• Aucun résultat trouvé

Search for new resonances in Wγ and Zγ final states in pp collisions at √s=8 TeV with the ATLAS detector

N/A
N/A
Protected

Academic year: 2022

Partager "Search for new resonances in Wγ and Zγ final states in pp collisions at √s=8 TeV with the ATLAS detector"

Copied!
21
0
0

Texte intégral

(1)

Article

Reference

Search for new resonances in Wγ and Zγ final states in pp collisions at √s=8 TeV with the ATLAS detector

ATLAS Collaboration

ALEXANDRE, Gauthier (Collab.), et al.

Abstract

This Letter presents a search for new resonances decaying to final states with a vector boson produced in association with a high transverse momentum photon, Vγ , with V=W(→ℓν) or Z(→ℓ+ℓ−) , where ℓ=e or μ . The measurements use 20.3 fb −1 of proton–proton collision data at a center-of-mass energy of s=8 TeV recorded with the ATLAS detector. No deviations from the Standard Model expectations are found, and production cross section limits are set at 95% confidence level. Masses of the hypothetical aT and ωT states of a benchmark Low Scale Technicolor model are excluded in the ranges [275,960] GeV and [200,700]∪[750,890]

GeV , respectively. Limits at 95% confidence level on the production cross section of a singlet scalar resonance decaying to Zγ final states have also been obtained for masses below 1180 GeV.

ATLAS Collaboration, ALEXANDRE, Gauthier (Collab.), et al . Search for new resonances in Wγ and Zγ final states in pp collisions at √s=8 TeV with the ATLAS detector. Physics Letters. B , 2014, vol. 738, p. 428-447

DOI : 10.1016/j.physletb.2014.10.002

Available at:

http://archive-ouverte.unige.ch/unige:55771

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Search for new resonances in W γ and Z γ final states in pp collisions at √

s = 8 TeV with the ATLAS detector

.ATLASCollaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received30July2014

Receivedinrevisedform22September 2014

Accepted1October2014 Availableonline6October2014 Editor:W.-D.Schlatter

ThisLetter presentsasearchfornewresonancesdecayingtofinalstateswithavectorbosonproduced inassociationwithahightransversemomentumphoton,Vγ,withV=W(→ν)orZ(→+),where =e orμ.Themeasurementsuse20.3 fb1ofproton–protoncollisiondataatacenter-of-massenergy of

s=8 TeV recordedwiththeATLASdetector.NodeviationsfromtheStandardModelexpectationsare found,andproductioncrosssectionlimitsaresetat95%confidencelevel.MassesofthehypotheticalaT andωTstatesofabenchmarkLowScaleTechnicolormodelareexcludedintheranges[275,960]GeV and [200,700]∪ [750,890]GeV,respectively.Limitsat95%confidencelevelontheproductioncrosssection of asinglet scalarresonance decaying to Zγ finalstates have alsobeen obtainedfor masses below 1180 GeV.

PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/3.0/).FundedbySCOAP3.

1. Introduction

The search for diboson resonances is an essential step in ex- ploringthesourceofElectroweakSymmetryBreaking(EWSB).The observation of a Higgs boson decaying to γ γ, Z Z and W+W final states,reported by theATLAS andCMSCollaborations [1,2], represents a milestone in particle physics history. However, the precise nature of the observed Higgs boson is not well known, anda dynamical mechanismof EWSBandfermion massgenera- tionmayyetinvolveavarietyofheavybosonsofspin-0orspin-1.

ThisLetter presentsasearchfornarrowscalarandvectorheavy resonancesdecayingtoWγ or Zγ finalstates,wherethe W and Z bosonsdecaytoleptons(e or μ).Theexistenceofanewvector orscalar resonance couplingto a boson pair Wγ or Zγ ispre- dicted by many physics scenarios, includingvarious new physics modelswithscalarparticles[3,4]andvectorparticles[5].

TheLowScaleTechnicolor(LSTC)[5]modelisusedasabench- markmodelforthesearchforspin-1resonancesdecayingto Wγ

andZγ finalstatesexploredinthispaper.ThediscoveryofaHiggs boson,withitsparametersinagreementwiththeStandardModel (SM)predictions,doesnotexcludethefullphasespaceoftheLSTC model, and the basic phenomenology would remain valid for a Technicolor modelwith a light composite Higgs boson. To mini- mizethemodeldependenceofthesearchresults,thesignalcross sectionismeasuredwithinawelldefinedfiducialregion.Thepre-

E-mailaddress:atlas.publications@cern.ch.

dictednewboundstatesofthelightestdoubletoftechnifermions, thetechnimesonsaT,ωT,ρT and πT,generateanewphenomenol- ogy.Themasssplittingsbetweenthetechnimesonsaresettobeas follows:T=T,maT1.1×T andTT=mW [6].The decaysoftechnimesonstotechnipionsare thereforekinematically forbidden.Thetechnimesonsmostlydecaytopairsofelectroweak gaugebosons,themostabundantdecaychannelsbeing ωTZγ, aTWγ and ρTW Z,Wγ.Thesetechnimesonresonancesare expectedtobenarrow,withtypicalvaluesΓ (ρT,ωT,aT)1 GeV.

