• Aucun résultat trouvé

<span class="mathjax-formula">$L^p$</span>-estimates for hyperbolic operators applications to <span class="mathjax-formula">$\Box u = u^k$</span>

N/A
N/A
Protected

Academic year: 2022

Partager "<span class="mathjax-formula">$L^p$</span>-estimates for hyperbolic operators applications to <span class="mathjax-formula">$\Box u = u^k$</span>"

Copied!
11
0
0

Texte intégral

(1)

A NNALES DE LA FACULTÉ DES SCIENCES DE T OULOUSE

I. P ERAL J. C. P ERAL

M. W ALIAS

L

p

-estimates for hyperbolic operators applications to u = u

k

Annales de la faculté des sciences de Toulouse 5

e

série, tome 4, n

o

2 (1982), p. 143-152

<http://www.numdam.org/item?id=AFST_1982_5_4_2_143_0>

© Université Paul Sabatier, 1982, tous droits réservés.

L’accès aux archives de la revue « Annales de la faculté des sciences de Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l’accord avec les conditions générales d’utilisa- tion (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression sys- tématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

Lp-ESTIMATES FOR HYPERBOLIC OPERATORS APPLICATIONS TO ~

u =

uk

I. Peral (1), J.C. Peral (2), M. Walias (3)

Annales Facu lté des

Sciences

Toulouse Vol

IV,1982,

P 143 à 152

(1)(2)(3)

Facultad de

Ciencias,

Division de Matematicas

C-XVI,

Universidad Autonoma de Madrid.

Cantoblanco,

Madrid-34 -

Spain.

Resume : Nous obtenons dans ce travail des estimations

LP - LP

pour

!’equation

des ondes non

homogène.

Le

problème

est

complètement

résolu en dimension

d’espace

n 3. Dans le cas n > 4

nous avons une

reponse positive

si - .

Finalement,

nous utilisons ces estimations pour I’ ... , d p P.

2

f n-1 .

bl’ 1° , . montrer l’existence et unicite de solutions faibles pour certains

problèmes

non lineaires.

Summary : LP - LP

estimates are obtained in this paper for the

non-homogeneous

wave

equation.

The

problem

is

completely

solved for space dimension n 3. A

positive

answer is

given

for dimen-

sion n > 4

and 1 p-1 2| 1 n-1.

These estimates are used in order to prove existence and

unique-

ness of weak solutions for some non-linear

problems.

ABSTRACT

We present some results on non-linear

hyperbolic equations

obtained

by

means of

some information on the linear

Cauchy problem.

Those results for the linear case are

essentially :

:

THEOREM. Let

(3)

144

where f E g E then for each t E

(0,~)

we have

if

The resUl t is

sharp.

The

homogeneity

of Fourier

multipliers implies

max

~1,

I

tl ) .

Proof and extension to other kind of

hyperbolic operators

can be seen in

J.

C. Peral

[3]

and for related estimates of the

type (LP,L q)

Littman

[1 ], [2]

and Strichartz

[8] [9].

1 we will solve

partially

a

problem posed by

Littman in

[1 ].

2 we

give

existence and

uniqueness

results for certain non-linear

hyperbolic equations D

u =

F(u).

Those results are in the context of the

LP

spaces.

Finally in §

3 we deal with the

case I F(u) I = uk.

Everything

will be

expressed

in terms of either the wave

equations

of the Klein- Gordon

equations.

It is not hard to

generalize

these results to some others more

general hyperbolic

equa-

tions.

1. - A PRIORI

LP-ESTIMATES

FOR THE NON-HOMOGENEOUS

EQUATIONS

It has been

proved by

Littman in

[1 ]

that an estimates of the type

with v ~

C~(R~)

and say

support (v)

C

(OJ)

X

R~

is false if p >

20142014 .

.

- n-3

For the same

problem

we get the

following positive

results.

THEOREM. Let

(4)

where F E

L p ( [O,T X R n ) and I - - - 1 1 I -. 1

Then

p 2 n-1

Proof.

By

the Duhamel

principle

we know that the solution of the

problem

is

expressed

as

where

v(t;r,x)

solves the

following problem

The estimates

(1) gives

for each t

By applying

the Minkowski

integral inequality,

for each t we get

1 1 with-+-=1.

P q Then we

get

This

implies

(5)

where

because

I t!

is the norm of Fourier

multiplier

. .

Remark. For n 3 our result

gives

the range 1

p ~.

For n > 4 there is a range where the

2(n-1 )

2n

problem

is open, that is -

p ~

- and the

conjugates.

n-3 n-3

We can prove the same kind of estimates for more

general equations

such a Klein-Gordon

equation

for

example.

See

J .C.

Peral

[3 ] .

.

2. - NON-LINEAR CAUCHY PROBLEM

Assume

and

if we consider

where f E

g E

1

and 1 1 ~ 1

then we can

give

the

following

theorem.

p 2 n-1 1

THEOREM 1. Let F be

satisfying i~

and

ii)

then

given

any T >

0,

The

Cauchy problem

where

g ~ Lp1(Rn),

f E

Lp(Rn ) and 1 p- 2 1 I n 1 1 , has unique

weak solution u E

Lp( ( O,T

X

Rn) )

and

(6)

Proof. With fixed T > 0 consider

u~

solution of the

problem

and,

in

general

for k G IN

uk

solution of the

problem

As a consequence of the result

in § 1,

for each k E N we have

we will prove

that { Cauchy

sequence in the first space.

In fact

uk -

verifies :

then if

we get

Therefore

and,

if k

Q,

for each t E

(0,T)

we have

(7)

Then

uk -~

u E

LP(Rn))

and as A is a continuous

operator,

u is a solution of our pro- blem.

