini30,

E. Gorini73a,73b, A. Gorišek75,E. Gornicki39, A.T. Goshaw6, C. Gössling43, M.I. Gostkin65,

M. Gouighri137a,D. Goujdami137c,M.P. Goulette49, A.G. Goussiou140, C. Goy5,S. Gozpinar23,

H.M.X. Grabas138,L. Graber54,I. Grabowska-Bold38a,P. Grafström20a,20b, K-J. Grahn42, J. Gramling49,

E. Gramstad119,S. Grancagnolo16, V. Grassi150,V. Gratchev123, H.M. Gray30, E. Graziani136a,

O.G. Grebenyuk123,Z.D. Greenwood79,m,K. Gregersen78,I.M. Gregor42, P. Grenier145, J. Griffiths8,

A.A. Grillo139,K. Grimm72,S. Grinstein12,n, Ph. Gris34,Y.V. Grishkevich99,J.-F. Grivaz117,J.P. Grohs44,

A. Grohsjean42,E. Gross174,J. Grosse-Knetter54, G.C. Grossi135a,135b,J. Groth-Jensen174,Z.J. Grout151,

L. Guan33b, J. Guenther128,F. Guescini49, D. Guest178,O. Gueta155,C. Guicheney34,E. Guido50a,50b,

T. Guillemin117, S. Guindon2,U. Gul53,C. Gumpert44, J. Guo35, S. Gupta120, P. Gutierrez113,

N.G. Gutierrez Ortiz53, C. Gutschow78, N. Guttman155,C. Guyot138, C. Gwenlan120, C.B. Gwilliam74,

A. Haas110,C. Haber15, H.K. Hadavand8, N. Haddad137e, P. Haefner21, S. Hageböck21, Z. Hajduk39,

H. Hakobyan179, M. Haleem42,D. Hall120, G. Halladjian90,K. Hamacher177, P. Hamal115,K. Hamano171,

M. Hamer54, A. Hamilton147a, S. Hamilton163,G.N. Hamity147c,P.G. Hamnett42,L. Han33b,

K. Hanagaki118, K. Hanawa157,M. Hance15,P. Hanke58a,R. Hanna138, J.B. Hansen36,J.D. Hansen36,

P.H. Hansen36,K. Hara162,A.S. Hard175,T. Harenberg177, F. Hariri117, S. Harkusha92,D. Harper89,

R.D. Harrington46, O.M. Harris140, P.F. Harrison172,F. Hartjes107,M. Hasegawa67, S. Hasegawa103,

Y. Hasegawa142,A. Hasib113,S. Hassani138, S. Haug17, M. Hauschild30, R. Hauser90,M. Havranek127,

C.M. Hawkes18, R.J. Hawkings30, A.D. Hawkins81,T. Hayashi162,D. Hayden90,C.P. Hays120,

H.S. Hayward74, S.J. Haywood131, S.J. Head18,T. Heck83, V. Hedberg81,L. Heelan8, S. Heim122,

T. Heim177, B. Heinemann15, L. Heinrich110,J. Hejbal127, L. Helary22, C. Heller100,M. Heller30,

S. Hellman148a,148b,D. Hellmich21,C. Helsens30,J. Henderson120, R.C.W. Henderson72,Y. Heng175,

C. Hengler42, A. Henrichs178,A.M. Henriques Correia30,S. Henrot-Versille117, G.H. Herbert16,

Y. Hernández Jiménez169,R. Herrberg-Schubert16, G. Herten48, R. Hertenberger100, L. Hervas30,

G.G. Hesketh78,N.P. Hessey107,R. Hickling76,E. Higón-Rodriguez169,E. Hill171, J.C. Hill28, K.H. Hiller42,

S. Hillert21, S.J. Hillier18, I. Hinchliffe15, E. Hines122, M. Hirose159,D. Hirschbuehl177, J. Hobbs150,

N. Hod107,M.C. Hodgkinson141,P. Hodgson141, A. Hoecker30,M.R. Hoeferkamp105,F. Hoenig100,

J. Hoffman40,D. Hoffmann85, M. Hohlfeld83,T.R. Holmes15, T.M. Hong122,L. Hooft van Huysduynen110,

W.H. Hopkins116, Y. Horii103, J-Y. Hostachy55,S. Hou153,A. Hoummada137a,J. Howard120,J. Howarth42,

