• Aucun résultat trouvé

Process intensification education contributes to sustainable development goals : part 2

N/A
N/A
Protected

Academic year: 2022

Partager "Process intensification education contributes to sustainable development goals : part 2"

Copied!
10
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Education for Chemical Engineers

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a te / e c e

Process intensification education contributes to sustainable development goals. Part 2

David Fernandez Rivas

a,∗

, Daria C. Boffito

b

, Jimmy Faria-Albanese

c

, Jarka Glassey

d

, Judith Cantin

e

, Nona Afraz

f

, Henk Akse

g

, Kamelia V.K. Boodhoo

d

, Rene Bos

h

,

Yi Wai Chiang

i

, Jean-Marc Commenge

j

, Jean-Luc Dubois

k

, Federico Galli

b

, Jan Harmsen

l

, Siddharth Kalra

m

, Fred Keil

n

, Ruben Morales-Menendez

o

, Francisco J. Navarro-Brull

p

, Timothy Noël

q

, Kim Ogden

r

, Gregory S. Patience

s

, David Reay

d

, Rafael M. Santos

i

, Ashley Smith-Schoettker

t

, Andrzej I. Stankiewicz

m

, Henk van den Berg

u

,

Tom van Gerven

v

, Jeroen van Gestel

w

, R.S. Weber

x

aMesoscaleChemicalSystemsGroup,MESA+InstituteandFacultyofScienceandTechnology,UniversityofTwente,Enschede,7522NB,theNetherlands

bCanadaResearchChairinIntensifiedMechano-ChemicalProcessesforSustainableBiomassConversion,PolytechniqueMontréal,ChemicalEngineering Department,C.P.6079,succ.Centre-ville,Montréal,QC,H3C3A7,Canada

cFacultyofScienceandTechnology,CatalyticProcessesandMaterialsGroupMESA+InstituteforNanotechnology,UniversityofTwenteEnschede,7522NB, theNetherlands

dSchoolofEngineering,MerzCourt,NewcastleUniversity,NE17RU,UnitedKingdom

eBureaud’appuietd’innovationpédagogique,PolytechniqueMontréal,CP.6079,succ.Centre-ville,Montréal,QC,H3C3A7,Canada

fOtto-von-GuerickeUniversityMagdeburg,IAUT(InstituteforApparatusandEnvironmentalTechnology),Universitätsplatz2,39106,Magdeburg,Germany

gChairmanPIN-NL,ProcessIntensificationNetwork,theNetherlands

hLaboratoryforChemicalTechnology,GhentUniversity,Technologiepark125,9052,Gent,Belgium

iSchoolofEngineering,UniversityofGuelph,50StoneRoadEastGuelph,Ontario,N1G2W1,Canada

jLaboratoireRéactionsetGéniedesProcédés,UniversitédeLorraine,CNRS,LRGP,F-54000,Nancy,France

kARKEMA,CorporateR&D,420Rued’Estienned’Orves,92705,Colombes,France

lHarmsenConsultancyBV,HoofdwegZuid18,2912EDNieuwerkerkaandenIJssel,theNetherlands

mProcess&EnergyDepartment,DelftUniversityofTechnology,Leeghwaterstraat39,2628CB,Delft,TheNetherlands

nHamburgUniversityofTechnology,DepartmentofChemicalReactionEngineering,EissendorferStrasse38,21073,Hamburg,Germany

oTecnológicodeMonterrey,Mexico

pInstitutUniversitarid’ElectroquímicaiDepartamentdeQuímicaFísica,Universitatd’Alacant,Apartat99,E-03080,Alicante,Spain

qDepartmentofChemicalEngineeringandChemistry,MicroFlowChemistryandSyntheticMethodology,EindhovenUniversityofTechnology,DenDolech 2,5612AZ,Eindhoven,theNetherlands

rTheUniversityofArizona,DepartmentofChemical&EnvironmentalEngineering,1133E.JamesE.RogersWay,Tucson,AZ,85721,UnitedStates

sCanadaResearchChair,HighTemperature,HighPressureHeterogeneousCatalysisPolytechniqueMontréal,ChemicalEngineeringDepartment,C.P.6079, succ.Centre-ville,Montréal,QC,H3C3A7,Canada

tRAPIDManufacturingInstitute,NewYork,NY,UnitedStates

uSustainableProcessTechnologyGroup,FacultyofScienceandTechnology,UniversityofTwente,Enschede,7522NB,theNetherlands

vProcessEngineeringforSustainableSystems(ProcESS),Dept.OfChemicalEngineering,KULeuven,3001,Leuven,Belgium

wChemicalEngineeringDepartment,UtrechtUniversityofAppliedScience,Utrecht,theNetherlands

xPhysicalandComputationalSciencesDirectorate,PacificNorthwestNationalLaboratory,Richland,WA,USA

a r t i c l e i n f o

Articlehistory:

Received11February2020

Receivedinrevisedform20April2020 Accepted4May2020

Availableonline23May2020

Keywords:

Industrychallenge Processdesign

a b s t r a c t

AchievingtheUnitedNationssustainabledevelopmentgoalsrequiresindustryandsocietytodevelop toolsandprocessesthatworkatallscales,enablinggoodsdelivery,services,andtechnologytolarge conglomeratesandremoteregions.ProcessIntensification(PI)isatechnologicaladvancethatpromises todelivermeanstoreachthesegoals,buthighereducationhasyettototallyembracetheprogram.Here, wepresentpracticalexamplesonhowtobetterteachtheprinciplesofPIinthecontextoftheBloom’s taxonomyandsummarisethecurrentindustrialuseandthefuturedemandsforPI,asacontinuationof thetopicsdiscussedinPart1.Intheappendices,weprovidedetailsontheexistingPIcoursesaround theworld,aswellasteachingactivitiesthatareshowcasedduringthesecoursestoaidstudents’lifelong

Correspondingauthor.

