• Aucun résultat trouvé

Measurement of the top quark mass in the dilepton channel using <em>m</em><sub>T2</sub> at CDF

N/A
N/A
Protected

Academic year: 2022

Partager "Measurement of the top quark mass in the dilepton channel using <em>m</em><sub>T2</sub> at CDF"

Copied!
10
0
0

Texte intégral

(1)

Article

Reference

Measurement of the top quark mass in the dilepton channel using m

T2

at CDF

CDF Collaboration

CLARK, Allan Geoffrey (Collab.), et al.

Abstract

We present measurements of the top quark mass using mT2, a variable related to the transverse mass in events with two missing particles. We use the template method applied to tt dilepton events produced in pp collisions at Fermilab's Tevatron Collider and collected by the CDF detector. From a data sample corresponding to an integrated luminosity of 3.4  fb−1, we select 236 tt candidate events. Using the mT2 distribution, we measure the top quark mass to be Mtop=168.0+4.8−4.0(stat)±2.9(syst)  GeV/c2. By combining mT2 with the reconstructed top quark mass distributions based on a neutrino weighting method, we measure Mtop=169.3±2.7(stat)±3.2(syst)  GeV/c2. This is the first application of the mT2 variable in a mass measurement at a hadron collider.

CDF Collaboration, CLARK, Allan Geoffrey (Collab.), et al . Measurement of the top quark mass in the dilepton channel using m

T2

at CDF. Physical Review. D , 2010, vol. 81, no. 03, p. 031102

DOI : 10.1103/PhysRevD.81.031102

Available at:

http://archive-ouverte.unige.ch/unige:38653

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

Measurement of the top quark mass in the dilepton channel using m

T2

at CDF

T. Aaltonen,24J. Adelman,14B. A´ lvarez Gonza´lez,12,wS. Amerio,44b,44aD. Amidei,35A. Anastassov,39A. Annovi,20 J. Antos,15G. Apollinari,18A. Apresyan,49T. Arisawa,58A. Artikov,16J. Asaadi,54W. Ashmanskas,18A. Attal,4 A. Aurisano,54F. Azfar,43W. Badgett,18A. Barbaro-Galtieri,29V. E. Barnes,49B. A. Barnett,26P. Barria,47c,47aP. Bartos,15

G. Bauer,33P.-H. Beauchemin,34F. Bedeschi,47aD. Beecher,31S. Behari,26G. Bellettini,47b,47aJ. Bellinger,60 D. Benjamin,17A. Beretvas,18A. Bhatti,51M. Binkley,18D. Bisello,44b,44aI. Bizjak,31,ddR. E. Blair,2C. Blocker,7

B. Blumenfeld,26A. Bocci,17A. Bodek,50V. Boisvert,50D. Bortoletto,49J. Boudreau,48A. Boveia,11B. Brau,11,b A. Bridgeman,25L. Brigliadori,6b,6aC. Bromberg,36E. Brubaker,14J. Budagov,16H. S. Budd,50S. Budd,25K. Burkett,18 G. Busetto,44b,44aP. Bussey,22A. Buzatu,34K. L. Byrum,2S. Cabrera,17,yC. Calancha,32S. Camarda,4M. Campanelli,36

M. Campbell,35F. Canelli,14,18A. Canepa,46B. Carls,25D. Carlsmith,60R. Carosi,47aS. Carrillo,19,oS. Carron,18 B. Casal,12M. Casarsa,18A. Castro,6b,6aP. Catastini,47c,47aD. Cauz,55aV. Cavaliere,47c,47aM. Cavalli-Sforza,4A. Cerri,29

L. Cerrito,31,rS. H. Chang,28Y. C. Chen,1M. Chertok,8G. Chiarelli,47aG. Chlachidze,18F. Chlebana,18K. Cho,28 D. Chokheli,16J. P. Chou,23G. Choudalakis,33K. Chung,18,pW. H. Chung,60Y. S. Chung,50T. Chwalek,27C. I. Ciobanu,45

M. A. Ciocci,47c,47aA. Clark,21D. Clark,7G. Compostella,44aM. E. Convery,18J. Conway,8M. Corbo,45M. Cordelli,20 C. A. Cox,8D. J. Cox,8F. Crescioli,47b,47aC. Cuenca Almenar,61J. Cuevas,12,wR. Culbertson,18J. C. Cully,35

D. Dagenhart,18M. Datta,18T. Davies,22P. de Barbaro,50S. De Cecco,52aA. Deisher,29G. De Lorenzo,4 M. Dell’Orso,47b,47aC. Deluca,4L. Demortier,51J. Deng,17,gM. Deninno,6aM. d’Errico,44b,44aA. Di Canto,47b,47a G. P. di Giovanni,45B. Di Ruzza,47aJ. R. Dittmann,5M. D’Onofrio,4S. Donati,47b,47aP. Dong,18T. Dorigo,44aS. Dube,53

K. Ebina,58A. Elagin,54R. Erbacher,8D. Errede,25S. Errede,25N. Ershaidat,45,ccR. Eusebi,54H. C. Fang,29 S. Farrington,43W. T. Fedorko,14R. G. Feild,61M. Feindt,27J. P. Fernandez,32C. Ferrazza,47d,47aR. Field,19 G. Flanagan,49,tR. Forrest,8M. J. Frank,5M. Franklin,23J. C. Freeman,18I. Furic,19M. Gallinaro,51J. Galyardt,13 F. Garberson,11J. E. Garcia,21A. F. Garfinkel,49P. Garosi,47c,47aK. Genser,18H. Gerberich,25D. Gerdes,35A. Gessler,27

S. Giagu,52b,52aV. Giakoumopoulou,3P. Giannetti,47aK. Gibson,48J. L. Gimmell,50C. M. Ginsburg,18N. Giokaris,3 M. Giordani,55b,55aP. Giromini,20M. Giunta,47aG. Giurgiu,26V. Glagolev,16D. Glenzinski,18M. Gold,38 N. Goldschmidt,19A. Golossanov,18G. Gomez,12G. Gomez-Ceballos,33M. Goncharov,33O. Gonza´lez,32I. Gorelov,38

