• Aucun résultat trouvé

Expert-based ecosystem services capacity matrices: Dealing with scoring variability

N/A
N/A
Protected

Academic year: 2021

Partager "Expert-based ecosystem services capacity matrices: Dealing with scoring variability"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: hal-01681625

https://hal.archives-ouvertes.fr/hal-01681625

Submitted on 11 May 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Expert-based ecosystem services capacity matrices:

Dealing with scoring variability

Carole Sylvie Campagne, Philip Roche, Frédéric Gosselin, Leita Tschanz,

Thierry Tatoni

To cite this version:

Carole Sylvie Campagne, Philip Roche, Frédéric Gosselin, Leita Tschanz, Thierry Tatoni.

Expert-based ecosystem services capacity matrices: Dealing with scoring variability. Ecological Indicators,

Elsevier, 2017, 79, pp.63-72. �10.1016/j.ecolind.2017.03.043�. �hal-01681625�

(2)

EcologicalIndicators79(2017)63–72

ContentslistsavailableatScienceDirect

Ecological

Indicators

jou rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / e c o l i n d

Original

Articles

Expert-based

ecosystem

services

capacity

matrices:

Dealing

with

scoring

variability

Carole

Sylvie

Campagne

a,b,∗

,

Philip

Roche

a

,

Frédéric

Gosselin

c

,

Léïta

Tschanz

b

,

Thierry

Tatoni

b

aIrstea,URRECOVER,3275routedeCézanne,CS40061,13182Aix-en-ProvenceCedex5,France

bInstitutMéditerranéendeBiodiversitéetd’Ecologiemarineetcontinentale(IMBE),UMR7263,AixMarseilleUniversité,CNRS,IRD,AvignonUniversité,

FSTSt-Jérôme,13397Marseille,France

cIrstea,UREFNO,DomainedesBarres,45290Nogent-Sur-Vernisson,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received31January2017

Receivedinrevisedform10March2017 Accepted23March2017

Availableonline15April2017 Keywords:

Ecosystemservices Capacitymatrix Confidenceindex Uncertainty Expertpanelsize Participatoryassessment

a

b

s

t

r

a

c

t

Capacitymatricesarewidelyusedforassessmentofecosystemsservices,especiallywhenbasedon participatoryapproaches.Acapacitymatrixisbasicallyalook-uptablethatlinkslandcovertypesto ecosystemservicespotentiallyprovided.ThemethodintroducedbyBurkhardetal.in2009hassince beendevelopedandappliedinanarrayofcasestudies.Hereweadresssomeofthecriticismsontheuse ofcapacitymatricessuchasexpertpanelsize,expertconfidence,andscoringvariability.

Basedonthreecase-studycapacitymatricesderivedfromexpertparticipatoryscoring,weusedthree differentapproachestoestimatethescoremeansandstandarderrors:usualstatistics,bootstrapping, andBayesianmodels.Basedonaresamplingofthethreecapacitymatrices,weshowthatcentralscore stabilizesveryquicklybutthatintersamplevariabilityshrinksafter10–15expertswhilestandarderror ofthescorescontinuestodecreaseassamplesizeincreases.Comparedtousualstatistics, bootstrap-pingmethodsonlyreducetheestimatedstandarderrorsforsmallsamples.Theuseofconfidencescores expressedbyexpertsandassociatedwiththeirscoresonecosystemservicesdoesnotchangethemean scoresbutslightlyincreasesthestandarderrorsassociatedwiththescoresonecosystemservices.Here, computationsconsideringtheconfidencescoresmarginallychangedthefinalscores.Nevertheless,many participantsfeltitimportanttohaveaconfidencescoreinthecapacitymatrixtoletthemexpress uncertaintiesontheirownknowledge.Thismeansthatconfidencescorescouldbeconsideredas sup-plementarymaterialsinaparticipatoryapproachbutshouldnotnecessarilybeusedtocomputefinal scores.

Wecomparedusualstatistics,bootstrappingandBayesianmodelstoestimatecentralscoresand stan-darderrorsforacapacitymatrixbasedonapanelof30experts,andfoundthatthethreemethodsgive verysimilarresults.Thiswasinterpretedasaconsequenceofhavingapanelsizethatcountedtwice theminimalnumberofexpertsneeded.Bayesianmodelsprovidedtheloweststandarderrors,whereas bootrappingwithconfidencescoresprovidedthelargeststandarderrors.

Theseconclusionspromptustoadvocatewhenthepanelsizeissmall(lessthan10experts),touse bootstrappingtoestimatefinalscoresandtheirvariability.Ifmorethan15expertsareinvolved,theusual statisticsareappropriate.Bayesianmodelsaremorecomplextoimplementbutcanalsoprovidemore informativeoutputstohelpanalyzeresults.

©2017ElsevierLtd.Allrightsreserved.

Abbreviations: ES,ecosystemservice;ET,ecosystemtypes;SD,standard devi-ation;SE,standarderrors;CP,cutpoint;RNP,RegionalNaturalPark;RNPBP,“Les BaronniesProvenc¸ales”RNP;RNP-SE,“Scarpe-Escaut”RNP;RNP-SEwet, “Scarpe-EscautRNPwetlandsonly”.

∗ Correspondingauthorat:Irstea,URRECOVER,3275routedeCézanne,CS 40061,13182Aix-en-ProvenceCedex5,France.

E-mailaddresses:sylvie.campagne@irstea.fr,sylviecampagne@gmail.com

(C.S.Campagne),philip.roche@irstea.fr(P.Roche),frederic.gosselin@irstea.fr

(F.Gosselin),l.tschanz@imbe.fr(L.Tschanz),t.tatoni@imbe.fr(T.Tatoni).

1. Introduction

Ecosystemservice(ES)isapopularandwidelyrecognised con-cept (Burkhard et al., 2012; Fisher et al., 2009), and the term ‘ecosystemservices’hastranslatedfromscientificstudiesintothe mainstreamvocabularyofstakeholdersandexperts(Jacobsetal., 2014).IncreasingdemandfrompolicymakersliketheEuropean Commission has prompted the development of an array of ES

http://dx.doi.org/10.1016/j.ecolind.2017.03.043

(3)

assessmentandmappingmethods(Martnez-HarmsandBalvanera, 2012;Willemenetal.,2015).

Onesuchmethodthatisgaininggroundisthe“capacitymatrix approach”,whichwaseventoutedas“themostpopularES assess-menttechniquetoday”(Jacobsetal.,2014).Thecapacitymatrixis basicallyalook-uptablethatlinkslandcovertypestoecosystem servicespotentiallyprovided(Burkhardetal.,2009).

Sincethe“matrix”firstintroducedbyBurkhardetal.in2009, themethodhasbeendeveloped andappliedinanarrayofcase studies(e.g.Hermannetal.,2013;Krolletal.,2012;Stolletal., 2014;Vihervaaraetal.,2010;etc.).Basedonexperts’knowledge, itgivesaquickassessmentofESpotentiallyprovidedinanarea (Vihervaaraetal.,2012;Stolletal.,2014).TheESconceptmakes thematrixmethodmobilizetheESconceptinwaythatmakesit easyforstakeholderstounderstandandappropriate.Itisa peda-gogicaltoolthathasprovenitsutilitybytargetingprioritiesand highlightingmanagementhotspots.Theapproachcanbeapplied atdifferentscales(e.g.Stolletal.,2014orHermannetal.,2013). Alackofquantitativedataandtheirspatialheterogeneityraises issuesthatcanbebypassedbyaskingexpertstoestimatescores. Dependingontheconcertationprocessapplied,datacanbe devel-opedbyconsensusamongthedifferentexpertsofaterritory.The methodisalsoflexibleenoughtointegrateallkindsofdata—from modelsormeasurementsalike(Burkhardetal.,2014).