E-mailaddress:d.fernandezrivas@utwente.nl(D.FernandezRivas).

https://doi.org/10.1016/j.ece.2020.05.001

1749-7728/©2020TheAuthor(s).PublishedbyElsevierB.V.onbehalfofInstitutionofChemicalEngineers.ThisisanopenaccessarticleundertheCCBYlicense(http://

creativecommons.org/licenses/by/4.0/).

(2)

16 D.FernandezRivasetal./EducationforChemicalEngineers32(2020)15–24

Pedagogy

ProcessIntensification Entrepreneurship Sustainability Chemicalengineering Educationchallenge

learning.TheincreasingnumberofsuccessfulcommercialcasesofPIhighlighttheimportanceofPI educationforbothstudentsinacademiaandindustrialstaff.

©2020TheAuthor(s).PublishedbyElsevierB.V.onbehalfofInstitutionofChemicalEngineers.Thisis anopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Thecurrentworldeconomic orderdemands professionalsto becreative and innovative, nomatter theirfield of work.This is particularly important in chemical and process engineering disciplinesthatsignificantly contributetoaddressing thegrand challengesfacedbysocietyonclimatechange,energytransition, andfreshwatermanagementasstatedintheUN-SDG(Sustainable DevelopmentGoals,2019;AusfelderandHannaEwa,2018;Boulay etal.,2018;CEFICandDECHEMA,2017;Storketal.,2018;Klemeˇs andJiˇríJaromír,2020),andalsotheonesrelatedtothetechnolog- icalneedofcreatingcircularityoforganic,carbonandinorganic resources.Thisisalsoconnectedwithwatersourcemanagement, includingitsqualityandfootprinttowarrantanoverallsustainable process/productparadigm,wherebylifecyclesassessmentplaysa keyrole(Boulayetal.,2018).Togetherwiththesechallenges,the chemicalindustryconstantlyseekstoincreaseenergysavings,an objectiveofthechemicalindustrysincethe70swhilereducing theirgreenhousegasemissions.

Process Intensification (PI) is a relatively new toolset for addressingthesegoalsthatisgainingmomentuminindustryand academiccircles.WeprovideanupdateddefinitionofwhatPIin thecontextofeducationforchemicalengineersinPart1(Rivas etal.,2020),andissummarisedas1)anapproach“byfunction”,a departurefromtheconventionalprocessdesignbyunitoperations, and2)anapproachthatfocusesnotonlyontheprocessitself,but alsoonwhathappens“outsideorasaconsequenceoftheprocess”.

TherecentInternationalConferenceonProcessIntensification (IPIC2, Leuven 2019 (EFCE, 2018)) included an academic seg- ment, an industrial segment, as well as several workshops on selectedtopics:continuousmanufacturing,multifunctionalpro- cesses,alternative energy sources, and 3D printing. During the LorentzCentreWorkshopheldinJune2019,introducedinPart1 (Rivasetal.,2020),therelevanceofPIfortheeducationofthepro- fessionalsoftomorrowwasdiscussed.Thispaperexpandsonthe toolsavailabletomeetthisscope.

Traditionalchemical engineering courses arebased onunit- operationorientedtopics,suchaschemicalreactionengineering, massandheattransfer,polymerprocessing,particletechnology, etc(Stankiewiczand Yan,2019).PIeducationrequires students tomasterthosefundamentalconceptsaswellasmaterial-specific functions(e.g.surfacearea,permeability,responsivenesstoinduc- tion heating and microwave heating, and catalysis) to solve complexchemicalconversionand/orseparationprocesses.Intro- ducingtheseconceptsinthestudyofprocessesandapplicationof thePIprincipleswillrequireconsequentialchangesinthecurrent teachingmethodsandcontent.Forthisreason,wemustupdate the20-yearoldtoolboxapproachtoPIandincludematerialdesign and engineering, i.e. concepts and representative examples on howtoconceive and integratematerialsinto existingand new designstocontributetotheindustrialandecologicalchallenges oftoday.

Thisarticle details current provisions and proposals of how tointroducePIintochemicalengineeringeducationandtraining.

Italsospecifiesconcreteresourcesandmaterialsappropriatefor academicsettings(BSc,MSc,andPhD)andprofessionalsworking intheindustrytoeffectivelycreatelong-termlearningofthePI principles.

2. Currenteducationalprogramsonprocessintensification Thenumberofeducationalprogramsinchemicalscienceand engineeringprograms offeringPIcourses hasgrownin thelast decade, as evidenced by a database of the PI courses offered atseveraluniversitiesand instituteswehavecompiled.Eachof thesecourseshasempiricalexperienceonadvantagesandchal- lengesassociatedwiththetypeofdeliverytheychose.Thejournal EducationforChemicalEngineershasagreedtoupdatethisinforma- tion(Supplementarymaterial–Appendix1)regularlytoinclude changes and additions to the database. Furthermore, we have includedsomeofthebooksused.Whilethisnumberofchemical engineeringprogramsactiveinPIissignificant,onecouldstopto wonder:ifthisisenough?