A. T. Goshaw,17K. Goulianos,51A. Gresele,44b,44aS. Grinstein,4C. Grosso-Pilcher,14R. C. Group,18U. Grundler,25 J. Guimaraes da Costa,23Z. Gunay-Unalan,36C. Haber,29K. Hahn,33S. R. Hahn,18E. Halkiadakis,53B.-Y. Han,50 J. Y. Han,50F. Happacher,20K. Hara,56D. Hare,53M. Hare,57R. F. Harr,59M. Hartz,48K. Hatakeyama,5C. Hays,43

M. Heck,27J. Heinrich,46C. Henderson,33M. Herndon,60J. Heuser,27S. Hewamanage,5D. Hidas,53C. S. Hill,11,d D. Hirschbuehl,27A. Hocker,18S. Hou,1M. Houlden,30S.-C. Hsu,29B. T. Huffman,43R. E. Hughes,40M. Hurwitz,14 U. Husemann,61M. Hussein,36J. Huston,36J. Incandela,11G. Introzzi,47aM. Iori,52b,52aA. Ivanov,8,qE. James,18D. Jang,13

B. Jayatilaka,17E. J. Jeon,28M. K. Jha,6aS. Jindariani,18W. Johnson,8M. Jones,49K. K. Joo,28S. Y. Jun,13J. E. Jung,28 T. R. Junk,18T. Kamon,54D. Kar,19P. E. Karchin,59Y. Kato,42,nR. Kephart,18W. Ketchum,14J. Keung,46V. Khotilovich,54 B. Kilminster,18D. H. Kim,28H. S. Kim,28H. W. Kim,28J. E. Kim,28M. J. Kim,20S. B. Kim,28S. H. Kim,56Y. K. Kim,14

N. Kimura,58L. Kirsch,7S. Klimenko,19B. Knuteson,33K. Kondo,58D. J. Kong,28J. Konigsberg,19A. Korytov,19 A. V. Kotwal,17M. Kreps,27J. Kroll,46D. Krop,14N. Krumnack,5M. Kruse,17V. Krutelyov,11T. Kuhr,27N. P. Kulkarni,59

M. Kurata,56S. Kwang,14A. T. Laasanen,49S. Lami,47aS. Lammel,18M. Lancaster,31R. L. Lander,8K. Lannon,40,v A. Lath,53G. Latino,47c,47aI. Lazzizzera,44b,44aT. LeCompte,2E. Lee,54H. S. Lee,14J. S. Lee,28S. W. Lee,54,xS. Leone,47a

J. D. Lewis,18C.-J. Lin,29J. Linacre,43M. Lindgren,18E. Lipeles,46A. Lister,21D. O. Litvintsev,18C. Liu,48T. Liu,18 N. S. Lockyer,46A. Loginov,61L. Lovas,15D. Lucchesi,44b,44aJ. Lueck,27P. Lujan,29P. Lukens,18G. Lungu,51J. Lys,29

R. Lysak,15D. MacQueen,34R. Madrak,18K. Maeshima,18K. Makhoul,33P. Maksimovic,26S. Malde,43S. Malik,31 G. Manca,30,fA. Manousakis-Katsikakis,3F. Margaroli,49C. Marino,27C. P. Marino,25A. Martin,61V. Martin,22,l M. Martı´nez,4R. Martı´nez-Balları´n,32P. Mastrandrea,52aM. Mathis,26M. E. Mattson,59P. Mazzanti,6aK. S. McFarland,50

P. McIntyre,54R. McNulty,30,kA. Mehta,30P. Mehtala,24A. Menzione,47aC. Mesropian,51T. Miao,18D. Mietlicki,35 N. Miladinovic,7R. Miller,36C. Mills,23M. Milnik,27A. Mitra,1G. Mitselmakher,19H. Miyake,56S. Moed,23N. Moggi,6a

M. N. Mondragon,18,oC. S. Moon,28R. Moore,18M. J. Morello,47aJ. Morlock,27P. Movilla Fernandez,18 J. Mu¨lmensta¨dt,29A. Mukherjee,18Th. Muller,27P. Murat,18M. Mussini,6b,6aJ. Nachtman,18,pY. Nagai,56J. Naganoma,56

K. Nakamura,56I. Nakano,41A. Napier,57J. Nett,60C. Neu,46,aaM. S. Neubauer,25S. Neubauer,27J. Nielsen,29,h L. Nodulman,2M. Norman,10O. Norniella,25E. Nurse,31L. Oakes,43S. H. Oh,17Y. D. Oh,28I. Oksuzian,19T. Okusawa,42 R. Orava,24K. Osterberg,24S. Pagan Griso,44b,44aC. Pagliarone,55aE. Palencia,18V. Papadimitriou,18A. Papaikonomou,27

PHYSICAL REVIEW D81,031102(R) (2010)

(3)

A. A. Paramanov,2B. Parks,40S. Pashapour,34J. Patrick,18G. Pauletta,55b,55aM. Paulini,13C. Paus,33T. Peiffer,27 D. E. Pellett,8A. Penzo,55aT. J. Phillips,17G. Piacentino,47aE. Pianori,46L. Pinera,19K. Pitts,25C. Plager,9L. Pondrom,60 K. Potamianos,49O. Poukhov,16,aF. Prokoshin,16,zA. Pronko,18F. Ptohos,18,jE. Pueschel,13G. Punzi,47b,47aJ. Pursley,60 J. Rademacker,43,dA. Rahaman,48V. Ramakrishnan,60N. Ranjan,49I. Redondo,32P. Renton,43M. Renz,27M. Rescigno,52a S. Richter,27F. Rimondi,6b,6aL. Ristori,47aA. Robson,22T. Rodrigo,12T. Rodriguez,46E. Rogers,25S. Rolli,57R. Roser,18