Someresearchershavestartedtostudythelimitsofthismethod, likeJacobset al.(2014) whopoint out itspoormethodological transparency,lackofreproducibilityandlackofappropriate factor-ingonuncertainty.Houetal.(2012)alsodiscusstheuncertainties relatedtothematrixmethod.Theuncertaintyofexperts judge-mentsisoftencitedasalimit,butfewhaveanalyzeditorintegrated itinESstudies(Seppeltetal.,2011;Houetal.,2012;Vihervaara etal.,2012).Basedonthecombinationofexperts’judgments,the scoringinthecapacitymatrixmaycarrytwosourcesof uncertain-ties:

–Variabilityamongexperts:variabilityoftheexpertisewithinthe chosenexpertsandofmoregeneralknowledge(professionalor personalknowledgedependingontheirexperiences)(Houetal., 2012).

–Variabilityofeachexpert:theconfidencetheexperthasinhis/her ownscores(Jacobsetal.,2014).

Theobjectiveofourstudyistwofold.First,weaimtointegrate thedifferentvariabilitiesinthefinalscoreofthecapacitymatrix andpresentandcomparedifferentapproachestocomputingthem. Second,weaimtoidentifyaminimalsizeoftheexpertpoolneeded toobtainareliableestimateofthemeanofthescoresandasmall SEofthismean.

Inorder tomeet theseobjectives,we beginby definingour capacitymatrices,theexperts,andhowthescoringwasdone.The confidencescoreweaddedonthecapacitymatrixisalsodetailled. Inthesecondsection,wepresentthreesetsofapproachestothe finalscoresonamatrix:rawparametricapproaches(meanand weightedmean),bootstrapmodels,andBayesianmodels.Foreach approach,wehavetwocalculations:meansofscoresthatexperts expressed,andmeansintegratingametricoftheexpert’s confi-denceonhis/herownscores.Thefinalscoresinthefinalmatrix thatincorporatesallexpertsscoresisthusestimatedwith6 calcu-lations.Mostexistingcapacitymatrices(e.g.Stolletal.,2014)using expertknowledgeareexpressedasmeanofscoresoftheexpert panel,sowestartbypresentingtherawparametricapproach.The bootstrapmodelenablestoestimatedifferentstatisticsby assum-inganindependentsamplingfromanunknowndistributionand tointegrateuncertainties.TheBayesianmethodsthatweusedare elaborateparametricstatisticalmodelsthatenabletointegrateand estimatethedifferentkindsofuncertaintiesinthestatistical

anal-ysis.Werestrictourselvestothesethreesetsofstatisticalmethods. Thisworkisthefirstcomparisonofthreecalculationsappliedon capacitymatrixscores.Wearenotsettingouttoidentifythebest calculationoffinalscorebuttohighlightthevariouspossibilities andtheirrelatedadvantagesanddisadvantages.Inthethird sec-tion,wepresenttheresultsofthethreecalcultationsononematrix andlookatthefinalscoresandtheirvariabilitiesonthreecapacity matriceswithagrowingnumberofexperts.Finaly,weconclude withrecommandationsonusingthecapacitymatrixapproach.

ThedatausedinthispapercamefromthreeESassessments: ESprovided by land-covertypesin the ‘BaronniesProvenc¸ales’ Regional Natural Park (RNP) (associated scores noted RNP-BP) andtwo ESassessmentsinthe‘Scarpe-Escaut’ RNPinnorthern France—oneonESprovidedbywetlands(associatedscoresnoted RNP-SEwet)andanotheronESprovidedbyallland-covertypes (associatedscoresnotedRNP-SEall).

2. Data

2.1. Studysites

The Baronnies Provenc¸ales RNP ( http://www.baronnies-provencales.fr/) is a sub-mountainous rural area in Southern FrancelocatedatthecrossroadbetweentheAlpsand Provence influences.Createdin2015,itisthelatestRNPinFrance,taking the total to51. The capacity matrix made in 2014 was based on the Park project of 2350km2 and 130 municipalities. This nature-preserve territoryis recognisednationallyfor itsunique landscapes, rich “terroir”, built heritage (terraces in dry stone, hilltop villages)and agriculture (orchards,olive groves, linden, lavender,thyme,rosemary,andmore),aswellasitsremarkable geologyandbiodiversity.

The Scarpe-Escaut RNP (http://www.pnr-scarpe-escaut.fr/en) innorthernFrance,neartheBelgianborder,extendsover430km2 crossedbytheScarpeandtheEscautriverswith55municipalities. Itistheoldestofthe51FrenchRNP.Itisalsothelargest Euro-peanpark,astogetherwithitsBelgianneighbour,thePlainesde l’EscautNaturalPark,theyformtheHainautcross-borderNature Park.TheScarpe-EscautRNPisespeciallymarkedbythewet low-landplainaroundtheScarpeandtheEscautrivers.Asaperi-urban area,urbanpressureishigh(useofspace)inalandscapeformed byamosaicofagriculturalandnaturalenvironments(crops, grass-lands,woodlands,marshes,ponds...)andurbanizedareas.Water is everywhere, and man hasbeenmanaging it for centuriesto developkeyactivities(drainage,landuse,channelingofrivers...). Fordecades,wetlandshavebeenconsideredalessattractive land-scape,andwetmeadowshavebeendecliningunderurbanpressure or exploitedas profitablesites for agriculturalproduction such aslivestockandaslandscapedrecreationalponds.Perceptionsof wetlands today are either badfor certain localstakeholders or nonexistentfor thewidercommunity, despitetheirimportance asESprovidedtotheterritory.Thisperceptiondeficitprompted astudyoftheESprovidedbythewetlandtypesin2015.Afterthe positivelocalfeebackontheinitiative,themethodwasappliedin 2016toalllandcovertypes.

2.2. Data

2.2.1. Thecapacitymatrices

We defineES as goods or services provided by ecosystems thatdirectlyorindirectlybenefithumans(MillenniumEcosystem Assessment,2005).For provisioningservicesandregulating ser-vices,theESlisthasbeenbasedontheEuropeanCICESclassification (Haines-YoungandPotschin,2013).Weconsideredprovisioning services,regulatingservicesandculturalservices.

(4)

C.S.Campagneetal./EcologicalIndicators79(2017)63–72 65

BesidesthescorevalueforeachES/ecosystemtype combina-tion,theexpertswereaskedtoprovideanindexofconfidencein theirscoreforeachESandeachecosystemtypeforthelasttwo datasets.Thisconfidenceindexisusedtoestimatetheimpactof expertconfidenceonthecapacityscoreandtheirvariations.

AsthispaperfocusesnotoncapacityscorestoestimateES capac-ityperse butonthemethodologyusedtoobtainexpert-based capacitymatricesandevaluatescoreconfidencelevels,detailedES andecosystemtypesforthedatasetsaregivenassupplementary materials.Ourdatasetiscomposedofthreesetsofexpertscoring exercicesusedtoproducethreedifferentcapacitymatrices.