DiscussionsduringanexpertpanelworkshoponPIeducation (Rivasetal.,2020)recognizedthattheintroductionofnewcourses inexistingcurriculaisoneoptiontoteachPIatatertiarylevel.How- ever,thismaybedifficultinthealreadyfullcurriculathatareoften structuredtofulfil professionalaccreditationrequirements(e.g.

IChemE,2019(InstitutionofChemicalEngineers(IChemE),2019;

ABET,2017).AmorerealisticapproachistointroducePIelements (ifnotthewholeframework)acrossseveralcourses.Forthisstrat- egytosucceed,studentsmusthavebasicengineeringknowledge first(Part1,Figure3).Forthisreason,thesetheoreticalcoursescan beleveragedtointroducestudentstoPIandsustainabilityconcepts incombinationwithproject-basededucation,inwhichstudents usethelecturer-studentcontacttimetopracticesolvingproblems.

ThepreceptsofBloom’sTaxonomy,whichdescribeandorder thedifferentcognitiveskills,offerastructuredwayofteachingPI.

IfPIisadeparturefromtheconventionalprocessdesignbyunit operation,withafocusnotonlyontheprocessitself,butalsoon environmentalandsustainabilityissues,thenwhatarethecondi- tionsthatweshouldputintoplaceforthestudentstomastervery high-levelcompetencies(Rivasetal.,2020)?When“complexprob- lemsrequiresophisticatedproblem-solvingskillsandinnovative, complicatedsolutions”(Maddenetal.,2013),educatorsmustbe creativedesignersoflearningexperiencesthatmoveawayfrom traditionallearning(Henriksenetal.,2019).

Bloom’sTaxonomy(Bloom,1956)haslongbeenrecognisedby theinternationalcommunityofpedagogicalexpertsasaneffective framework that is applicableacrossdifferenteducational disci- plinesforconceivingandguidinglearningoutcomes.Revisedin 2001,itconceptualizesandclassifiescognitiveprocessesthatthe brainperformsandordersthosehierarchicallyfromthemostintro- ductory and accessible (remember) to the most advanced and integrative(create).Thethreecognitiveprocessesatthebottom oftheFig.1(righttriangle),remember,understandandapplyare the“lowerorder cognitiveskills”or LOCS,whileanalyse, evalu- ateandcreateare“higherordercognitiveskills”orHOCS(Resnick, 1987);(Thompson,2008)),(Appendix2inSupplementarymate- rial for more details). These cognitive skills are linked to the Chemical-Engineeringtoolbox,inwhichtransferableskillscomple- mentfundamentalknowledgeinchemicalengineeringacademic program.Onlyasmallselectionoftransferableskillsisshownhere:

otherslikecriticalmindset,(interdisciplinary)collaboration,com- munication,andinformation literacyarelistedamongthe“21st CenturySkills”andreceivemuchattentioninthedevelopmentof newcourses.

(3)

Fig.1.CombiningthechemicalengineeringtoolboxwiththecognitiveprocesstaxonomyforthedevelopmentofeffectiveteachinginPI.Arguably,thisconceptisvalidalso foraglobalprogram,PIaddssynthesis(integration)tothetoplevel.

Thecognitiveprocesstaxonomyelucidateswhyitisvirtually impossibleforstudentstobecreativeiftheyspendmostofthe classtimelisteningtoanexpert.Hearinganexpertthinkingout loudduring thecreativeprocess is one essentialstep, but it is insufficienttoenablestudentstodoitthemselves.Ifthemaincog- nitiveactivityofstudentsistryingto“understand”,thereislittle roomforthemtorapidlyapply,analyse,andevaluateinfrontof acompetenteducator.Theeducatorinturn,mustdiagnoseany weaknessesandthecognitiveprocessinwhichtheyarestuck.Here, theconceptof“failfast”philosophyisparticularlyimportantforan enjoyableandeffectiveteaching-learningprocess(Khannaetal., 2016).BycombiningBloom’sTaxonomywiththe“ChemicalEngi- neeringToolbox”requiredinPI,onecanfindattheintersection clearguidelinestobuildaneffectiveeducationalprogram onPI (Fig.1).Thisposesanadditionalchallengetotheeducators,asoften theyhavenotclimbedthe“PIladder”.WeadvocatethatPIshould beincorporatedinthesingletechnicaltoolbox.

Learning PI and being able to transfer the knowledge into realsituations encouragesstudentstoworkincircumstancesas closeaspossibletothework-floor.Thisrequiresactivelearning approaches,likeproject-basedlearning,problem-basedlearning, team-basedlearningandcasestudies,wherethestudentsarecog- nitivelyengagedandmorelikelytosupporthigherordercognitive skills(Freemanetal.,2014).Ifthetaskinspiresreachingthehigher levelsofthecognitiveprocesses,itwillallowdivergentthinking andinterdisciplinarityneededforthefutureofindustry(Connor etal.,2017).Table1presentstypicalPIlearningactivitiesandthe cognitiveprocessstudentspotentiallyreachthroughthese.

3. ChallengesofteachinganddeployingPIwithinhigher education

Preparingstudentstojointhecreativeandopen-mindedwork- forcerequiresflexibilityintheuniversityenvironmentandlearning conditions (material, flexible schedules, academic tasks, etc.).