M. Rossi,55aR. Rossin,11P. Roy,34A. Ruiz,12J. Russ,13V. Rusu,18B. Rutherford,18H. Saarikko,24A. Safonov,54 W. K. Sakumoto,50L. Santi,55b,55aL. Sartori,47aK. Sato,56A. Savoy-Navarro,45P. Schlabach,18A. Schmidt,27 E. E. Schmidt,18M. A. Schmidt,14M. P. Schmidt,61,aM. Schmitt,39T. Schwarz,8L. Scodellaro,12A. Scribano,47c,47a

F. Scuri,47aA. Sedov,49S. Seidel,38Y. Seiya,42A. Semenov,16L. Sexton-Kennedy,18F. Sforza,47b,47aA. Sfyrla,25 S. Z. Shalhout,59T. Shears,30P. F. Shepard,48M. Shimojima,56,uS. Shiraishi,14M. Shochet,14Y. Shon,60I. Shreyber,37 A. Simonenko,16P. Sinervo,34A. Sisakyan,16A. J. Slaughter,18J. Slaunwhite,40K. Sliwa,57J. R. Smith,8F. D. Snider,18

R. Snihur,34A. Soha,18S. Somalwar,53V. Sorin,4T. Spreitzer,34P. Squillacioti,47c,47aM. Stanitzki,61R. St. Denis,22 B. Stelzer,34O. Stelzer-Chilton,34D. Stentz,39J. Strologas,38G. L. Strycker,35J. S. Suh,28A. Sukhanov,19I. Suslov,16 A. Taffard,25,gR. Takashima,41Y. Takeuchi,56R. Tanaka,41J. Tang,14M. Tecchio,35P. K. Teng,1J. Thom,18,iJ. Thome,13 G. A. Thompson,25E. Thomson,46P. Tipton,61P. Ttito-Guzma´n,32S. Tkaczyk,18D. Toback,54S. Tokar,15K. Tollefson,36 T. Tomura,56D. Tonelli,18S. Torre,20D. Torretta,18P. Totaro,55b,55aS. Tourneur,45M. Trovato,47d,47aS.-Y. Tsai,1Y. Tu,46

N. Turini,47c,47aF. Ukegawa,56S. Uozumi,28N. van Remortel,24,cA. Varganov,35E. Vataga,47d,47aF. Va´zquez,19,o G. Velev,18C. Vellidis,3M. Vidal,32I. Vila,12R. Vilar,12M. Vogel,38I. Volobouev,29,xG. Volpi,47b,47aP. Wagner,46

R. G. Wagner,2R. L. Wagner,18W. Wagner,27,bbJ. Wagner-Kuhr,27T. Wakisaka,42R. Wallny,9S. M. Wang,1 A. Warburton,34D. Waters,31M. Weinberger,54J. Weinelt,27W. C. Wester III,18B. Whitehouse,57D. Whiteson,46,g A. B. Wicklund,2E. Wicklund,18S. Wilbur,14G. Williams,34H. H. Williams,46P. Wilson,18B. L. Winer,40P. Wittich,18,i

S. Wolbers,18C. Wolfe,14H. Wolfe,40T. Wright,35X. Wu,21F. Wu¨rthwein,10S. Xie,33A. Yagil,10K. Yamamoto,42 J. Yamaoka,17U. K. Yang,14,sY. C. Yang,28W. M. Yao,29G. P. Yeh,18K. Yi,18,pJ. Yoh,18K. Yorita,58T. Yoshida,42,m

G. B. Yu,17I. Yu,28S. S. Yu,18J. C. Yun,18A. Zanetti,55aY. Zeng,17X. Zhang,25Y. Zheng,9,eand S. Zucchelli6b,6a (CDF Collaboration)

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China

2Argonne National Laboratory, Argonne, Illinois 60439, USA

3University of Athens, 157 71 Athens, Greece

4Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain

5Baylor University, Waco, Texas 76798, USA

6aIstituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy

6bUniversity of Bologna, I-40127 Bologna, Italy

7Brandeis University, Waltham, Massachusetts 02254, USA

8University of California, Davis, Davis, California 95616, USA

9University of California, Los Angeles, Los Angeles, California 90024, USA

10University of California, San Diego, La Jolla, California 92093, USA

11University of California, Santa Barbara, Santa Barbara, California 93106, USA

12Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain

13Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

14Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA

15Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia

16Joint Institute for Nuclear Research, RU-141980 Dubna, Russia

17Duke University, Durham, North Carolina 27708, USA

18Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

19University of Florida, Gainesville, Florida 32611, USA

20Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy

21University of Geneva, CH-1211 Geneva 4, Switzerland

22Glasgow University, Glasgow G12 8QQ, United Kingdom

23Harvard University, Cambridge, Massachusetts 02138, USA

24Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland

25University of Illinois, Urbana, Illinois 61801, USA

26The Johns Hopkins University, Baltimore, Maryland 21218, USA

27Institut fu¨r Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany

T. AALTONENet al. PHYSICAL REVIEW D81,031102(R) (2010)

031102-2

(4)

28Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea;

Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea;

Korea Institute of Science and Technology Information, Daejeon 305-806, Korea;

Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea

29Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

30University of Liverpool, Liverpool L69 7ZE, United Kingdom

31University College London, London WC1E 6BT, United Kingdom

32Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, E-28040 Madrid, Spain

33Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

34Institute of Particle Physics: McGill University, Montre´al, Que´bec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7;

and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3

35University of Michigan, Ann Arbor, Michigan 48109, USA

36Michigan State University, East Lansing, Michigan 48824, USA

37Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia

38University of New Mexico, Albuquerque, New Mexico 87131, USA

39Northwestern University, Evanston, Illinois 60208, USA

40The Ohio State University, Columbus, Ohio 43210, USA

41Okayama University, Okayama 700-8530, Japan

42Osaka City University, Osaka 588, Japan

43University of Oxford, Oxford OX1 3RH, United Kingdom

44aIstituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy

44bUniversity of Padova, I-35131 Padova, Italy

45LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France

46University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

47aIstituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy

47bUniversity of Pisa, I-56127 Pisa, Italy

47cUniversity of Siena, I-56127 Pisa, Italy

47dScuola Normale Superiore, I-56127 Pisa, Italy

48University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

49Purdue University, West Lafayette, Indiana 47907, USA

50University of Rochester, Rochester, New York 14627, USA

51The Rockefeller University, New York, New York 10021, USA

52aIstituto Nazionale di Fisica Nucleare, Sezione di Roma 1, I-00185 Roma, Italy

aaVisitor from University of Virginia, Charlottesville, VA 22906, USA.