M. Hrabovsky115,I. Hristova16, J. Hrivnac117, T. Hryn’ova5, C. Hsu147c,P.J. Hsu83,S.-C. Hsu140,D. Hu35,

X. Hu89,Y. Huang42,Z. Hubacek30,F. Hubaut85, F. Huegging21,T.B. Huffman120,E.W. Hughes35,

G. Hughes72,M. Huhtinen30, T.A. Hülsing83,M. Hurwitz15, N. Huseynov65,b, J. Huston90, J. Huth57,

G. Iacobucci49, G. Iakovidis10, I. Ibragimov143, L. Iconomidou-Fayard117,E. Ideal178,Z. Idrissi137e,

P. Iengo104a,O. Igonkina107,T. Iizawa173,Y. Ikegami66, K. Ikematsu143, M. Ikeno66,Y. Ilchenko31,o,

D. Iliadis156, N. Ilic160, Y. Inamaru67, T. Ince101,P. Ioannou9,M. Iodice136a, K. Iordanidou9,

V. Ippolito57, A. Irles Quiles169,C. Isaksson168,M. Ishino68,M. Ishitsuka159,R. Ishmukhametov111,

C. Issever120,S. Istin19a,J.M. Iturbe Ponce84,R. Iuppa135a,135b,J. Ivarsson81,W. Iwanski39,H. Iwasaki66,

(13)

S. Jakobsen30,T. Jakoubek127, J. Jakubek128,D.O. Jamin153,D.K. Jana79,E. Jansen78,H. Jansen30, J. Janssen21, M. Janus172, G. Jarlskog81, N. Javadov65,b, T. Jav ˚urek48, L. Jeanty15, J. Jejelava51a,p, G.-Y. Jeng152,D. Jennens88, P. Jenni48,q, J. Jentzsch43,C. Jeske172, S. Jézéquel5, H. Ji175, J. Jia150,

Y. Jiang33b, M. Jimenez Belenguer42,S. Jin33a,A. Jinaru26a,O. Jinnouchi159, M.D. Joergensen36,

K.E. Johansson148a,148b, P. Johansson141, K.A. Johns7,K. Jon-And148a,148b,G. Jones172, R.W.L. Jones72,

T.J. Jones74, J. Jongmanns58a, P.M. Jorge126a,126b, K.D. Joshi84, J. Jovicevic149,X. Ju175, C.A. Jung43,

R.M. Jungst30, P. Jussel62, A. Juste Rozas12,n,M. Kaci169,A. Kaczmarska39,M. Kado117,H. Kagan111,

M. Kagan145, E. Kajomovitz45,C.W. Kalderon120, S. Kama40, A. Kamenshchikov130, N. Kanaya157,

M. Kaneda30,S. Kaneti28, V.A. Kantserov98,J. Kanzaki66, B. Kaplan110,A. Kapliy31, D. Kar53,

K. Karakostas10,N. Karastathis10,M.J. Kareem54, M. Karnevskiy83,S.N. Karpov65,Z.M. Karpova65,

K. Karthik110,V. Kartvelishvili72,A.N. Karyukhin130, L. Kashif175,G. Kasieczka58b,R.D. Kass111,

A. Kastanas14,Y. Kataoka157, A. Katre49,J. Katzy42, V. Kaushik7, K. Kawagoe70, T. Kawamoto157,

G. Kawamura54,S. Kazama157, V.F. Kazanin109,M.Y. Kazarinov65, R. Keeler171, R. Kehoe40,M. Keil54,

J.S. Keller42, J.J. Kempster77,H. Keoshkerian5, O. Kepka127,B.P. Kerševan75,S. Kersten177,

K. Kessoku157,J. Keung160,F. Khalil-zada11, H. Khandanyan148a,148b, A. Khanov114,A. Khodinov98,

A. Khomich58a,T.J. Khoo28,G. Khoriauli21,A. Khoroshilov177,V. Khovanskiy97,E. Khramov65,

J. Khubua51b,H.Y. Kim8, H. Kim148a,148b,S.H. Kim162, N. Kimura173,O. Kind16,B.T. King74,M. King169,

R.S.B. King120,S.B. King170, J. Kirk131,A.E. Kiryunin101,T. Kishimoto67,D. Kisielewska38a, F. Kiss48,

T. Kittelmann125, K. Kiuchi162, E. Kladiva146b, M. Klein74, U. Klein74, K. Kleinknecht83,

P. Klimek148a,148b, A. Klimentov25,R. Klingenberg43,J.A. Klinger84, T. Klioutchnikova30,P.F. Klok106,

E.-E. Kluge58a, P. Kluit107, S. Kluth101, E. Kneringer62,E.B.F.G. Knoops85,A. Knue53,D. Kobayashi159,

T. Kobayashi157, M. Kobel44,M. Kocian145, P. Kodys129,P. Koevesarki21,T. Koffas29,E. Koffeman107,

L.A. Kogan120, S. Kohlmann177, Z. Kohout128, T. Kohriki66,T. Koi145,H. Kolanoski16, I. Koletsou5,