WhiletheobjectiveistousePIcoursesastheplaygroundforchem- icalengineeringstudentstofree-uptheircreativityandingenuity tocreate,study,andvalidateintensifiedprocesses,inpracticethe crowdedacademicagendalimitsthetime ofstudentsand edu-

cators.Instructingstudentsusingmoreinteractivestrategieswill increasethestudents’engagement.Thenextsectionfocusseson threechallengestoincorporatePIintoexistingcourses:(1)find- ing the righteducational modules in the chemical engineering curriculum tointroduceand deepenedPItechnologies;(2)lim- itedavailability ofcase studiesfor education;and,(3) theneed topreparestudentswithessential-skillstocommunicateeffective techno-economicanalysesofPIwhenworkinginindustry.

3.1. AdequateintegrationofPIinestablishedchemical engineeringcurriculum

Duringtheworkshop,therewasaquestionthatallparticipants weregrappling with:where doesa PIcoursefit in thealready crowdedacademiccurricula?ThoughthemajorityagreedthatPIis moreappropriateatagraduatelevel,itwasdeemedimportantto findwaystoinspirestudentsevenattheundergraduatelevel,espe- ciallyregardingtheunderlyingphysicsofnon-traditionalforces, withoutdetailedPIanalysesatahigherorderofcognitiveskills (HOCS,Fig.1).However,thisapproachfacesagreaterchallenge nowadaysatalllevels.Thisisrelatedtothemultidisciplinarypro- grammesthatarethenorminmanytechnicaluniversitiesandtend tosaturatethestudentswithinformation.DoesPIaddtothiscon- fusion withallitsnoveltyand definitions?We believethat the benefitsofbringingatleastthebasicprinciplesandcomprehensive approachofPIoutweighanyriskofcomplicatingexistingcurric- ula,aslongasPIcanbeseamlesslyincorporated,eitherinongoing courses,orinanewcourse.

Aneasier-to-answerquestionthatsurfacedwaswhetheraPI courseshouldbemandatory:unanimously,andnotsurprisingly, theanswerwasyes.Thisanswerwasaccompaniedbypractical suggestionsofprogressiveimplementationwithintheoverallcur- ricula,suchasmentioningPItobothundergraduateandgraduate studentsanddemonstratingexamplesofPIinthecontextofchem- icalreactionengineering and unitoperations,as wellasdesign projectsforthestudentstopracticeandimplementPIprinciples.

Itisalsousefultobringpracticalexamplesthatconcernnature.

Forinstance,whenmentioningmicro-reactors,apopularexample, PIcontraststraditionalmicrochannelsandhumanbloodvessels:a

(4)

18 D.FernandezRivasetal./EducationforChemicalEngineers32(2020)15–24

Table1

ExamplesoflearningactivitiesinPIandtherequiredfundamentaldisciplinesandtransferableskills.Appendix3providesspecificimplementationexamplesofeachof theselearningactivitieswheretheinvolvementofdifferentconceptsinchemicalengineeringareillustrated.FurtherdetailsontheexamplesprovidedinAppendix3canbe obtainedfromcitedreferencesorbycontactingtheco-authorsofthiswork.

CognitiveProcess PIlearningactivity Chemicalengineeringtoolbox

Create(Lucas,2001)1 Agroupofthreetofivestudents(frommorethanonediscipline,if possible)analysearealproblemsituation,co-createanoriginal strategyemergingfromthecombinationofmultidisciplinary frameworks.Theyplanhowtheywouldputitintoplace.

Largergroupsthan5studentsmightprovedifficulttohandle,andthe chanceof“free-riders”increases.

Fundamentalknowledge:

Safety,Sustainability,ProcessDesign,UnitOperations,Transport Phenomena,Thermodynamics,ChemicalKinetics,Chemistry,Physics, Mathematics

Transferableskills:

Teamwork,Innovation,criticalmindsetandinformationmanagement, creativity

SeeAppendix3.2,3.3,3.4,3.5,3.6,3.7inSupplementarymaterial Evaluate Agroupofstudentsanalysearealsituationwithintheirowndiscipline

andshareitwiththeirpeerssoeveryoneunderstands.Together,they evaluateallthepossiblestrategiestosolvetheproblemandidentify whatwouldbethebestoption.Then,studentsshouldbeableto substantiatetheirselectiontothelecturer.StudentscompareaPI processorapparatustoaconventionalone,listingadvantagesand disadvantages

Fundamentalknowledge:

Safety,Sustainability,UnitOperations,TransportPhenomena, Thermodynamics,ChemicalKinetics,Chemistry,Physics,Mathematics Transferableskills:

Teamwork,Innovation,criticalmindsetandinformationmanagement.

SeeAppendix3.1,3.2,3.3,3.4,3.6,3.7,3.8and3.9inSupplementary material

Analyse Studentsdeconstructarealsituationintoitscomponentsandconnect thecorrespondingcomponentsofarelevantconcepttoascertainits underlyinglogicandpredictwhatwouldhappenifwechangeoneor moreparameterstotherealsituation.Theyexplainunexpectedresults thathappenedinanexperiment.StudentsdescribeaPIprocess,break itdownintoitscomponentsandindicatewhichphysicalphenomena playarole.