Thefirstsetwascompletedin2014andconsistsofapanelof 23expertsintheRNP-BP.Thiscapacitymatrixcounts33 ecosys-temtypes(ET)(15agriculturehabitats,12foresthabitatsand6 aquaticandurbanhabitats)relatedtolandcovertypesusedinthe regionallandcovermapderivedfromtheNationalForestInventory (IFNv2),theagriculturaltypologyoftheMinistryofAgriculture, FoodandForestry,andtheAgencyforServicesandPayment(ASP; 2010), calledtheGraphicParcelRegister(2011), aswellasthe CRIGE-PACAregionallandcoverclassificationcalledOcsol(2006)(a regionalimplementationofCorineLandCoverwithahigherspatial resolutionof1/50,000)by22ES(8provisioningservices,9 regu-latingservicesand5culturalservices),giving726scores(Tschanz etal.,2015).Thistotaldatasetisthus726ES/ETexpertscores×23 experts.

Thesecondsetwascompletedin2015andconsisstofapanelof 30expertsintheScarpe-EscutRNPdealingexclusivelywith wet-land(RNP-SEwet).Inthistypology,ETisassociatedwithwetland environmentsbasedonalocalwetlandsmap.Weidentifiednine ET(2foresttypes,3agriculturaltypes,4semi-naturaltypes)and 17ES(5provisioningservices,7regulatingservicesand5cultural services),giving153scores.Thistotaldatasetis153ES/ETexpert scores×(9+17)confidencescores×30experts.

Thethirdsetwascompletedin2016andconsistsofapanelof 17expertsintheScarpe-EscautRNPasawhole(notedRNP-SEall) intendedtobemoreexhaustiveasitintegratesalllandcovertypes. Thiscapacitymatrixcounts33ET(6aquatichabitats,13agriculture habitats,7foresthabitatsand7anthropizedhabitats, correspond-ingtothelandcovertypesintheARCHmap,www.archnature.fr) by25ES(9provisioningservices,11regulatingservicesand5 cul-turalservices),giving726finalscores.Thetotaldatasetis726ES/ET expertscores×(33+25)confidencescores×17experts.

Thesesthreematriceswereproducedindifferentcontextsand withdifferentsobjectives.WhiletheRNP-SEwetmatrixwas com-pletedinacontextofexperts’concertationandoutreacheducation tolocalcitizens,theothertwowerecompletedforamore exhaus-tive spatial assessment, so we did not use identical ET or ES typologiesbutinsteadranlocalcontextualadaptationsbasedon thelandcovermapsavailableoneachapplicationsite.

2.2.2. Expert-basedparticipatorymethod

Thecapacitymatrixaimstoproduceestimatesofthe biophysi-calcapacityoftheecosystemtoprovideES.Werestrictedthepanel ofelligibleexpertstothosehavingbothlocalandglobal ecologi-calknowledgeinordertotakeintoaccountallmajorecosystem typesandallmajoractivitiesappliedonthem.Wegenerallytried tofollowtherecommendationsofJacobsetal.(2014)onforminga relevantsampleofexpertswithspecificaffinitytotheirterritory. Ourdefinitionof‘expert’wasapersonwithextensiveknowledge orskillsbasedonresearch,experience,oroccupationinaparticular field.

Theexpertsconsideredincludedresearcherswithexpertisein ecologyand/orES,projectorsitemanagers,techniciansworkingon environmentalorecologicalfields,andheadsofterritorial organi-zationssuchasthewateragency,regionalchamberofagriculture, regionalprofessionalcentreforforestowners,regional

environ-mentalsciencecouncil, regionalconservatoriesofnaturalareas, nationalbotanicalconservatory,localorregionaldepartmentsof environmentalaffairs.Thedepartmentalfederationofhuntersand fisherswasalsorepresented,alongwithassociationsfor environ-mentalprotectionornaturalists.

ForeachoftheESassessments,theparticipantswereinvitedto aworkshopdedicatedtofillingoutcapacitymatrixscores.Any par-ticipantwhowasunabletoattendtheworkshopwasinterviewed individually. During theworkshopand thepersonal interviews, participantswereinformedonthestate-of-the-artinES,thestudy, themethods,andthelistofESandET.Wetooktimetodiscussand clarifyallthedefinitionsinvolvedinthematrixandthescoring.We proposedtocompletethematrixbycolumnsandtogiveascoreby comparingthedifferentEScapacitiesofeachET.Ourexperience hasproventhatthiswasaneffectivewaytofillinthematrix.The workshopslastedoneday,withthemorningsessiondedicatedto presentingalldefinitionsandtheafternoonleftforparticipantsto fillinthematricesanddiscusstheirunderstandingofthescorings. Inbothsituations(workshoporpersonalinterviews),welet peo-plegivetheirownscoreindependently.Thedifferencebetweenthe twoapproachesliesinthedialogueinitiatedintheworkshopafter thescoring,whereeveryonewasgiventimetovoicetheirchosen scoreandopenadialogueonanydivergences.Atthebeginningof theworkshop,wedefinedandspecifiedtherulesofdialogue: free-domofspeechandtoholddivergentopinions,andthepossibility ofconstructivecriticism.

2.2.3. Scoring

ThecapacitiesofthedifferentETtoprovideanindividualES werequantifiedfollowingthescalegiveninBurkhardetal.(2009), i.e.“1=lowrelevantcapacity, 2=relevantcapacity,3=moderate relevantcapacity,4=highrelevantcapacity,5=veryhighrelevant capacity”and“0=norelevantcapacity”.FortheRNP-SEwetmatrix, “0=norelevantcapacity”wasnotconsideredsincealltheselected ESwereprovidedtosomelevelbyallthewetlandhabitats dis-cussed.

Intherestofthepaper,“expertscore”referstothepotentialES capacityvaluethatindividualexpertsprovidedandisnotedYk,i,o, whereiistheES,kistheETandoistheexperts(thetotalofall expertsinvolvedisnotedn),and“finalscore”referstotheaverage potentialcapacityvaluecomputedfromasubsetorallexpertscores andisnotedk,i,o.

2.2.4. Theconfidencescore

Inanyapproachbasedonexperts’knowledge,oneofthe difficul-tiesistoassessthedegreeofconfidenceofeachindividualexpertin theirownscore.AsJacobsetal.(2014)stressed“confidencereporting isparamountforcommunicationofresultsandqualitycomparison”. Weproposetoquantifyascoreoftheconfidencetheexperthason theirscores,where“confidencereferstothedegreeofconfidencein beingcorrect”(Jacobsetal.,2014).Eachexpertwasaskedtostate theirconfidenceintheirknowledgeonETandESusingaconfidence scorerangingfrom:“1=Idon’tfeelcomfortableonmyscore,2=I feelfairlycomfortableonmyscoreand3=Ifeelcomfortableonmy score”.

Thus,foreach expert(notedo) oftheRNP-SEwetmatrix,we had17confidencescoresforeachESnotedVES

i,oand9confidence scoresforeachETnotedVET

k,o.WeconsideredtheseETandES con-fidencescoresasmarginsofatable,andcomputedaconfidence scoreforeachETandESbymultiplyingthem:Vk,i,o=Vk,o×Vi,o.The confidencescoreobtainedcouldtakevaluesof1,2,3,4,6or9that werecodedonascaleof1–6(bychangingtheoriginal“6”to“5” andtheoriginal“9”to“6”)tofaciliatetheanalysis.