J. Koll90,A.A. Komar96,∗, Y. Komori157, T. Kondo66, N. Kondrashova42,K. Köneke48,A.C. König106,

S. König83, T. Kono66,r,R. Konoplich110,s,N. Konstantinidis78,R. Kopeliansky154,S. Koperny38a,

L. Köpke83, A.K. Kopp48, K. Korcyl39,K. Kordas156,A. Korn78,A.A. Korol109,c, I. Korolkov12,

E.V. Korolkova141, V.A. Korotkov130,O. Kortner101, S. Kortner101,V.V. Kostyukhin21, V.M. Kotov65,

A. Kotwal45,C. Kourkoumelis9, V. Kouskoura156,A. Koutsman161a,R. Kowalewski171,T.Z. Kowalski38a,

W. Kozanecki138,A.S. Kozhin130,V. Kral128, V.A. Kramarenko99, G. Kramberger75,D. Krasnopevtsev98,

A. Krasznahorkay30, J.K. Kraus21,A. Kravchenko25, S. Kreiss110,M. Kretz58c,J. Kretzschmar74,

K. Kreutzfeldt52,P. Krieger160,K. Kroeninger54,H. Kroha101, J. Kroll122,J. Kroseberg21,J. Krstic13a,

U. Kruchonak65, H. Krüger21, T. Kruker17, N. Krumnack64,Z.V. Krumshteyn65, A. Kruse175,

M.C. Kruse45, M. Kruskal22,T. Kubota88,H. Kucuk78, S. Kuday4c, S. Kuehn48,A. Kugel58c,A. Kuhl139,

T. Kuhl42, V. Kukhtin65, Y. Kulchitsky92,S. Kuleshov32b,M. Kuna134a,134b,J. Kunkle122, A. Kupco127,

H. Kurashige67, Y.A. Kurochkin92,R. Kurumida67,V. Kus127,E.S. Kuwertz149,M. Kuze159,J. Kvita115,

A. La Rosa49,L. La Rotonda37a,37b,C. Lacasta169,F. Lacava134a,134b,J. Lacey29, H. Lacker16, D. Lacour80,

V.R. Lacuesta169, E. Ladygin65,R. Lafaye5,B. Laforge80, T. Lagouri178,S. Lai48,H. Laier58a,

L. Lambourne78, S. Lammers61,C.L. Lampen7,W. Lampl7,E. Lançon138,U. Landgraf48, M.P.J. Landon76,

V.S. Lang58a,A.J. Lankford165, F. Lanni25,K. Lantzsch30, S. Laplace80,C. Lapoire21,J.F. Laporte138,

T. Lari91a, F. Lasagni Manghi20a,20b,M. Lassnig30, P. Laurelli47,W. Lavrijsen15,A.T. Law139,P. Laycock74,

O. Le Dortz80,E. Le Guirriec85, E. Le Menedeu12, T. LeCompte6, F. Ledroit-Guillon55,C.A. Lee153,

H. Lee107,J.S.H. Lee118,S.C. Lee153, L. Lee1, G. Lefebvre80,M. Lefebvre171,F. Legger100,C. Leggett15,

A. Lehan74, M. Lehmacher21, G. Lehmann Miotto30, X. Lei7, W.A. Leight29, A. Leisos156,A.G. Leister178,

M.A.L. Leite24d,R. Leitner129, D. Lellouch174,B. Lemmer54, K.J.C. Leney78,T. Lenz21,G. Lenzen177,

B. Lenzi30,R. Leone7, S. Leone124a,124b,C. Leonidopoulos46,S. Leontsinis10, C. Leroy95, C.G. Lester28,

C.M. Lester122, M. Levchenko123,J. Levêque5,D. Levin89,L.J. Levinson174,M. Levy18,A. Lewis120,

G.H. Lewis110,A.M. Leyko21,M. Leyton41, B. Li33b,t,B. Li85,H. Li150,H.L. Li31, L. Li45,L. Li33e, S. Li45, Y. Li33c,u, Z. Liang139,H. Liao34,B. Liberti135a,P. Lichard30, K. Lie167, J. Liebal21,W. Liebig14,

C. Limbach21,A. Limosani88, S.C. Lin153,v, T.H. Lin83, F. Linde107, B.E. Lindquist150,J.T. Linnemann90,

E. Lipeles122, A. Lipniacka14,M. Lisovyi42, T.M. Liss167, D. Lissauer25, A. Lister170,A.M. Litke139,

B. Liu153, D. Liu153, J.B. Liu33b, K. Liu33b,w,L. Liu89, M. Liu45,M. Liu33b, Y. Liu33b,M. Livan121a,121b,

Références

Documents relatifs

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 93 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 93 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,