Aphenomenologicalmodeldescribingasingletscalarparticleφ [7,8]ischosenasanotherbenchmarkinthesearchforspin-0res- onances decaying to Zγ. The neutralscalar could be composite, producedbyahypotheticalnewstronginteraction.Itcouldbethe pseudo-Goldstone bosonplayingan importantrole inthedynam- ical EWSB.Thislow energyeffectivemodelisindependentofthe underlyingdynamicaldetailsanditsLagrangiancanbewrittenas follows:

Leff=cg

4π αs

Λ φGaμνGaμν+cW

4π αem

Λ·sin2θWφWμνa Waμν +cB

4π αem

Λ·cos2θW

φBμνBμν. (1)

Here αs andαem are,respectively, thecouplingsof thestrong andelectromagnetic interactions,Λ isthe cutoffscale andθW is theWeinbergangle.Moreover,cg,cW andcB arethecouplingco- efficients betweenthe scalarfield φ andthe gluon field strength Gaμν, the SU(2) field strength Wμνa and the U(1) field strength Bμν, respectively. The scalar field φ interacts directly with the http://dx.doi.org/10.1016/j.physletb.2014.10.002

0370-2693/PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/3.0/).FundedbySCOAP3.

(3)

gauge bosonpairs via the dimension-5 operators rather than via theloop-induced processes,and could lead to enhanced produc- tion andbranching ratio to Zγ if Λis in the TeV scale. No SM Yukawainteractionofφ withfermionsisallowed sothatthereis nodecaytobb or¯ t¯t finalstates.TheW W and Z Z decaysofφare suppressedcomparedwiththeSMHiggsboson.

Previous limits on new resonances decaying to Wγ and Zγ

final states from pp and¯ pp production have been obtained at theTevatronbytheDØ Collaboration[9]andattheLargeHadron Collider(LHC)bytheATLASCollaboration[10].AtATLAS,thepro- duction of aT and ωT for masses below 703 GeV and 494 GeV, respectively, wasexcludedwithintheLSTCbenchmarkparameters.

ThemoststringentlimitsonLSTChavebeensetbytheCMS[11]

Collaboration, excluding the production of ρT for masses below mρT<1.14 TeV, but using a slightly differentchoice of parame- ters.

2. ATLASdetectoranddatasample

The ATLAS detector [12] is composed ofan inner tracker de- tector(ID)surroundedbyathinsuperconductingsolenoidprovid- inga2 Taxialmagneticfield,electromagnetic(EM)andhadronic calorimeters(HC),andamuonspectrometer(MS)immersedinthe magneticfield produced by a systemof superconducting toroids.

The ID consists of three subsystems: the pixel and silicon mi- crostripdetectorscoverthepseudorapidity1range|η|<2.5,while thetransitionradiationtracker,madeofstrawtubes,hasanaccep- tancerangeof |η|<2.0.The calorimetersystemcoverstherange

|η|<4.9.Thehighly segmentedelectromagneticcalorimeterplays acrucialroleinelectronandphotonidentification.Itiscomposed oflead absorberswith Liquid Argon (LAr) asthe active material and spans |η|<3.2. In the region |η|<1.8, a pre-sampler de- tector usinga thinlayer ofLAris used tocorrect fortheenergy lost by electrons and photons upstream of the calorimeter. The hadronictile calorimeter(|η|<1.7)isa steel/scintillating-tilede- tector and is located directly outside the envelope of the barrel electromagneticcalorimeter. The end-capsand forwardcalorime- tersuseLArastheactivematerial,withcopper(EM)andtungsten (HC)asabsorbermaterials.TheMSiscomposedofthreelargesu- perconductingair-coretoroidmagnetsofeightcoilseach,asystem ofthreestationsofhighprecisiontrackingchambersintherange

|η|<2.7,anda muontriggersystemwhich covers|η|<2.4.The precisionmeasurementisensuredbymonitoreddrifttubesand,at largepseudorapidities(|η|>2),fortheinnermostlayer,bycathode strip chambers. The muon trigger system is composed of resis- tiveplatechambersinthebarrelregion(|η|<1.05),andthingap chambersintheend-cap(1.05<|η|<2.4).