ForthebootstrappingandtheBayesianapproachincorporating theconfidencescore,wefirstestimatedthevariationof ES×ET score associated witheach confidence scorevalue basedonan

(5)

additionaldirectsurveywith10expertsoftheRNP-SEwetmatrix (allocatedwithinthedifferent ecologicalspecificities/expertises andknowledge)in order toexpresstheuncertaintyunderlying theirconfidencescores(citedaslevelsofuncertaintyandnoted Uk,i,o).Throughconcreteexamples(combinationsofESandETwith differentconfidencevalues),weaskedthemtoexpressarangeof ES×ETscores(0;0.33;0.5;1or2upanddowntheirownscore) thattheycouldhaveconsideredonasetofspecificET×ES com-binationswithdifferentassociatedconfidencescores.Wetriedto coverasmanyoftheexperts’questionsofpossiblecombinations ofconfidencescoresVk,i,o.FromthisdatasetwecomputedtheSEof ET×ESscoresassociatedwitheachconfidencescore.

3. Statisticalanalysis

3.1. Usualstatistics

Mostcapacitymatricesusingexpertknowledgeareexpressed asmeanofthescorevaluesoftheexpertpanel.

First,afinalcapacitymatrixcanbeobtainedwithusualdirect statisticsthroughthemean,alsocitedasaveragescore(noted␮ˆ1k,i) anditsSD(noted␴ˆ1k,i).

FromtheSD,theSEofthemeanscoreisestimatedbydividing by√ncalculatedas ˆse1k,iandasfollowsfortheSEsofthemean:

ˆ se1k,i =

ˆ 1k,i

n

Wealsoused theconfidenceindexscore (1–6)asa weight-ingcoefficientfortheusualstatistics.Theweightedmean(noted

ˆ

␮1k,i,o )canbecalculatedwithdifferentvaluesdependingonstudy, context,etc.Hereweusedconfidencescoreasweightingfactor fortheexpertscores,sotheweightedscoreistheexpert’sscore multipliedbyconfidencescore,asfollows:

Yk,i,o =Yk,i,o×Vk,i,o

Accordingly,theweightedmeanofthescoresiscalculatedas follows: ˆ ␮1k,i = i,oY k,i,o i,oV k,i,o

ThentheSDoftheweightedmeans(notedˆ3

k,i)iscalculatedas follows: ˆ 1 k,i=









i,o



Yk,i,o3 i



2 ∗Vk,i,o



i,oVk,i,o

FromtheSDs,theSEsofthemeanofscoresisestimatedby dividingby√nandthuscalculatedas ˆse1k,i=

1 k,i

n andasfollowsfor theSEsoftheweightedmean:

ˆ se1k,i = ˆ 1k,i n 3.2. Bootstrappingstatistics

Assuminganindependentsamplingfromanunknown distribu-tion,thebootstrapmethodenablestoestimatedifferentstatistics inabetterway.TheMonte Carlosimulation approachprovides approximationsof different statistics by independently repeat-ingNtimesaresamplingwithreplacementfromagivensetofn

observations.Eachresamplingprovidesanindependentrealization fromtheinitialdatasetfromwhichNrealizationsofthestatistics areproduced,providingadistributionofthestatisticsconsidered. TheboostrappedMonteCarlosimulationsweredoneusingR3.3.1, whichfeaturesthe“boot”packagebutwepreferred,here,towrite ourownscriptforgreaterflexibility.

Inourcase,n,thenumberofobservations,isequaltothenumber ofexperts.Weestimatedtwostatistics:␮ˆ2

k,i themeanofscores and ˆse2k,i=ˆ

2 k,i

n theSEofthemeanofscores,withNthenumberof repetitionsbeingequalto500.Numberofrepetitionsisnotusually crucialonceitpasses100(Efron,1981).

Withthebootstrappingstatistics,thevariationinES×ETscore associated witheach confidencevalue wasusedin a bootstrap MonteCarloapproachtoestimate␮ˆ2

k,ianditsSE(noted ˆse2



k,i) tak-ingintoaccounttheconfidencescoreassociatedtoYk,i.Weadded inthebootstrapscriptarandomerrorεk,i,odrawnfromanormal distributionoferrorsassociatedwitheachleveloftheconfidence scores,whichgivesεk,i,o ∈N



0,ˆk,i,o,c



withcbeingthevalueof theconfidencescore(0,...,6).

3.3. Bayesianapproach

For the Bayesian analyses, we used two versions of a het-eroscedastic ordered probit model (Litchfield et al., 2012; see SupplementaryMaterials)forYk,i,o.Indeed,theprobabilities asso-ciated with each observation Yk,i,owere calculated as if the observations stemmedfroma latentrandom variableωk,i,o fol-lowinganormaldistributionaccordingtothefollowingformulas:

P(Yk,i,o=1)=P(ωk,i,o<CP1,i) P



Yk,i,o=2



=P



CP1,i<ωk,i,o<CP2,i



P



Yk,i,o=3



=P



CP2,i<ωk,i,o<CP3,i



P



Yk,i,o=4



=P



CP3,i<ωk,i,o<CP4,i



P



Yk,i,o=5



=P



ωk,i,o>CP4,i



wherethecut-pointsCPj,iwere(i)fixedto0and1forCP1,iandCP4,i; and(ii)estimatedbetween0and1withinthemodelforCP2,iand CP3,i, via the following formulas: CP2,i=1/

1+exp



−CP02,i



and CP3,i=1/

1+exp



−CP02,i−exp



−CP03,i



with both CP02,i andCP03,i havingaGaussianprior distributionof

(0,5). CPj,icut-pointswereconsideredtovaryfromoneEStoanother becauseweconjecturedthatthespanbetweenscorevalueswould varyfromone EStoanother.We checkedthevariationsofthe estimators of CPj,i withi and foundthat, for some ESat least, thecut-pointvalueswereverysignificantlydifferentfromother values.

The two parameters describing the distribution of ωk,i,o werethelocation or meanparameter ˆ3

k,i,oand the dispersion parameter ˆse3k,i,o corresponding to the SEof the latent normal distribution. After comparing four models (see Supplementary Materials),weretainedtwodifferentmodelsthatcontained dif-ferentparametrizationsoftheheteroscedasticity(i.e.inparameter

ˆ se3

k,i,o).Inthefirstmodel(modelB1),nootherinformationthan basicscoreYk,i,owasprovidedtothemodel,whereasinthesecond model(modelB2),boththeconfidencescoresVk,i,oandthelevels ofuncertaintyUk,i,oweretakenintoaccount.Theformulaforthe

(6)

C.S.Campagneetal./EcologicalIndicators79(2017)63–72 67

meanparameterk,i,oofthelatentvariableωk,i,owasthesamefor allmodels:

ˆ 3

k,i,o=˛k,i+o

whereastheformulasfor ˆse3

k,i,ovariedacrossthetwomodels: ˆ se3k,i,o=exp



k,i



(Baysianmodel1:B1) or: ˆse3 k,i,o=exp



k,i



· Vk,i,o (Baysianmodel2:B2) where:

(i)k,iisarandomeffectusedtoparametrizeSDlevel;it fol-lowedaGaussianpriordistributionof

(,) wherehada Gaussianpriorcenteredon0with5asSDandhadarelatively non-informativeprioruniformdistributionbetween0and100;

(ii)␣k,iisthemeanrandomeffectestimatedforthelatent vari-ableforeachESiandETk,withanon-informativeGaussianprior distributionof

(˛,˛) where␣and␣hadthesamepriorsas and;

(iii)oisarandomobserveroeffectonthemean,chosenhereto beconstantacrossETsandESs,anddrawnfromacommonGaussian distributioncenteredon0andwithSDobs:

(o)o

(0,obs)

whereobshasthesamepriorasthek,is.