Fundamentalknowledge:Safety,UnitOperations,Transport Phenomena,Thermodynamics,ChemicalKinetics,Chemistry,Physics, Mathematics

Transferableskills:

Teamwork,innovation,criticalmindsetandinformationmanagement.

SeeAppendix3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8and3.9in Supplementarymaterial

Apply Studentscansolveabstractproblemsusingformulasprovidedor learnedbyheart.Theyareabletoreproduceagivenexperimentinthe lab.Studentsapplye.g.mass-transfertheoryinaPIcontext,calculate therequiredsizeofanapparatus

Fundamentalknowledge:TransportPhenomena,Thermodynamics, ChemicalKinetics,Chemistry,Physics,Mathematics

Transferableskills:

Teamwork,criticalmindset

SeeAppendix3.0and3.1,3.2,3.3,3.4,3.5,3.6,3.7inSupplementary material

Understand Studentsexplainintheirownwordstheinfluenceofvelocity, temperatureandconcentrationinachemicalprocess.Theycanfind examplesofthepresenceofthesephenomenainotherapplications.

Theycanalsorecognizewhy(e.g.)astaticmixerisanexampleofPI equipment.

Fundamentalknowledge:TransportPhenomena,Thermodynamics, ChemicalKinetics,Chemistry,Physics,Mathematics

Transferableskills:Teamworkifinteam

SeeAppendix3.0,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8inSupplementary material

Remember Studentsmemorizeformulas,materialcharacteristics,stepsofa process,conceptsattributes,etc.(oranyothertypeofrotelearning).

ThestudentsareabletoreproducethedefinitionofProcess Intensificationwhenasked

Fundamentalknowledge:Thermodynamics,Chemistry,Physics, Mathematics

Transferableskills:

Teamworkifinteam

SeeAppendix3.0,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8inSupplementary material

1 AccordingtoLucas(2001),«[c]reativepeoplequestiontheassumptionstheyaregiven.Theyseetheworlddifferently,arehappytoexperiment,totakerisksandtomake mistakes.Theymakeuniqueconnectionsoftenunseenbyothers.»(p.138)(Lucas,2001).

circularmicrochannelof400␮minamicroreactordeliversaspe- cificareaofca.15000m2/m3.Nature,however,beatsengineering:

ourcapillaryveinsareca.10␮mindiameter,havespecificareasof ca.400000m2/m3and(mostofthetime)donotclog(VanGerven andStankiewicz,2009)!

ParticipantsintheLorentzworkshopalsodiscussedwhatare theminimumresourcesrequiredtohaveabasic,undergraduate PImodulewithinacourse.First,acostlesssolutionwouldbeto introducetheterm“processintensification”anditsmeaningindif- ferentmandatorycourses(asithappensnowwithheatandmass transfer,unit-operations,safetyetc.).Somebasicrequirementsfor groupproject-basedactivities,include:

•Basic infrastructure for students to meet regularly with the instructorandteachingassistants,andseparatelyasgroups.

•Accesstostructuredcourseslides,successstories–someexam- pleswhereitworks,couldbeinstructionalvideos.

•Accesstoliterature(traditionalorelectronic)includingjournals thatpublishbothPItheoryandapplications.Differentspecific journalsareavailableonPIandreportonboththetheoryand theapplicationofPIindifferentfields.Tobeevenmoreeffective, anonlinedatabasereportingcompaniesapplyingPIprocesses shouldbeavailabletostudentswhowanttoanalyseandunder- standrealexamples.Anothervaluabletoolcouldbeacollection ofpatentsonPItechnologies,andfailedPIapplications.Inthis

waystudentswillappreciatethedriverstoapplyPI,aswellas thefactorsthathavepermittedandimpededthedeploymentof thetechnology.

•Meanstocompileinformation,storageandpreparationofdocu- ments,reports,etc.

•InthecaseofProblemBasedLearningandChallengeBasedLearn- ing(section4.1)thatrequiremodellingactivities,whicharekey inaPIcourse,thecorrespondingtools,e.g.AspenPlus,COMSOL, etc.alongwithateachingassistantdedicatedtotheseactivities.

Instructive,learningobjectivescanalsobereachedwithsimpler toolssuchasMicrosoftExcelandMATLABtosolvedifferential equationsforflow,heatandmasstransfer,reactionkinetics,etc.

ThesetoolsenabledesignorinvestigationofoneormoreofthePI domains(structure,synergy,energyandtime)atoneormoreof thePIscales(plant,process,particleandmolecular)(Santosand VanGerven,2011).

•AccesstoRAPID’sandCOSMIC’swebinarsonboththetheoryand modelling(e.g.COSMIC’stutorialonultrasoundandmicrowaves irradiation).Thesewebinarscouldbetakenasanassignment(a reportbyastudentorgroupofstudentscanfollow).

•Brainstorming/creativeactivities.

•Laboratories:ultrasoundhornorbathtoexaminesonicationpro- cesses,(Haqueetal.,2017),thermogravimetricanalyser(TGA), ideallywithdifferentialscanningcalorimetry(TGA-DSC)capa- bility,andevenmoreideallyhyphenatedtoamassspectrometer

(5)

(TGA-MSorTGA-DSC-MS),toinvestigatehigh-temperaturereac- tionsinreal-time(Santosetal.,2012);tubularandstirred-tank reactorsforbatch-to-continuousandmixed-to-plugflowprocess transitions(Zhangetal.,2019b);in-situanalysers(e.g.particle size,infrared)fortrackinginreal-timeunsteady reactionpro- cesses;amongotherspossibilities.