ddOn leave from J. Stefan Institute, Ljubljana, Slovenia.

ccVisitor from Yarmouk University, Irbid 211-63, Jordan.

zVisitor from Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile.

yVisitor from IFIC (CSIC-Universitat de Valencia), 56071 Valencia, Spain.

uVisitor from Nagasaki Institute of Applied Science, Nagasaki, Japan.

wVisitor from University de Oviedo, E-33007 Oviedo, Spain.

mVisitor from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

bbVisitor from Bergische Universita¨t Wuppertal, 42097 Wuppertal, Germany.

qVisitor from Kansas State University, Manhattan, KS 66506, USA.

xVisitor from Texas Tech University, Lubbock, TX 79609, USA.

tVisitor from Muons, Inc., Batavia, IL 60510, USA.

sVisitor from University of Manchester, Manchester M13 9PL, United Kongdom.

pVisitor from University of Iowa, Iowa City, IA 52242, USA.

rVisitor from Queen Mary, University of London, London, E1 4NS, United Kingdom.

oVisitor from Universidad Iberoamericana, Mexico D.F., Mexico.

gVisitor from University of California Irvine, Irvine, CA 92697, USA.

kVisitor from University College Dublin, Dublin 4, Ireland.

iVisitor from Cornell University, Ithaca, NY 14853, USA.

jVisitor from University of Cyprus, Nicosia CY-1678, Cyprus.

nVisitor from Kinki University, Higashi-Osaka City, Japan 577-8502.

lVisitor from University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.

fVisitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.

eVisitor from Chinese Academy of Sciences, Beijing 100864, China.

dVisitor from University of Bristol, Bristol BS8 1TL, United Kingdom.

bVisitor from University of Massachusetts Amherst, Amherst, MA 01003, USA.

hVisitor from University of California Santa Cruz, Santa Cruz, CA 95064, USA.

cVisitor from Universiteit Antwerpen, B-2610 Antwerp, Belgium.

aDeceased.

(5)

52bSapienza Universita` di Roma, I-00185 Roma, Italy

53Rutgers University, Piscataway, New Jersey 08855, USA

54Texas A&M University, College Station, Texas 77843, USA

55aIstituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, I-33100 Udine, Italy

55bUniversity of Trieste/Udine, I-33100 Udine, Italy

56University of Tsukuba, Tsukuba, Ibaraki 305, Japan

57Tufts University, Medford, Massachusetts 02155, USA

58Waseda University, Tokyo 169, Japan

59Wayne State University, Detroit, Michigan 48201, USA

60University of Wisconsin, Madison, Wisconsin 53706, USA

61Yale University, New Haven, Connecticut 06520, USA (Received 17 November 2009; published 16 February 2010)

We present measurements of the top quark mass usingmT2, a variable related to the transverse mass in events with two missing particles. We use the template method applied tottdilepton events produced in pp collisions at Fermilab’s Tevatron Collider and collected by the CDF detector. From a data sample corresponding to an integrated luminosity of3:4 fb1, we select 236ttcandidate events. Using themT2

distribution, we measure the top quark mass to be Mtop¼168:0þ4:84:0ðstatÞ 2:9ðsystÞGeV=c2. By combining mT2 with the reconstructed top quark mass distributions based on a neutrino weighting method, we measureMtop¼169:32:7ðstatÞ 3:2ðsystÞGeV=c2. This is the first application of the mT2variable in a mass measurement at a hadron collider.

DOI:10.1103/PhysRevD.81.031102 PACS numbers: 14.65.Ha, 12.15.Ff, 13.85.Ni, 13.85.Qk

I. INTRODUCTION

Models in numerous, well-motivated theoretical frame- works make predictions for new phenomena at hadron colliders such as the Tevatron and the Large Hadron Collider (LHC) [1,2]. Within each framework, one can construct a number of qualitatively different models con- sistent with data. Thus, when discoveries are made at a hadron collider, we face the inverse problem of how one maps back to the underlying theory responsible for the new phenomena [1,3]. A potentially powerful observable to discriminate among models and to extract the mass of new particles, when the new phenomenon produces a pair of new particles with large missing energy signatures, is the mT2 variable [4,5]. The mT2 variable is based on transverse mass in events with two missing particles.

The top quark is the heaviest known elementary particle with a mass approximately 40 times larger than the mass of its isospin partner, the bottom quark (b). The large top quark mass (Mtop) produces significant contributions to electroweak radiative corrections. Therefore, top quark mass measurements are important tests of the standard model and provide constraints on the Higgs boson mass.

In the dilepton channel,ttpair production is followed by the decay of each top quark to aW boson and abquark where bothW bosons then decay to charged leptons (eor ) and neutrinos. Events in this channel thus contain two leptons, two bquark jets, and two undetected neutrinos.

The measurement of Mtop using complementary tech- niques tests and improves our understanding of this im- portant parameter in the standard model [6].

In this paper, we present the first measurement of the mass of the top quark using the mT2 distribution with tt

events in the dilepton channel [7]. We use this channel because it has decay products similar to possible new phenomena where undetected particles are created. We compare this method with two others that were previously used: the reconstructed top quark mass using the neutrino weighting algorithm (mNWAt ) [8,9] and the scalar sum of transverse energies of jets, leptons, and missing transverse energy (E6 T) [10] in the event (HT) [11]. We also measure the top quark mass using pairs of observables [ðmT2; mNWAt ÞandðmNWAt ; HTÞ] simultaneously.