(iv)confidence score V·k,i,o is theproduct of the confidence scoresofeachETandES(VET

k,oVESi,o),restrictedtoitsorder(from 1to6);

(v)theconfidencemultipliers (i)1≤i≤6inmodelB2were con-structed withno constraint on their order, so that the vector summedto one(to preventconvergence issues withthek,is). Thiswasdonebyfirstsetting’1=1/S,i=i/Sfor2≤i≤6with S=1+6

i=2i andtheichosenfromauniformprior distribu-tionbetween0and100.Wefirsttriedaversionthatconstrained theorderoftheseparameterstodecreasewithi,butwemetstrong convergence issues that forced us to adopt this unconstrained structure.

Furthermore,wealsointegratedinmodelB2thedatarelatedto thecalibrationofconfidencescoresUk,i,oforspecificscoresYk,i,o cor-respondingtocases(k,i)withcontrolledlevelsofconfidenceVET

k,o andVES

i,o.Uk,i,ocouldtakepredefinedvalues(0,0.33,0.5,1,and 2)andwasassumedtorepresentthestandardvariationofYk,i,o. WeintroducedtheinformationprovidedbyUk,i,o througha dis-cretedistributiononthe5possiblevaluesproportionaltoGaussian distribution

␴



 k,i,o+␳



,U

,where:

(vi)k,i,oistheestimatedSDofYk,i,oascalculatedfromtheabove equationsfor

P



Yk,i,o=y



1≤y≤5;

(vii)isapositivemeanSDmultiplierchosentomultiplythe underlyingSDfromarelativelynon-informativeprioruniform dis-tributionbetween0.1and5;

(viii) isanegativenumberwitharelativelyinformative uni-formpriorbetween−2.0and0.0usedtoscalek,i,otomakeitfit bettertothescaleofUk,i,o;

(ix)U is a meanSD withaninformative prior distribution between0and1.

We mostly used informative priors here because less-informative priors gave much noisier estimators, which was contrarytoexpectations(aswedidnotexpectthemeanofUto beabove10.0giventhevariationoftheUs,whereasweobserved suchvalueswithnon-informativepriors).

Model B2therefore incorporatedvariations of precisionand meanbetweenESandET,aswellaspotentialsystematicbiases betweenobservers.Thismodelalsoincorporatedadditional infor-mation,i.e.theconfidencescoreprovidedbyexpertstogetherwith

theirrawscore,aswellasa calibrationofthisconfidenceinan independentsurvey.Intherestofthepaper,forModelB2,ˆ3

k,i,ois meanparameterand ˆse3

k,i,oistheSE.

Thesetwo modelsplus threeadditionalmodels(see Supple-mentaryMaterials)werefittedwithStanfromR3.3.0throughthe rstanlibrary(2.9.0-3)(StanDevelopmentTeam,2015).Weused3 MarkovChainswithatotalnumberofiterationsof100,000each, aburn-inlengthof20,000andathinningparameterof20. Mix-ingwascorrectandhad12,000outputvaluesforeachparameter, withanumberofeffectivevalues(CODARlibrary)above11,000for Model1andabove3500forModel2(fortheworstparameters).

Basedontheposteriorsamplesofparameters,wecalculated theposteriormeanandSEsofthemeanacrossobserversofseveral ES(ontheoriginalscaleofY)providedbythedifferentland-cover typesstudied.

3.4. Resampling

Inordertoestimatetheimpactofexpertpanelsizeonthe cen-tralanddispersionparameters,weusedabootstrapsubsampling method.Wesimulateddifferentexpertpanelsizesbysubsampling eachdataset.Wefixedthesizeofthepanel“n”between2andthe actualnumberofexperts(30fortheRNP-SEwetmatrix,23forthe RNP-BPmatrixand17fortheRNP-SEallmatrix),andforeachsize wegeneratedsampleswithreplacementfromtheactualdata.At eachiteration,severalstatisticalparameterswerecomputed.This approachenablesustoevaluatethevariationofthestatisticsgiven smaller-than-actualsamples.Weusedittotrytoidentifya mini-malsizeoftheexpertpoolneededtoobtainareliableestimateof thefinalscoresandasmallSEofthismean.

4. Results

4.1. Centralvalues,capacitymatrixscores

BasedontheRNP-SEwetdatasetthatweanalyzedinmoredetail thantheotherdatasets,weobservedthatthedifferentstatistical methodsusedtocomputecentralparameters(mean)providedvery similarresults.Table1,whichpresentsmeanandSDofallexpert scores(153scores×17expertscores;firstcolumn)andofthemean scoresofourapproaches(meansofthe153finalscoreswiththesix differentcalculations),showstheproximityoftheirmeanresults clearlyvisibleataround3.3withsmiliarvaluestothethird deci-malplaceforallexpertsscores,Meanofaveragesscores,Meanof bootstrapscoresandMeanBayesianscores.Themeanofallexpert scores(calculatedwithnormaltheorystatistics)is3.363,andSDat 1.368(Table1)withmedianat4.Forthemeanofaveragescores (meanofthe30expertscoresforeachofthe153ET×ES),theSD is0.967.

TheSDonallmeans’scoreshasthesameproximityofresultsas themeansexceptforallexpertsscoreswhichshowhigher varia-tion.

SpecificET/ESscores(seeTableS.2inSupplementary Materi-als)showforexamplethemean␮1

i,o whichranksfrom1.40for ES10“Contributiontofreshwater”inET8“Crops”to4.93forES17 “Knowledge,scientificandeducational”inET6“Marsh,bogsand reedbeds”.Examinationofmeansbetweenapproachesandspecific ESandETfindsnodistinctionbetweenmeansofthe6calculations. 4.2. Scoresvariability

We examinedmeansof SEsofthescores(basedonthe153 ES×ETcombinations)estimatedfromeachmethodaspresented inFig.1andfoundthatvariabilityinmeanscoreswaslowestfor weightedscores(0.168)andhighestfortheBootstrapscoreswith

(7)

Table1

Statistics(meanandStandardDeviationSD)using3differentmethods:Usual,BootstrapandBayesian.Usualreferstotheuseofstandardparametricstatistics.Bootstrapis basedonresamplingandMonte-Carlomethods.Bayesianisbasedonheteroscedasticorderedprobitmodels.

Usual Bootstrap Bayesian

Onallexpert scoresYk,i,o Meanofaverage scores ˆ ␮1 k,i Meanofweighted scores ˆ ␮1 k,i Meanof Bootstrapscores ˆ ␮2 k,i MeanofBootstrap

scoreswithconfidence

scores␮ˆ2

k,i

MeanBayesian

scoresˆ3 k,i

MeanBayesianscores

withconfidencescores

ˆ 3

k,i

Mean 3.363 3.363 3.371 3.363 3.298 3.363 3.365

SD 1.368 0.967 1.006 0.967 0.903 0.932 0.935

Fig.1.Meansofstandarderrors(SE)ofthedifferentmethods.

confidencescore(0.195).Thethreeapproacheswithoutconfidence scoresharedsimilarvariabilityinmeanscores,ataround0.173.

ThebootstrapSEwithintegrationofexpertconfidenceindex providedthehighestvalues(14%higherthanwithoutconfidence index),asexpectedbyincludinganothersourceofvariability(i.e. theindividualexpertrangeofvaluesbasedonconfidenceonthe rawscore). Thisdoesnot mean thatthis bootstrap is less pre-cisebutthat,byconstruct,itintegratesmoresourcesofvariability thantheothermethod.TheBayesianmodelwithconfidencescores alsoincorporatesintra-expertvariabilityandprovidedhigher vari-abilityinmeanscoresthanwithoutconfidencescore(0.1794vs 0.1746).