TheATLAS triggersystem hasthree distinct levels, L1,L2 and theeventfilter,whereeachtriggerlevelrefinesthedecisionsmade attheprevious level.Thedatausedforthe presentanalysiswere collected in 2012 from pp collisions at a center-of-mass energy of8 TeVatthe LHC.The total integratedluminosity is20.3 fb1 withan uncertainty of 2.8% [13]. Events are selected by triggers requiringatleastone identifiedelectronormuon. Thetransverse energy(ET) thresholdforthesingle-leptontriggeris24 GeV. The leptontriggerefficienciesaremeasured using Z bosoncandidates asa functionof thetransversemomentum pT and η. Thetrigger

1 ATLASusesaright-handedcoordinatesystemwithitsoriginatthe nominal interactionpoint(IP)inthecenterofthedetectorandthez-axisalongthebeam pipe.Thex-axispointsfromtheIPtothecenteroftheLHCring,andthe y-axis pointsupward.Cylindricalcoordinates(r,φ)areusedinthetransverse(x,y)plane, φbeingtheazimuthalanglearoundthebeampipe.Thepseudorapidityisdefined intermsofthepolarangleθ asη= −ln tan(θ/2).Thedistance R inthe ηφ spaceisdefinedasR=

(η)2+(φ)2.

efficienciesfortheleptonsareapproximately70%formuonswith

|η|<1.05,90% formuonsintherange1.05<|η|<2.4[14],and 95%forelectronsintherange|η|<2.4.

3. Signalandbackgroundsimulatedsamples

Monte Carlo (MC) event samples, including a full simula- tion [15] of the ATLAS detector with Geant4 [16], are used to compare the datato the signal andbackground expectations.All MC samples are simulated with additional pp interactions (pile- up)inthesameandneighboringbunchcrossings.

The productionanddecay ofneutral (ωTZγ) andcharged technimesons (aTWγ) inthe LSTCmodel are handledby the Pythia6.426generator [17].The followingparameters areused in theeventgeneration:numberoftechnicolorsNTC=4;techniquark charges QU=1 andQD=0 forthe Zγ finalstateand QU=1/2 andQD= −1/2 fortheWγ finalstate.Withthisparameterization ofthetechniquarkcharges,thedominantcontributiontotheWγ

final stateisfromaT decay.Byremoving the ρT contribution,the modeldependencethatcouldresultfromhavingtwonearbypeaks inthebenchmarksignalisfurtherreduced.Thesineofthemixing angle betweenthe technipions andthe electroweakgauge boson longitudinalcomponentissetto1/3.Asstatedintheintroduction, the mass splittings betweenthe technimesons are set to: T= mωT=maT/1.1,andmρTmπT=mW.

Simulationsofthesignalsforsingletscalarparticlesaregener- ated using Madgraph5 [18] interfaced to Pythia8 [19] for par- ton shower and fragmentation processes. The generation uses the leading-order (LO) parton distribution function (PDF) set MSTW2008LO[20].Sincethekinematicdistributionofthe Zγ de- cayofascalarbosonisdeterminedbyitsspinandCPpropertiesin thenarrow-width approximation,the gluon–gluon fusionproduc- tionandthedecayaresimulatedbyusingtheSMHiggsprocessin Madgraph5,fixingtheresonancewidthto5.75 MeV.

Thecrosssectionofthesingletscalarprocess ggφZγ is calculatedbychoosingtwosetsofcouplingparametersinEq.(1).

Inthe parameterset(a),the couplingcoefficientsare setto cg= cW = −cB =1/4π, as suggested by Naive Dimensional Analysis (NDA) [21]. Here, the relative phasesare chosen to enhance the Zγ coupling.IfalargenewcolornumberNc=4 oftheunderlying strongdynamicsisconsideredinNDA[22,23],andlargercouplings with the electroweakgauge bosons are assumed [8],then larger values ofthe coefficientscan also be possible,depending onthe underlying theory. Thus another parameter set (b) is selected as follows: cg=1/2π, cW = −cB=1/π. In both parameterizations, the Zγ decayrateis dominantover the γ γ decay rate. Theun- derlying dynamicsscaleisset tobe Λ=6 TeV,motivatedby the Higgs boson couplings measurements [24,25]. The width of the singletscalarforeach ofset(a)and(b)iswellbelowtheexperi- mentalresolutionoverthefullmassrangestudied.

The main background processes, SM pp+γ and pp νγ production, are modeled using the Sherpa (1.4.1) genera- tor [26]. An invariant mass cut of m(+)>40 GeV is ap- plied at the generator level when simulating the pp+γ

process. The CT10 [27] PDF is used for samples generated with Sherpa. In the Wγ analysis, the Z(+) and Z(τ+τ) back- grounds are modelled with Pythia8. The final state radiation of photonsfromchargedleptonsistreatedinPythia8usingPhotos. Tauola(1.20)[28] isusedto model τ lepton decays.Eventswith oneormorehardphotonsatthegeneratorlevel(pT>10 GeV)in Z(+)and Z(τ+τ) MC simulations are removed, in order to avoidoverlapswith Zγ MCsamples.Inthe Zγ analysis, Z(+) andZ(τ+τ)MCsamplesareusedtocrosscheckthedata-driven Z+jet backgroundestimation.

Références

Documents relatifs

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 93 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 93 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,