Ultimately,theresourcesdonotneedtobeexpensiveforthe studentstodeepentheiranalysisandcomeupwithcreativeor wellsupportedideas.MoredetailsaregiveninSection5.

3.2. IndustryrequirementsinPIeducation:commercialsuccess stories

ManylargescaleplantshaveappliedPI(Rivasetal.,2020):distil- lationplants(Kiss,2014)(dividing-wallcolumns(Johnetal.,2008), internallyheatedintegrateddistillation(Fangetal.,2019),reac- tivedistillationsformethylandethylacetate(Singhetal.,2014), andfortheesterificationofaceticacid(AgredaandHeise,1990), structuredreactors(e.g.selectivereactiveNOxreduction),rotat- ingHiGeeequipment(Cortes Garcia etal.,2017)(e.g.seawater deaerator,strippingofhypochlorousacid,CO2absorption),tailgas cleaningofSO2 bymeansofarotatingpackedbed(RPB)reactor (Darake et al.,2014), printed circuitheatexchangers(PCHE) in offshoregastreatmentplants(Baeketal.,2010),andtheTwister foroffshoregasdrying (Esmaeili,2016).Similarly,varioustypes ofmicro-andmilli-reactorsorequipmenthavebeenusedinfine chemicals,automotiveexhaustaftertreatment,andthepharma- ceuticalsindustry,wherenumbering-upofmicrofluidicstructures orreactorsallowsforproductionscale-up.(Kockmannetal.,2011;

Modestinoetal.,2016;Shenetal.,2018;Zhangetal.,2017).

ThereareimportantreasonswhyPIlarge-scaleequipmentand microreactorsalike,arestillnotusedmorewidely,andeducation hasthepotentialtoresolvethisinpart.Alistofaspectswehave identifiedcanbefoundinAppendix4inSupplementarymaterial.

Implementingtheseexamplesandthetheoryandeconomicmod- elsbehindtheorysuccessinPIcourses,aswellascoursesoffered toindustrialstaff,canacceleratePIknowledgedisseminationand itsimplementation.

Thedifficultyofmakinga compellingcasefornewsolutions shouldnotbeunderestimatedinPIeducation.Thisisaboutbeing abletotellacredibletechno-economicstory,tobothmanagement andseniortechnologistsinthecompanyforwhomPIsolutionsare newand“different”aswell,forexample:

•PItechnologyUimprovesyieldX%,reducesenergyconsumption byY%,andlowersCAPEXandOPEXcomparedtoconventional processes,whilereducingourCO2footprintbyZ%.

•ThisPItechnologyis differentindeed,butwe understandthe fundamentals.

Orabelievableinvestmentriskstory:

“ThisnewPIsolutionisdifferentfromconventionaltechnology butwillallowthecompanytoreducecapitalrisk,makenew products(unattainablewithconventionaltechnologies),reduce inventory,managethesupplychainmoreeffectively,etc.”

InIndustry,timingiscritical:tellingthetechno-economicand riskstoriesattherighttimeintheinvestmentcycleisfundamental tohavethemanagementselectingPIoveranincumbenttechnol- ogy.RAPIDdevelopedastudentinternprogramthatfocuses on developingthenextgenerationofleadersinPI.TheInternswork onprojectsatRAPIDmemberinstitutionsthatadvancePIormod- ularprocessing,whilesimultaneouslylearningabouttheconcepts virtually throughPI E-learning coursesand webinars.Thispro- videsstudentswithreal-worldcontextandavalue-propositionfor

PI.Appendix5inSupplementarymaterialsummarizesahistorical accountofpast(Dutch)experienceregardingPIandtheindustry setting.

Implementing PI technology, like any novel development requires up toa decade and includes a research phase, a pilot plant,andademonstrationunit.Trainingstudentswithinnovative technologiesmayincreasetheprobabilityofadoptionandreduce industrytendencytodirectlyjumptoproventechnologieswitha shorterimplementationcycle.

Finally,overcomingthesebarriersrequirescooperativeefforts in academia, industry and certification agencies. For example, largegapsin equipmentdesign inthefieldsof ultrasonicreac- tors,microwaves,electricandmagneticfieldsshouldbehandledin academia,whileproductionproblemsoftherespectiveequipment shouldbehandledbyindustryorindustry-ledconsortia.Butthere aremanyotherdesignproblemsofalreadyintroducedequipment.

Forsomeoftheseitemsthereareonlysimplecorrelations.Amajor problemistofindoutwhichunit operationsshouldbestudied first,thatmeanswhichequipmenthashighestprobabilitytopen- etratethemarket.Astherearealreadymanytheoreticalanalyses ofpotentialPIstrategiesforagivenapplications,anevaluationand rankingoftheseinbusinessterms(CAPEX,OPEX)andsustainabil- itypotential(energyuse,rawmaterialefficiencyusage,E-factors, etc.)asundertakeninarecentstudyonintensifiedamidationpro- cessinginthepharmaceuticalindustry,wouldbewelcomedbythe community(Fengetal.,2019).

4. EnablersofPIeducation

Inthissectionwereviewsomeofthestrategiesandeducational technologiesthatcanfacilitatetheimplementationofPIeduca- tionina moreeffectivemannerandovercomethesomeof the aforementionedchallenges.