II. THEmT2 VARIABLE

Many models contain heavy, strongly interacting parti- cles with the same conserved charge or parity that result in weakly interacting, stable particles in the final state. A hadron collider would pair produce these colored particles, which then decay into standard model particles along with a pair of undetectable weakly interacting particles, so that the generic experimental signature is large missing trans- verse momentum accompanied by multiple energetic jets and leptons [10]. In this final state, we can definemT2 as mT2ðminvisÞ ¼ min

pð1ÞT;pð2ÞT½max½mTðminvis;pð1ÞT Þ; mTðminvis;pð2ÞT Þ;

(1) where mT, the transverse mass of each parent particle, is defined as

mTðminvis;pinvisT Þ

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi m2visþm2invisþ2ðEvisT EinvisT pvisT pinvisT Þ

q : (2)

Here ‘‘invis’’ and ‘‘vis’’ represent the individual unde-

T. AALTONENet al. PHYSICAL REVIEW D81,031102(R) (2010)

031102-4

(6)

tected (invisible) and detected (visible) particles, respec- tively,pð1ÞT andpð2ÞT are transverse momenta of two invisible particles, and minvis is the mass of the invisible particle.

The minimization is performed with the constraintpð1ÞT þ pð2ÞT ¼pmissingT , where the magnitude of pmissingT is con- strained to the missing transverse momentum.

The quantitymT2 represents a lower bound on the mass of the parent particle. Using themT2 distribution, we can extract the mass of this parent particle [12] in a similar way to the precise measurement of the W boson mass [13]

where an event contains one charged lepton (eor) and a neutrino, with the latter not being detected.

III. EXPERIMENT AND DATA

We use a sample ofttcandidates in the dilepton channel, corresponding to3:4 fb1 of proton-antiproton collisions at ffiffiffi

ps

¼1:96 TeV, collected using the CDF II detector [14]. This is a general-purpose detector designed to study ppcollisions at the Fermilab Tevatron. A charged-particle tracking system, consisting of a silicon microstrip tracker and a drift chamber, is immersed in a 1.4 T magnetic field.

Electromagnetic and hadronic calorimeters surround the tracking system and measure particle energies. Drift cham- bers and scintillators, located outside the calorimeters, detect muon candidates.

We select events consistent with thettdilepton decay topology. We require two oppositely charged lepton can- didates withpT>20 GeV=cwith one isolated [15] lepton candidate in the central region (jj<1) of the detector, and another isolated or nonisolated lepton candidate in the central region, or isolated electron candidate in the forward region (1:0<jj<2:0). We also require E6 T exceeding 25 GeV, and at least two jets withET>15 GeVandjj<

2:5[10]. To further reject backgrounds, we requestHT >

200 GeV. We also require the variables of interest to be consistent with the top quark hypothesis by demanding 20 GeV=c2< mT2<300 GeV=c2 and 100 GeV=c2<

mNWAt <350 GeV=c2. The criteria select 236ttcandidate events.

The primary sources of background production are Drell-Yan, diboson, and QCD multijet events. We estimate the rate of the Drell-Yan events with a calculation based on simulated events using theALPGEN[16] v2.10 Monte Carlo (MC) generator and the rate of diboson events with a

PYTHIA [17] v6.216 calculation. For the Drell-Yan Zþ jets process, we normalize the MC sample by matching the number of Z events predicted and observed in the Z mass region between 76 and106 GeV=c2. We use data to estimate the rate of background events from QCD multijet production where an event has one real lepton and one of the jets misidentified as another lepton (fake). In measuring the top quark mass, we divide thettcandidate sample into events with and without secondary vertex b tags [18], which have very different purity. We only attempt to b

tag the two highest ET jets. TableIsummarizes the com- position of background events and the expected numbers of ttand background events. We estimate thettsignal event rates usingPYTHIAv6.216 withCTEQ5L[19] parton distri- bution functions at leading order with a full detector simu- lation [20].

To calculate mT2 of a tt dilepton event [7], we first identify all possible configurations corresponding to differ- ent assignments of jets to b quarks and combinations of quarks and leptons. The two most energetic jets in an event are considered to have originated from the bquarks. For each configuration, we calculate the transverse mass of each top quark (t!bl) using Eq. (2):

mT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi m2blþm2þ2ðEblTETpblT pTÞ

q ; (3)

wheremblandpblT denote the invariant mass and transverse momentum of the bottom-quark jets and charged lepton (bl) system, m andpT are the mass and transverse mo- mentum of the neutrino, andEblT andET are the transverse energies of theblsystem and neutrino:

EblT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi jpblTj2þm2bl q

and ET ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi jpTj2þm2

q : (4)

TABLE I. Expected and observed numbers of signal and back- ground events assumingttproduction cross sectiontt¼6:7 0:8 pb andMtop¼175 GeV=c2. Uncertainties quoted capture the uncertainties on the theoretical cross section, the statistics of data in theZmass window, the jet energy scale, the luminosity, the fake rates, and the statistics of the MC samples.

Nontagged Tagged

Diboson 15:22:3 0:60:1

Drell-Yan 31:13:5 1:70:2

QCD multijets 31:28:7 4:51:3

Total background 77:59:8 6:81:3

ttwithtt¼6:7 pb 68:76:8 88:48:2 Total (predicted) 146:211:9 95:28:3

Observed (3:4 fb1) 149 87

2) (GeV/c mT2

50 100 150 200 250

)2 Fraction/(5 GeV/c

0 0.01 0.02 0.03 0.04

0.05 Mtop = 160 (GeV/c2)

2) = 170 (GeV/c Mtop

2) = 180 (GeV/c Mtop

FIG. 1 (color online). ThemT2 distributions from ttdilepton Monte Carlo events that pass the selection criteria for three input values of the top quark mass. Each distribution is normalized to have unit area.