Asexaminingthewholecapacitymatrixindetailissucha cum-bersoemtask,weproposetofocusontheSEofES9“Domesticfood andtheiroutputs”foreachET.TheSEofBootstrapscoreswith con-fidencescoreshasthehighestvaluesof8–9oftheSEpresented inFig.1.However,therearenoclearlyvisiblepatternstoemerge betweentheotherfiveapproaches.TheresultspresentedinFig.2 forET8(“Crops”)aremoredispersedthanforotherET.Forthis spe-cificET,theSEofBayesianmodelsarelowerandtheSEofweighted scoresarehigherthanwithotherapproaches.Whenwelookcloser attheET8×ES9scores(availableinSupplementaryMaterialsTable S.2),themeanofaveragescoreis4.73andthemeanofconfidence indexis4.37.

4.3. Effectofexpertconfidence

DuringthedifferentESassessments,severalexpertsaccepted tofillthematrixonlywhenofferedaconfidencescoregivingthe opportunitytoexpresstheirsself-confidenceontheirscores.Inthe RNP-SEwetmatrix,meanconfidencescoreperexpertshowsatrend towardshighconfidencescoresfor10expertsoutof30(medianat 3)whiletwoexpertstendedtohavelowconfidencescorewitha

medianat1.ThetableS.3(SupplementaryMaterials)presentsVk,i,o inthetableandthemeansofeachVES

i,oandVETk,oinmargin. ThemeanconfidencescoreofallexpertsforallETandES(noted VET

k,oandVESi,o,respectively,andratingbetween1and3)is2.23 witheachconfidencescore(1,2and3)representedat20%,37% and43%, respectively.Meanscore ofallESwas2.24andmean scoreofallETwas2.21.Amoredetailedanalysisshowsthereis nouniformprofileforETorESexceptforculturalserviceswhere eachconfidencescore(1,2and3)representedat12%,28%and60%, respectively.

Theresultsfromadditionaldirect surveypresented inFig.3 showtherangeandmeansofvariationinexpertscores(the lev-elsof uncertainty Uk,i,o) related toeach confidence score (with Vk,i,o=Vk,o×Vi,orecodedonthe1-to-6scaleusedinthedifferent models).

Notethegradualdecreaseinscorevariationasconfidencescore increases.ThevariabilityoftheESscoreerrorsassociatedwith con-fidencescoreswashigherforlowerconfidencevalues(1–2–3)than forhigherconfidencevalues(4–5–6).ThehighvaluesofVk,i,oare relatedtohighconfidenceoftheexpertsontheirsscoresandthus tolowervariationintheirfinalscores.Therewasnosignificant dif-ferencebetweenscoreserrorsassociatedwithconfidencescore5 and6.

4.4. Effectofexpertpanelsize

Expertpanelsizehadaneffectontwoaspectsofvariability. First,ithadaneffectonthestabilityofthefinalscoreobtainedfrom differentsetsofresampledsame-sizetables:SDofresampledfinal scoresdropssharplyfrom2to10(Fig.4)butthenremainsrelatively stablebeforeflatteningafterasizeof15forthethreematrices.This meansthataboveanexpertsizepanelof15experts,thevariation offinalscoreobtainedfromdifferentpanelcompositionsisstable.

(8)

C.S.Campagneetal./EcologicalIndicators79(2017)63–72 69

Fig.2. Standarderrors(SE)ofES9“Domesticfoodandtheiroutputs”fordifferentland-covertypesET1:Wetforest,ET2:Broadleafmonospecificafforestationinwetlands, ET3:Wetmeadow,ET4:Pondsandpools,ET5:Miningsubsidencepondsandquarrywaters,ET6:Marsh,bogsandreedbed,ET7:Wetlandfallows,ET8:Crops,ET9:Green space.

Fig.3. Meanandstandarderrorsofthevariationinexpertscores(Uk,i,o)relatedtoeachconfidencescore(Vk,i,o).

ThetotalreductionofSDisapproximately0.2(Fig.4),i.e.about16% lowerwhenwehave15expertsinvolvedcomparedto2.

Second,wetestedtheeffectofexpertpanelsizeontheSEsof finalmeanscore(theprecisionofestimates).Asexpected,theSEs decreasewiththesamplesize.Thebootstrapestimatesshowlower valuesthanusualstatisticswhenthesamplesizeisbelow10–15 experts(Fig.5).Allthreedatasetsshowsimilartrends.However, evenwithanexpertpanelsizeat30,westilldonotreach stabiliza-tion.

5. Discussion

5.1. Finalscoresandvariability

Themeanisthemostwidelyusedstatisticforcomputingafinal scoreinthecapacitymatrixapproach,butsomeauthorsadvocate using median scoresinstead (Kopperoinen et al., 2014). Differ-entkindofweightscanalsobeappliedtoobtainthefinalscore. Dependingontheapproach,weightingcanbeappliedduringthe

extrapolationatlargergeographicscale,asinHermannetal.(2013) whochosetoweightscoresbytheareaofbaseunit.Koschkeetal. (2012)electedtoapply“explicitweightsasthe importanceofthe variousecosystemservicesmightdifferwithrespecttothecontext,the includedstakeholders,andtheinvestigatedregion”.Theseweightsare linkedtospecificmethodologicalchoices.Here,wedidnotapplyES orETdependentweightingsaswewantedtoequallyconsiderevery ESandET.Weusedaweightbasedontheconfidencescores,but theupshotisthataparticipantwithmoreconfidencethananother givesabetteroramorerealisticestimateofthehabitat’scapacity toprovidetheES.

With30 expertsinvolved intheRNP-SEwetdataset,the dif-ferentstatisticalmethodsusedtocomputeparametersprovided verysimilarresults. Theresultsshowonlymarginaldifferences infinalscoreswhenweintegrateconfidencescoreorthe uncer-taintyunderlyingconfidencescoresingeneralobservationofthe data(meanofmeans)oratanESlevel.Indeed,with30experts involved,thefinalscoredidnotchangemuchaftertakingthe con-fidencescoreintoaccount.Thevariabilitiesoffinalscoresarealso

(9)

Fig.4.Effectofexpertpanelsize(numberofparticipants)onthevariation(SD)ofmeansofaveragescores.

Fig.5. Effectofexpertpanelsize(numberofparticipants)onthemeanofSEsofES×ETscores(averageofthewholecapacitymatrix)usingusualstatistics(SE)and bootstrappedstatistics(SEBoot).

quitesimilar,exceptforbootstrapscoreswithconfidencescores whichhadhighervariability.Theincreaseofvariabilityiscoherent withtheadditionofinnerconfidenceordoubtofeachexpertin termsofvariabilityofscores.

RegardingtheBayesianapproach,thevariabilityissimilarfor thetwomodelsconsidered,whichmaybeduetothefactthatboth integrateanobservereffect.Theobservereffectmayintegratesome systematicbiasofeachexpertwhenprovidingtheirscores. Never-theless,thefinalresultsofthetwoBayesianmodelsarecloseto thoseoftheothermethods.However,theBayesianframeworkhas thepotentialtodeliversubstantiallymoreinformationthanjust centralvaluesanderrors—itcanclearlyintegrateallthe informa-tionandprovideestimatesontheseotherpiecesofinformation. Toillustrate,theBayesianmethodcanreachanestimateofthe variationofprecisionofthelatentprocessasafunctionof confi-dencescore.Ifwehadobservedstrongsystematicbiasesbetween observers—whichwasnotthecasehere,asthemeanestimateof

obs wasaslowas0.10—Bayesianmethodswouldhavemadeit possibletoprovideestimatesofSEsthatwouldhaveremovedthese biases,whichothermethodsareunabletodo.