LearningPIinchemicalengineeringprogramsshouldbecon- ceived as sandbox in which students can creatively apply all theirknowledgeonunitoperationtotackle chemicalindustrial problems.To fosterlively discussionsand brainstormingactivi- tiesbetweenstudents,wecanleverageseverallearningtoolsand strategies.

4.1. Problem-basedlearning(PBL)orChallengeBasedLearning (CBL)

In PBL,students analyzeanddiscussa realproblemwithan expectedscopeand solution,defining theacademicconceptsto learn(Dolmansetal.,2016).Therefore,inPBL,thefocusinmore ontheacquisitionofknowledge, ratherthanonitsapplication.

In CBL (not to confuse with case-based learning) students are activelyengagedinarelevantandchallengingproblemrelatedto a real-worldcontext(it isan openproblem, where nosolution isknown).CBLismoreadvancedthanPBLasitimpliesthatthe knowledgehasbeenalreadyacquired,anditinterpretsit,rather thanassimilatingit,toimplementsolutionsthatanswerthechal- lenge(Hernández-de-Menéndezetal.,2019).Forexample,when faced witha challenge,successfulgroups andindividuals lever- ageexperience,harnessinternalandexternalresources,develop aplanandpushforwardtofindasolution(VegaandNavarrete, 2019).Alongtheway,thereis experimentation,failure,success andultimatelyconsequencesforactions.Byaddingchallengesto learningenvironmentstheresultisurgency,passion,andowner- ship–ingredientsoftenmissinginschools.CBLcanbestructured inthreecyclingphases(Fig.2):(1)aninvestigatingphaseinwhich studentshavetointernalizetheproblemdefinitionanddiagnosis andself-studytheinformationtosolvethecase;(2)actingphase thatisaimedatdesigning,implementing,andtestingtheproposed

(6)

20 D.FernandezRivasetal./EducationforChemicalEngineers32(2020)15–24

Fig.2.CyclicphasesofChallengeBaseLearning.(https://cbl.digitalpromise.org/stories/).

solutions:and(3)engagingphaseinwhichthestudentsleverage theinteractionwiththetutorandhispeerstosolvetheproblem.

Thisstrategysupportsthedevelopmentofknowledgeacquisition inanautonomousmanner,developmentoftransferable-skillsor essential-skillsandlife-longlearning(Ruiz-Ortegaetal.,2019).In thisstrategy,thestudent-tutorinteractionisemployedtosupport theproblem-solvingstageratherthantheknowledgeacquisition (KOLMOS, 1996).We reportexamplesofhow differentinstruc- torsimplementeitherPBLorCBLinAppendix3inSupplementary material.

4.2. Practicalexperimentation

Practicallaboratorieswithstudents manipulatingequipment continues toplay a prominent role in thecurrent engineering education(Chenetal.,2016)).Inordertoeffectivelycreatelife- longlearningonPIthecookbookexperimentation(Hofsteinand Lunetta,1982; Kontraetal.,2015)shouldbereplacedbypeer- instructionandcollaborativelearning.Tosuccessfullyimplement this,universitieswillstillneedtoprovidetheinfrastructure for theseactivities–space,materials,lab-andpilot-scaleequipment- at a cost. While potentially an expensive option, buying an experimentalPIsetupforeducationalpurposescanofferdeeper understandingandhands-onexperienceforstudents.Experiments canbedesignedinwhichtheaimistocomparethePIsetupto amoreconventionaloneanddiscernthebenefitsanddrawbacks ofeach.Possibilitiesrange fromstaticmixerstoreactorsetups.

Creativeimplementationofthesesetupsinthecurriculum(e.g.a spinning-diskreactorcanbeusedtostudyfluidflowinonecourse, masstransferprocessesinanotherandreactionkineticsinathird) canhelpalleviatehighcostandmaintenanceoftheapparatus.

Rentingequipmentisamodelwhereitispossiblenotonlyto teachPI,buttoletacompanytestthetechnologyandeducateits

personnel.Severalcompanies(techsuppliers)havearentingpro- gram.Similarly,theequipmentcouldbeownedbyanInstitute,that rentsitandthecompanycanprotectitsknow-howofthechemistry andtestthetechnologyaftersometraining.

4.3. Computer-aidedteachingofPI

Computer-aided teaching can be leveraged to facilitate the learningofPIatmicro-(e.g.molecularandconvectivetransport, heat transfer, chemical reaction mechanism, etc) and macro- scopic(e.g.processcapitalandoperationalcosts,environmental impact,sustainability).Here,PartialDifferentialEquations(PDEs) canbeinteractivelyvisualisedtostudythemicroscopicprocesses occurringin a unit of operation(e.g. thevelocity, temperature andconcentrationchangesasafunctionoftheoperatingcondi- tions.Newsoftwaremodulesprovideintuitionandapplicability of these fundamentals. For example, to understand the differ- encebetweendiffusionandadvectionofchemicalspecies(Figure A6.3.1),problem-basedlearningorinquiry-basedlearning(Belton, 2016;Glasseyetal.,2013)canbeused.Withthismethodology,one caninteractivelyvisualisehowtointensifyaprocessbymodifying thegeometryofthechannel,thediffusioncoefficientortheveloc- ityeventuallyself-discoveringastaticmixer(FigureA6.3.2),one ofthemostversatileprocessintensifiedtechnologies(Keil,2018;

Kiss,2016;TowlerandSinnott,2013).