(7)

We then calculatemT2 using Eq. (1) with the assumption m¼0, and for all possible parton assignments. We select the smallest value for each event. Figure1shows simulated mT2 distributions for various top quark masses for the combined non-b-tagged andb-tagged sample, which dem- onstrates thatmT2is sensitive toMtop, and thus can be used to measure it.

IV. MASS FIT

We estimate the probability density functions (PDFs) of signals and background using the kernel density estimation (KDE) [21,22] that constructs the PDF without any as- sumption of a functional form. For the mass measurement with two observables, we use the two-dimensional KDE that accounts for the correlation between the two observ- ables. First, at discrete values of Mtop from 130 to 220 GeV=c2with increments of0:5 GeV=c2in the region immediately above and below 175 to 5 GeV=c2 near the extreme mass values, we estimate the PDFs for the observ- ables from 76ttMC samples. Each sample consists of 0.6 to 4.8 M generated events, with 1 M events corresponding to a luminosity of150 fb1, assuming attcross section of 6.7 pb [23]. We smooth and interpolate the MC distribu- tions to find PDFs for arbitrary values of Mtop using the local polynomial smoothing method [24]. We fit the dis- tributions of the observables in the data to the signal and background PDFs in an unbinned extended maximum like- lihood fit [25], where we minimize the negative logarithm of the likelihood usingMINUIT[26]. The likelihood is built for the b-tagged and non-b-tagged categories separately and then combined by multiplying the two categories. We find the statistical uncertainty onMtopby searching for the points where the negative logarithm of the likelihood minimized with respect to all other parameters deviates by 0.5 units from the minimum. Reference [22] provides detailed information about this technique.

We test the mass fit procedures using 3000 pseudoex- periments for each of 14 different top quark masses rang- ing from 159 to185 GeV=c2 with almost 2 GeV=c2 step size. In each experiment, we select the numbers of back- ground events from a Poisson distribution with a mean equal to the expected numbers of background events in the sample and the numbers of signal events from a Poisson distribution with a mean equal to the expected numbers of signal events assuming attpair production cross section of 6.7 pb. The distributions of the average mass residual (deviation from the input top mass) and the width of the pull (the ratio of the residual to the uncertainty reported by

MINUIT) for simulated experiments show that the measured top quark mass is on average0:260:10 GeV=c2 lower than the true top quark mass and has no dependence on Mtop in the mT2 measurements. We correct the measure- ment for this bias. No such bias is observed with the

combined ðmT2; mNWAt Þmeasurement. In all cases, the fit on average correctly estimates the statistical uncertainties, based on the pull width distribution being consistent with unity. For Mtop¼175 GeV=c2, we expect the statistical uncertainties on Mtop to be 4:0 GeV=c2 with mT2, 3:4 GeV=c2 with mNWAt , 5:4 GeV=c2 with HT, 2:9 GeV=c2 with ðmT2; mNWAt Þ combined, and 3:2 GeV=c2 withðmNWAt ; HTÞcombined.

V. SYSTEMATIC UNCERTAINTIES

We examine a variety of systematic effects that could affect the measurement by comparing MC simulated ex- periments in which we vary relevant parameters within their systematic uncertainties. The dominant source of systematic uncertainty is the light quark jet energy scale (JES) [27]. We vary JES parameters within their uncertain- ties in both signal and background MC generated events and interpret the shifts as uncertainties. The b-jet energy scale systematic uncertainty arising from our modeling of b fragmentation,b hadron branching fractions, and calo- rimeter response captures the additional uncertainty not taken into account in the light quark jet energy scale. The uncertainty arising from the choice of MC generator is estimated by comparing MC simulated experiments gen- erated with PYTHIA and HERWIG [28]. We estimate the systematic uncertainty due to modeling of initial-state gluon radiation and final-state gluon radiation by extrap- olating uncertainties in thepT of Drell-Yan events to thett mass region [29]. We estimate the systematic uncertainty due to parton distribution functions by varying the inde- pendent eigenvectors of the CTEQ6M[30] parton distribu- tion functions, varyingQCD, and comparingCTEQ5L[19]

withMRST72[31] parton distribution functions. In estimat- ing the systematic uncertainty associated with uncertain- ties in the top quark production mechanism, we vary the fraction of top quarks produced by gluon-gluon annihila- tion from 6% to 20%, corresponding to the 1 standard deviation upper bound on the gluon fusion fraction [32].

We estimate systematic uncertainties due to the lepton energy and momentum scales by propagating shifts in electron energy and muon momentum scales within their uncertainties. Background shape systematic uncertainties account for the variation of the background composition. In addition, we change the shape of the Drell-Yan background sample according to the difference in the missing energy distribution observed in data and simulation, and the shape of the QCD multijet model. We estimate the multiple hadron interaction systematic uncertainties to account for the fact that the average number of interactions in our MC samples are not equal to the number observed in the data.

We extract the mass dependence on the number of inter- actions in MC pseudoexperiments by dividing our MC samples into subsamples with different number of inter-

T. AALTONENet al. PHYSICAL REVIEW D81,031102(R) (2010)

031102-6

(8)

actions. We then multiply the slope of the result by the difference in the number of interactions between MC events and data and treat that as a systematic uncertainty.

It has been suggested that color reconnection (CR) effects could cause a bias in the top quark mass measure- ment and interpretations at the level of0:5 GeV=c2 [33].

We estimate uncertainties arising from CR effects using the

PYTHIA6.4 MC generator, which includes CR effects and other new features in modeling the underlying event, initial and final-state radiation, and parton showering. We gener- ate two MC samples, one using tune A [34], which is very similar to the tune for CDF nominal MC generations, the other usingACR[33], which includes CR into the tune A.

We take the difference in the extracted mass between these two MC samples as a systematic uncertainty. We measure the difference to be 0.6 GeV forðmT2; mNWAt Þ combined, and 0.7 GeV formT2alone. As a cross-check, we generate two other MC samples, one using tuneS0[33] and the other using NOCR [33], which include all of the new features with and without CR. We find a similar mass difference between the two samples.