Given the amountof information contained in our capacity matrices,it wasnotpossibletoseparatelydetail alltheESand ETcombinations,sowehavedetailedoneexamplecombination here,andprovidedallthetablesasSupplementaryMaterialsfor interestedreaders.ForthespecificES×ETcombinationslookedat here,theresultsofET8×ES1scorescanbeexplainedbythenature ofthisscore.“Crops”haveafarhigherpotentialcapacityto pro-vide“Domesticfoodandtheiroutputs”thanotherEStypes.The variabilityofitsscoreislowduetothelogicalgeneralagreement onthispotentialcapacity.TheBayesianmodelsreflectthis gen-eralagreement“better”asthelowestSE.Onlytheweightedscore hasasurprisingresultcomparedtoothermethods,whichmaybe explainedbythefactthattheconfidencescoreislessareflection ofthevariabilityofeachparticipantthanareflectionofthe

(10)

uncer-C.S.Campagneetal./EcologicalIndicators79(2017)63–72 71

taintyunderlyingconfidencescoresexpressedthroughtheresults oftheadditionalsurvey.

5.2. Importanceofexperts’confidenceintheirscores

Jacobsetal.(2014)recommendedfollowingtheIPCC(2014)or MillenniumEcosystemAssessment(2005)methodswith partici-pantconfidencereportedwithfivelevelsofconfidenceorassessing thereliabilityofoutcomesinasimilarstandardizedmanner.Inour case,askingforsuchspecificconfidencescoreswastoomuchof aburdengiventhetimeandthoughtalreadyinvestedtofillout thecapacitymatrix.Additionalinformationlikeaconfidencescore hastobesuitable,understandable,andonadifferentscaletothe participants’score(5levels).

Manyparticipantsexpressedtheimportanceofhavinga con-fidencescoreinthecapacitymatrix toletthemmoderate their self-reliabilityontheirownknowledge.Analysisoftheconfidence score showedthat 80% of theparticipants felt “comfortableor moderatelycomfortableontheirscores”.Itisimportanttoadda confidencescoreinaparticipatoryprocess,notjustas supplemen-tarymaterialsbutalsotobeabletorecalibrateitforintegration intotheanalysis.Weconsequentlychosetousethreelevelsof con-fidenceforETandthreelevelsofconfidenceforES,whichwhen combinedprovidea6-levelconfidencescoreforeachETandES. Thisapproachprovedtobeflexible,workable,andeasyforall par-ticipantstounderstand.

Theadditionalsurveysupportsthehypothesisofacorrelation betweenconfidencescoreandSDofthefinalscore,andshowsthe negativerelationshipbetweentheconfidencescoreandthemean ofscoreerrors.Ourconfidenceindexcanthisbeusedasaproxyof theerrorsineachexpert’sestimatescores.Alimitationhereisthat wehavenotexploredallthepossibilitiesoftheBayesianmodels. Wewereabletoanalyzethenoisearoundexpertscoreswithother approachesbutwechosenottoreporttheresultsinthispaper. 5.3. Howlargeshouldanexpertpanelbe?

Withoutdistinctionbetweenthethreematrices,thevariability ofthefinalscoresisstableafter15expertsinvolvedandtheSEin thefinalscoresdecreasedwithincreasingexpertpanelsize.The bootstrapapproachalsoincreasestheprecisionbyreducingthe variationwhenpanelsizesaresmall.

Theseresultsservetoexplainourlowdifferencebetweenmeans ofthethreeapproachesandwithorwithouttakingintoaccountthe confidencescore.With30expertsinvolved,wereachastablemean thatmaythusironoutdisparities.

Thisresultisinterestinginpracticeasitisthefirsttimethata recommendationregardingpanelsizeisprovidedforparticipatory ESassessment.Having alargepanelisgood,butsmallerpanels canstillprovidereliableestimates.Itshouldbestressedthatthe caseconfigurationhereispanelcompositionbasedonexpertsand scientistswithexpertiseinecosystemsand/orESinthestudied region.Otherstudiesareneededtoaddressthequestionofpanels orsurveysbasedonnon-specialists.

Thestabilityofthescoresexpressesaconsensusofthepanel onthepotentialcapacityofagivenETtoprovideagivensetof ES.Thereisstillaneedtofurtherexplorethelinkbetweenthis consensusscoreandactualpotentialcapacity.

6. Conclusion

Thetwopartsofthis paperbringcomplementaryanalysisto helpidentifywhatmethodstouseorhowmanyexpertsareneeded. Thesequestionsalsodependontheleveloferroracceptedandof coursethenumberofexpertsthatcanviablybeinvolvedinthe participatoryapproach.

Forarestrictednumberofparticipants,itisbettertouse boot-strapestimateparametersinordertoincreasethestabilityofthe finalscoreanditsvariability.Ifmorethan15expertsareinvolved, theusualstatisticsissufficient.Indeed,with30expertsinvolvedin ourmatrix,finalscoresshowedlittledistinctionbetweenthethree approaches,aswehadreachastablemean.

Bayesianmethodsaremoredemandingbuttheyalsogivemore complete results.Bayesianmethodseffectivelyrequirea degree ofexpertisein howtowrite,fitand interpretBayesianmodels. However,theydoenabletointegratedifferentkindsofinformation (here,theexpertscores,confidencescoresandtheirsuncertainties werehighlighted)inanintegratedstatisticalmodellingframework (Gimenezetal.,2014)aswellastoestimatealltheparameters associatedwiththesevariables.Inparticular,Bayesianmodelshold greatpotentialiftheaimistogainamoreinferentialpointofview. Forthesakeofconsistenceandconcision,thispaperdidnotexplore allthepossibilitiesoftheBayesianmodels.

Forparticipatoryprocesses,werecommendaddingaconfidence score,onthecaveatthat incorporationofa confidencescoreor theuncertaintyitcarriestothefinalscoreinthecapacitymatrix depends on the SE accepted and the method used. We found herethatconsideringconfidencescoreinfinalscoreinducedonly marginaldifferences.

Acknowledgements

WethankJean-MichelSallesforhisinputandcommentsonthe paper.ThisstudywassupportedbytheNaturalRegionalParkof Scarpe-Escaut.(PNRSE),andwethankGeraldDuhayonand Tan-guiLefortfromthePNRSEfortheirsupport.TheRNP-BPmatrix is part of a 2017 PhD project by L. Tschanz titled“Towards a socio-ecologicalobservationforaglobalapproachtobiodiversity challengesofinregionalplanning”attheIMBE,Aix-Marseille Uni-versity.ThisworkwasfundedbyIrstea,thePNRSE,thePNRBP,and theInstitutINSPIRE.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.ecolind.2017. 03.043.

References

Burkhard,B.,Kroll,F.,Müller,F.,2009.Landscapes’capacitiestoprovideecosystem services–aconceptforland-coverbasedassessments.Landsc.Online,1–22,

http://dx.doi.org/10.3097/LO.200915.

Burkhard,B.,Kroll,F.,Nedkov,S.,Müller,F.,2012.Mappingecosystemservice supply,demandandbudgets.Ecol.Indic.21,17–29,http://dx.doi.org/10.1016/ j.ecolind.2011.06.019.