By using

the theorem

locally

is not hard to prove that u is the

unique

solution. I n others

words,

we consider the

operator

such that Av = u, is solution of the linear

problem

Then for small

T,

A is contractive. Also it is clear that the convergence is in the space

and this finishes the

proof.

An

important example

included in the

preceding

theorem is the sine-Klein-Gordon

equations

and for the case n =

3,

there exists a

unique

solution for every

p, p

~,

The

following

Gronwall

lemma,

shows the behaviour of the constant

C(T).

LEMMA. Let

a(t)

and be

positive

and continuous functions on some interval

[o,TJ ,

lf

then

Then if we consider

where u is the solution for the non-linear

Cauchy problem

and

(8)

we

get

for each t

where

max(1,t)

as in the linear case. Then

Observe that in the

case I F(t,x,u) I ~ H,

behaves like

ta

for some

a(p).

This is the case of the sine-Klein-Gordon

equations.

3. - A RESULT OF EXISTENCE AND

UNIQUENESS

IN

L°°

FOR D u +

m2u

=

uk

For the

problem

existence results are know in the case of finite energy ; see references in

Segal [5]

and Strauss

[6] . Uniqueness

is known in the case k 5. See also

[7] .

We get results of existence and

uniqueness

based in the estimates of

§

1

using

the fact that for n = 3 such estimates are valid for 1

Consider

where

g E

and f E

L°°(R3)

and in addition assume

Define

uo

as the solution of the linear

problem

(9)

Then for each t we have

Besides if t ~

[0,1 ] we get

On the other hand let

un

be the solution of the linear

problem

The result

of §

1

implies

if t

]

and

by

recursion we deduce :

Let’s define

then we obtain

where

Ck

is the bound of the

following expression

for

and

(10)

Obviously

and

then (

is a

Cauchy

sequence in

Since

Ck

1 the

following

existence and

uniqueness

theorem has been

proved

00 3 ~ 3 +

~1

THEOREM 2. Let f E L

(R ) and

g ~

L1 (R ) such

that

I) f~

~

+ ~ ~g~

~,1 then

has

unique

solution m =

u

E

L ([B,1 ] X R ) ;

II u (I

~1 2}

2 .

A classical theorem of

uniqueness

in the

following (see

Strauss

[6J ).

THEOREM 3~ Consider

where g E

L°° (R3)

and f E If the

problem

has a solution u E X

R3)

then

it is the

unique

solution in such space.

Several observations should be made at this

point.

The theorem 3

gives

a result on

uniqueness

with

independence

of how

big

or small are the

L°~-norms

of the data. However for the theorem 2 we need the data to be small.

From both theorems we get the

following corollary :

:

COROLLARY. Under the

hipothesis

of the Theorem

2,

then there is a

unique

solution in

L°~([o,1 1 ] X R3).

1

Finally

if a = II f

~~

+ II

gl)

~,

1 >-

results on existence and

uniqueness

can be

given

4

locally

in t.

(11)

152

REFERENCES

[1]

W. LITTMAN. «The wave operator and

Lp

norms».

J.

Math. Mech.12

(1963)

55-68.

[2]

W. LITTMAN.

«Multipliers

in

Lp

and

interpolation».

Bull. A.M.S. 71

(1965)

764-766.

[3] J.C.

PERAL.

«Lp-estimates

for wave

equations». Journal

of Functional

Analysis, Vol 36, n° 1 (1980), 114-145.

[4]

I. SEGAL. «Non-linear

semi-groups».

Annals in Mathematics 78

2

(1963)

339-364.

[5]

I. SEGAL. «The

global Cauchy

Problem for a realtivistic scalar field with power inter- action». Bull. Soc. Math. France 91

(1963)

129-135.

[6]

W. STRAUSS. «Non-linear invariant wave

equations».

Lecture notes in Phisics

73, Springer-Verlag,

Berlin

(1978).

[7]

W.

STRAUSS,

L.

VAZQUEZ.

«Numerical solution of a Non-linear Klein-Gordon

Equations». J. Comp. Phys.

28

n°2 (1978)

271-278.

[8]

R.S. STRICHARTZ. «Convolutions with Kernels

having singularities

on a

sphere».

Trans. Amer. Math. Soc. 148

(1970)

461-471.

[9]

R.S. STRICHARTZ. «A

priori

Estimates for the Wave

Equations

and some

appli-

cations».

Jour.

Functional

Analysis

5

(1970)

218-235.

(Manuscrit

re;u !e 18

janvier 1981)

Références

Documents relatifs

Our proofs are often elementary, based on decompositions, Taylor formula, Cauchy-Schwarz inequality, Parseval or Plancherel formula..., except for that of Theorem

Then, if we apply the functor global sections, we get a right V-module structure on Ber(-C*). This finishes the proof of the PROPOSITION 4.0.1... 125] showed that this maps

ABSTRACT. ^{K)) l'algèbre réelle des opérateurs différentiels sur G (resp. sur K) invariants par les translations à gauche de G, (resp.. BENABDALLAH, Université Claude

Tout sous-corps fermé E de Cp est l'adhérence d'une extension algé- brique L de Qp, et nous démontrons que, pour que la transformation de Fourier ^ soit injective, il faut et il

Si s est modérément ramifiée, elle est induite d’un caractère modérément ramifié Il de l’extension quadratique non ramifiée de F, à. valeurs dans

In this section we shall prove the function field analogue in positive characteristic of Siegel’s finiteness theorem for integral points on elliptic curves. Our

Soit (n, V) une représentation irréductible de G ayant un caractère central, et de dimension infinie.. Les fonctions de Kirillov

We prove that the -çe-adic L-function interpolates the critical values of the classical zeta function of the twists of our form by finite characters of conductor