TableII summarizes the sources and estimates of sys- tematic uncertainties. The total systematic uncertainties, adding them in quadrature, are 2:9 GeV=c2 with mT2, 3:8 GeV=c2 with mNWAt , 5:7 GeV=c2 with HT, 3:2 GeV=c2 with ðmT2; mNWAt Þ combined, and 3:8 GeV=c2withðmNWAt ; HTÞcombined. ThemT2method has a jet energy scale uncertainty significantly smaller than mNWAt , resulting in the smallest total systematic uncer- tainty. Including both statistical and systematic uncertain- ties, we conclude thatmT2is one of the best observables for the Mtop measurement, comparable to the measurement using mNWAt . Using both mT2 and mNWAt , we expect to achieve a 10% improvement in overall uncertainty over usingmT2 alone.

VI. RESULTS

We apply a likelihood fit to the data using observables discussed in this article. Figure 2 shows the one- dimensional log-likelihoods for mT2 and ðmT2; mNWAt Þ combined. Figure3shows the distributions of the observ- ables used for theMtopmeasurements overlaid with density estimates using ttsignal events withMtop ¼169 GeV=c2 and the full background model. The fit results are summa- rized in TableIII. The extracted masses are consistent with each other and the statistical uncertainties are consistent with predictions from MC pseudoexperiments.

In conclusion, we present the top quark mass measure- ments in the dilepton channel using mT2. In 3:4 fb1 of CDF data, we measureMtopusingmT2to be

Mtop¼168:0þ4:84:0ðstatÞ 2:9ðsystÞGeV=c2

¼168:0þ5:65:0 GeV=c2; and using bothmNWAt andmT2to be

Mtop¼169:32:7ðstatÞ 3:2ðsystÞGeV=c2

¼169:34:2 GeV=c2:

This is consistent with the most precise published result in this channel from the CDF [35] and D0 [36]

Collaborations. We expect further improvements in Mtop with these variables as CDF accumulates about a factor of 3 more data during Tevatron run II. The measurements in this article are the first application of the mT2 variable to data, and demonstrate thatmT2is a powerful observable for the mass measurement of the top quark in the dilepton channel. The methods described in this article will be applicable to other measurements at the Tevatron and soon at CERN’s Large Hadron Collider for discriminating new physics models and measuring the mass of heavy TABLE II. Estimated statistical (Mtop¼175 GeV=c2), systematic, and total uncertainties in

GeV=c2.

mT2 mNWAt HT ðmNWAt ; mT2Þ ðmNWAt ; HTÞ

Statistical 4.0 3.4 5.4 2.9 3.2

Systematic Jet energy scale (light quarks) 2.6 3.5 3.7 3.0 3.4

Generator 0.3 1.0 2.6 0.5 1.3

Parton distribution functions 0.5 0.6 1.8 0.5 0.8

bjet energy scale 0.2 0.3 0.2 0.2 0.3

Background shape 0.4 0.3 0.7 0.1 0.3

Gluon fusion fraction 0.3 0.1 0.3 <0:1 0.1 Initial- and final-state radiation 0.6 0.2 0.6 0.3 0.2

MC statistics 0.3 0.3 0.5 0.3 0.3

Lepton energy 0.6 0.2 0.7 0.3 0.2

Multiple hadron interaction 0.2 0.3 0.3 0.3 0.3

Color reconnection 0.7 0.6 2.5 0.6 0.6

Total systematic uncertainty 2.9 3.8 5.7 3.2 3.8

Total 5.0 5.1 7.8 4.3 5.0

(9)

particles that decay into weakly interacting particles such as dark matter candidates.

ACKNOWLEDGMENTS

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions.

This work was supported by the U.S. Department of Energy and the National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation;

the Bundesministerium fu¨r Bildung und Forschung, Germany; the Korean Science and Engineering Foun- dation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacio´n, and the Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

2) (GeV/c mT2

50 100 150 200 250 300

)2 Events/(10 GeV/c

0 5 10 15 20

25 Data

Signal+Bkgd Bkgd only

-1) CDF II (3.4 fb

nontagged

2) (GeV/c

NWA

mt

100 150 200 250 300 350

)2 Events/(10 GeV/c

0 5 10 15 20 25 30

Data Signal+Bkgd Bkgd only

-1) CDF II (3.4 fb

nontagged

(GeV/c) HT

200 300 400 500 600 700 800

Events/(30 GeV/c)

0 5 10 15 20 25

30 Data

Signal+Bkgd Bkgd only

-1) CDF II (3.4 fb

nontagged

2) (GeV/c mT2

50 100 150 200 250 300

)2 Events/(10 GeV/c

0 5 10 15 20

Data Signal+Bkgd Bkgd only

-1) CDF II (3.4 fb

tagged

2) (GeV/c mNWA

100 150 200 250 300 350

)2 Events/(10 GeV/c

0 5 10 15

20 Data

Signal+Bkgd Bkgd only

-1) CDF II (3.4 fb

tagged

(GeV/c) HT

200 300 400 500 600 700 800

Events/(30 GeV/c)

0 5 10 15

20 Data

Signal+Bkgd Bkgd only

-1) CDF II (3.4 fb

tagged

FIG. 3 (color online). Distributions of the three variables used to estimate the top quark mass, showing the b-tagged and non-b-tagged samples separately. The data are overlaid with the predictions from the KDE probability distributions using the top quark massMtop¼169 GeV=c2 and full background model.

TABLE III. Summary of top quark mass measurements with different observables. In the right-handMtop column, we com- bine in quadrature the statistical and systematic uncertainty in order to compare the precision of the different methods.