Burkhard,B.,Kandziora,M.,Hou,Y.,Müller,F.,2014.Ecosystemservicepotentials, flowsanddemands–conceptsforspatiallocalisation,indicationand quantification.Landsc.Online32,1–32,http://dx.doi.org/10.3097/LO.201434. Efron,B.,1981.Nonparametricestimatesofstandarderror:thejacknife,the

bootstrapandothermethods.Biometrika68,589–599.

Fisher,B.,Turner,R.K.,Morling,P.,2009.Definingandclassifyingecosystem servicesfordecisionmaking.Ecol.Econ.68,643–653,http://dx.doi.org/10. 1016/j.ecolecon.2008.09.014.

Gimenez,O.,Buckland,S.T.,Morgan,B.J.,Bez,N.,Bertrand,S.,Choquet,R.,Dray,S., Etienne,M.-P.,Fewster,R.,Gosselin,F.,Mérigot,B.,Monestiez,P.,Morales,J., Mortier,F.,2014.Statisticalecologycomesofage.Biol.Lett.10,20140698.

Haines-Young,R.,Potschin,M.,2013.CICESV4.3–ReportPreparedFollowing ConsultationonCICESVersion4,August-December2012.EEAFramework ContractNoEEA/IEA/09/003.

Hermann,A.,Kuttner,M.,Hainz-Renetzeder,C.,Konkoly-gyuró,É.,Tirászi,Á., Brandenburg,C.,Allex,B.,Ziener,K.,Wrbka,T.,2013.Assessmentframework forlandscapeservicesinEuropeanculturallandscapes:anAustrianHungarian casestudy.Ecol.Indic.37,229–240,http://dx.doi.org/10.1016/j.ecolind.2013. 01.019.

Hou,Y.,Burkhard,B.,Müller,F.,2012.Uncertaintiesinlandscapeanalysisand ecosystemserviceassessment.J.Environ.Manag.127,S117–S131,http://dx. doi.org/10.1016/j.jenvman.2012.12.002.

(11)

IPCC,2014.ConfidenceandLikelihoodintheIPCCFifthAssessmentReport.IPCC.

Jacobs,S.,Burkhard,B.,VanDaele,T.,Staes,J.,Schneiders,A.,2014.TheMatrix Reloaded:areviewofexpertknowledgeuseformappingecosystemservices. Ecol.Model.295,21–30,http://dx.doi.org/10.1016/j.ecolmodel.2014.08.024. Kopperoinen,L.,Itkonen,P.,Niemelä,J.,2014.Usingexpertknowledgein

combininggreeninfrastructureandecosystemservicesinlanduseplanning: aninsightintoanewplace-basedmethodology.Landsc.Ecol.29,1361–1375,

http://dx.doi.org/10.1007/s10980-014-0014-2.

Koschke,L.,Fürst,C.,Frank,S.,Makeschin,F.,2012.Amulti-criteriaapproachforan integratedland-cover-basedassessmentofecosystemservicesprovisionto supportlandscapeplanning.Ecol.Indic.21,54–66,http://dx.doi.org/10.1016/j. ecolind.2011.12.010.

Kroll,F.,Müller,F.,Haase,D.,Fohrer,N.,2012.Rural-urbangradientanalysisof ecosystemservicessupplyanddemanddynamics.LandUsePolicy29, 521–535,http://dx.doi.org/10.1016/j.landusepol.2011.07.008. Litchfield,J.,Reilly,B.,Veneziani,M.,2012.Ananalysisoflifesatisfactionin

Albania:anheteroscedasticorderedprobitmodelapproach.J.Econ.Behav. Organ.81,731–741.

Martnez-Harms,M.J.,Balvanera,P.,2012.Methodsformappingecosystemservice supply:areview.Int.J.Biodivers.Sci.Ecosyst.Serv.Manag.8,17–25,http://dx. doi.org/10.1080/21513732.2012.663792.

MillenniumEcosystemAssessment,2005.EcosystemsandHumaWell-Being Synthesis.IslandPress,Washington,DC.

Seppelt,R.,Dormann,C.F.,Eppink,F.V.,Lautenbach,S.,Schmidt,S.,2011.A quantitativereviewofecosystemservicestudies:approaches,shortcomings andtheroadahead.J.Appl.Ecol.48(3),630–636,http://dx.doi.org/10.1111/j. 1365-2664.2010.01952.

StanDevelopmentTeam(Ed.),2015.StanDevelopmentTeam.

Stoll,S.,Frenzel,M.,Burkhard,B.,Adamescu,M.,Augustaitis,A.,Baeßler,C.,Bonet, F.J.,Carranza,M.L.,Cazacu,C.,Cosor,G.L.,Díaz-Delgado,R.,Grandin,U.,Haase, P.,Hämäläinen,H.,Loke,R.,Müller,J.,Stanisci,A.,Staszewski,T.,Müller,F., 2014.AssessmentofecosystemintegrityandservicegradientsacrossEurope usingtheLTEREuropenetwork.Ecol.Model.295,13,http://dx.doi.org/10. 1016/j.ecolmodel.2014.06.019.

Tschanz,L.,Tatoni,T.,Brun,J.-J.,2015.Servicesécosystémiques.Pourunegestion durabledesterritoires,pensonsenbouquet.Espac.Nat.52,27–28.

Vihervaara,P.,Kumpula,T.,Tanskanen,A.,Burkhard,B.,2010.Ecosystem services-Atoolforsustainablemanagementofhuman-environmentsystems. CasestudyFinnishForestLapland.Ecol.Complex.7,410–420,http://dx.doi. org/10.1016/j.ecocom.2009.12.002.

Vihervaara,P.,Kumpula,T.,Ruokolainen,A.,Tanskanen,A.,Burkhard,B.,2012.The useofdetailedbiotopedataforlinkingbiodiversitywithecosystemservicesin Finland.Int.J.Biodivers.Sci.Ecosyst.Serv.Manag.8,169–185,http://dx.doi. org/10.1080/21513732.2012.686120.

Willemen,L.,Burkhard,B.,Crossman,N.,Drakou,E.G.,Palomo,I.,2015.Editorial: bestpracticesformappingecosystemservices.Ecosyst.Serv.13,1–5,http:// dx.doi.org/10.1016/j.ecoser.2015.05.008.

Figure

Fig. 3. Mean and standard errors of the variation in expert scores (U k,i,o ) related to each confidence score (V k,i,o ).
Fig. 4. Effect of expert panel size (number of participants) on the variation (SD) of means of average scores.

Références

Documents relatifs

● La première matrice de ce type, appelée 1PAM (&#34; Percent Accepted Mutations &#34;) donne la probabilité qu' 1 substitution soit acceptée pour 100 acides aminés.. ●

Figure 1 PCA on the score of ecosystem services ( FOR forage provisioning , Flex for flexibility in forage production , CONS for conservation of biodiversity , ROBU for Robustness

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

In this subsection we introduce weighted Sobolev spaces which will be used in the proof of lower estimate of the norm of the kernel of D(µ) and in the proof of Theorem 5.4... We

The Difference in Maximum Entropy (DME) approach proposed in this paper leads toward two interesting results: on the one hand, it evaluates the new loan applications in terms of

pro- posed a score-based approach that proactively suggests a handful of preparators selected out of eight candidates that each can transform tabular data towards a fixed target

For this reason, we used the number of calcification pixels in the lung, average distance between the lung and bones, and the ratio of lung tissue to the lung volume for left and

In the sequel we assume that only the four preference types in Table 5 are observ- able. Note that when candidate a wins in a voting situation, only voters of type 4 and..