Observables Mtop ðGeV=c2Þ Mtop ðGeV=c2Þ mT2 168:0þ4:84:0ðstatÞ 2:9ðsystÞ 168:0þ5:65:0 mNWAt 169:4þ3:33:2ðstatÞ 3:8ðsystÞ 169:4þ5:05:0 HT 168:8þ5:16:6ðstatÞ 5:7ðsystÞ 168:8þ7:68:7 mNWAt andmT2 169:3þ2:72:7ðstatÞ 3:2ðsystÞ 169:3þ4:24:2 mNWAt andHT 169:6þ2:82:9ðstatÞ 3:8ðsystÞ 169:6þ4:74:8

2) (GeV/c Mtop

158 160 162 164 166 168 170 172 174 176

-log(L)

0 0.5 1 1.5 2 2.5 3

3.5 CDF II (3.4 fb-1)

only) (mT2

2) (GeV/c Mtop

162 164 166 168 170 172 174 176

-log(L)

0 0.5 1 1.5 2 2.5 3

3.5 CDF II (3.4 fb-1)

T2)

NWA, m (mt

FIG. 2. Negative log-likelihood distributions.

T. AALTONENet al. PHYSICAL REVIEW D81,031102(R) (2010)

031102-8

(10)

[1] S. Abdullinet al.(TeV4LHC Working Group), arXiv:hep- ph/0608322v2.

[2] G. Brooijmanset al., arXiv:0802.3715v1.

[3] A. K. Datta, K. Kong, and K. T. Matchev, Phys. Rev. D72, 096006 (2005).

[4] C. Lester and D. Summers, Phys. Lett. B463, 99 (1999).

[5] A. Barr, C. Lester, and P. Stephens, J. Phys. G29, 2343 (2003).

[6] C. Amsleret al.(Particle Data Group), Phys. Lett. B667, 1 (2008).

[7] W. S. Cho, K. Choi, Y. G. Kim, and C. B. Park, Phys. Rev.

D78, 034019 (2008).

[8] B. Abbott et al. (D0 Collaboration), Phys. Rev. D 60, 052001 (1999).

[9] A. Abulenciaet al.(CDF Collaboration), Phys. Rev. D73, 112006 (2006).

[10] We use a right-handed cylindrical coordinate system with the origin in the center of the detector, whereandare the polar and azimuthal angles and pseudorapidity is defined as¼ lntanð=2Þ. Transverse energy and mo- mentum are ET¼EsinðÞ and pT¼psinðÞ, respec- tively, where E and p are energy and momentum.

Undetected particles, such as neutrinos from leptonic W decays, lead to an imbalance of energy (momentum) in the transverse plane of the detector,E6 T(pmissingT ).

[11] F. Abe et al.(CDF Collaboration), Phys. Rev. Lett. 75, 3997 (1995).

[12] M. Burns, K. Kong, K. T. Matchev, and M. Park, J. High Energy Phys. 03 (2009) 143.

[13] A. Abulenciaet al.(CDF Collaboration), Phys. Rev. Lett.

99, 151801 (2007).

[14] D. Acosta et al.(CDF Collaboration), Phys. Rev. D 71, 032001 (2005).

[15] A lepton is isolated if the totalET(pT) within a cone with R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðÞ2þ ðÞ2

p ¼0:4 centered on the lepton, minus the leptonET(pT), is less than 10% of the lepton

ET(pT) for electron (muon).

[16] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. D. Polosa, J. High Energy Phys. 07 (2003) 001.

[17] T. Sjostrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.

[18] D. Acosta et al.(CDF Collaboration), Phys. Rev. D71, 052003 (2005).

[19] H. L. Laiet al.(CTEQ Collaboration), Eur. Phys. J. C12, 375 (2000).

[20] E. A. Gerchtein and M. Paulini, ECONF C0303241, TUMT005 (2003); R. Brun and F. Carminati, CERN Program Library Long Writeup Report No. W5013, 1994.

[21] K. Cranmer, Comput. Phys. Commun.136, 198 (2001).

[22] T. Aaltonenet al.(CDF Collaboration), Phys. Rev. D79, 092005 (2009).

[23] M. Cacciariet al., J. High Energy Phys. 04 (2004) 068.

[24] C. Loader, Local Regression and Likelihood (Springer, New York, 1999).

[25] R. Barlow, Nucl. Instrum. Methods Phys. Res., Sect. A 297, 496 (1990).

[26] F. James and M. Roos, Comput. Phys. Commun.10, 343 (1975).

[27] A. Bhattiet al., Nucl. Instrum. Methods Phys. Res., Sect.

A566, 375 (2006).

[28] G. Corcellaet al., J. High Energy Phys. 01 (2001) 010.

[29] A. Abulenciaet al.(CDF Collaboration), Phys. Rev. D73, 032003 (2006).

[30] J. Pumplinet al., J. High Energy Phys. 07 (2002) 012.

[31] A. D. Martinet al., Eur. Phys. J. C14, 133 (2000).

[32] M. Cacciariet al., J. High Energy Phys. 04 (2004) 068.

[33] D. Wicke and P. Z. Skands, Eur. Phys. J. C52, 133 (2007).

[34] R. Field and R. C. Group, arXiv:hep-ph/0510198v1.

[35] A. Abulenciaet al.(CDF Collaboration), Phys. Rev. Lett.

102, 152001 (2009).

[36] V. M. Abazovet al.(D0 Collaboration), Phys. Rev. D80, 092006 (2009).

Références

Documents relatifs

A systematic uncertainty is estimated for each jet energy correction by performing Monte Carlo experiments drawn from simulated signal and background events with 1 standard deviation

35 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

The number of events from t t, which is similarly allowed to fluctuate, is taken to be the excess of the observed data in the positively tagged lepton jets sample over the

Left: Mean measured M t in Monte Carlo experiments of signal and background events at varying top-quark mass. The solid line is a linear fit to

The mass measurement is based on an event- by-event likelihood which depends on both the sample purity and the value of the top-quark mass, using 90 possible jet-to-parton

We present a measurement of the top-quark mass in pp collisions at s√=1.96  TeV which uses events with an inclusive signature of missing transverse energy and jets.. The event

We present the first measurement of the mass of the top quark in a sample of tt→ℓνbbqq events (where ℓ=e,μ) selected by identifying jets containing a muon candidate from

The observables are the top quark mass and the invariant mass of two jets from the W decay in the lepton þ jets channel, and the top quark mass and the scalar sum of transverse