Atthemacroscopicscale,Processsimulation(RAPID,2020)tools canbeusedtohelpstudentsunderstandingprocessconfiguration andtheconsequencesofPIimplementationthroughcasestudies andeconomicanalysis.Themainfactorhinderingcomputersim- ulationsofPIisthatcurrentchemicalprocesssimulatorsoftware packageslackofphenomenologicalorevenempiricalmodelsthat cancapturethecomplexityofPIprocesses.Forinstance,inthecase ofmolecularreactors,simulationsshouldintegrateintrinsickinetic

(7)

modelsataresolutionofthemicro-mixingscales,aswellasnon- conventionaldrivingforcesorheatandmasstransferratesatthe reactorscalefromafewtoseveralhundred-litrevolume.However, rapidadvancesinfirst-principlecomputationalmodellingpromise thatthesoftwaretoolstosimulatePItechnologiesmaybesoon available(Appendix6.3inSupplementarymaterial),thusspeeding upPIeducationand,asaconsequence,itsimplementationatthe commercialscale(BoffitoandVanGerven,2019;Fontes,2020;Ge etal.,2019)

Morerecently,advancesinbothmachinelearningalgorithms andcomputerhardwareareopeningupnewpossibilitiestoidentify opportunitiesforprocesscontrol(andtheneededmethodstoteach it)(Rio-Chanonaetal.,2019).Forexample,ReinforcementLearning cansuccessfullygenerateanoptimalpolicyofstochasticdecision problems(Petsagkourakisetal.,2020).Thus,bycombiningboth processsimulation softwareand data-driventechniques(Zhang etal.,2019a), theintensifiedprocesscanbeimprovedin terms ofcontrolandschedulingdecisions.While,thereareseveraltools forAIavailable,(e.g.MATLAB,neuralnetworktoolboxorPython- basedTensorflow/TFLearning,PyLearn2,NeuroLab,PyTorch,Caffe, andKeras),massiveamountsofdatacollectedinthevicinityofcon- trolpointsareinsufficientforextrapolation.So,wemustcaution studentsabouttheseseeminglyrobustmethodologies.

4.4. Exploitingnew(visualization)technologies

VirtualandAugmentedReality,3DPrinting,InternetofThings, ArtificialIntelligence,VirtualLaboratoriesareconsideredastrans- formative technologies that can be leveraged to enhance PI education.Besidesofferinganexcitingwayofeducation,theypro- vide flexibility for students toacquire knowledge and practice theirskillsattheirownpace.Amongthecompetenciesthatthese advancesfostertherearespatialvisualization,innovativethinking, problemsolving,creativity,analysisandcriticalthinking:essential abilitiesthattheworkforceofthefuturemusthave,especiallyin PI.

Twoimportantexamplesare:VirtualandAugmentedReality and3DPrinting.VirtualandAugmentRealityaretworelatedtech- nologies.Theformerdevelopsdigitalenvironmentsinwhichusers cangetimmersedandareabletomanipulateobjectsandinteract withthespace.Thelater,superposesvirtualobjectsinrealimages thatarecapturedthroughamobiledevice,theideaistoimprovethe environment.Ineithercase,thesetechnologiesareusefulinedu- cationtodevelop,forexample,intensifiedprocessesinacontrolled manner,exploreabstractconceptsandstudyphenomenaindetail.

Theirkey characteristicsare: immersion, interaction and visual realismandthesecanbeclassifiedasimmersive,semi-immersive, andnon-immersive.Thepositiveeffectsofvirtualrealityteaching usinghapticmethodshavebeenalreadydemonstratedforlearning chemicalbonding.Theseforcefeedbackhapticapplicationscanalso offernewopportunitiesforlearningtostudentswhohavedifficul- tiesinunderstandingsomesubjects,whichwouldbegamechanger intheapplicationofPIoneducation.(Ucaretal.,2017)

5. NewsubjectsandmaterialtoconsiderinPIcourses

BasedonourpastexperienceinteachingPIandothersubjects, aswellastheoutcomeofthediscussionofourworkshopatthe LorentzCentre,wecompiledalistofitemstointegrateintonew andexistingPIcourses,atseveralcognitivelevels(Fig.1):

•Stressonthermodynamicsandtheconceptofentropy(Appendix 3.0inSupplementarymaterial).

•Methodologiesorstepstoguidethestudents(andfutureindustry workers)onwhentointensify(appendix3.1,6.1,6.2inSupple-

mentarymaterial).Incaseswheretheinformationavailablein academicsettingsisunavailable,itmakessensetomotivatestu- dentstoguesstimate(estimatewithinadequateorinsufficient information).

•Modelling,inparticularnewsoftwaremodulestohelpbothedu- cation and scale-up to become commercial (Appendix 6.3 in Supplementarymaterial).Currentmodelsarelimitedanddonot coverallPIsystems,butonlythemostpopularones(staticmixers, reactivedistillation,ultrasoundmixingandinductionheating), whiletheylackmorecomplexcases(modellingofacousticcav- itation,plasmareactors,etc.).WiththeadventoftheIndustry 4.0,weanticipateanincreaseintheavailabilityofthesemodels, whichcanbetheninturnadoptedasteachingmaterial.

•Laboratorysessionscanbeveryeffectivetopracticallydemon- stratetherelevanceofintensifieddevices.Despitethesesessions requiring dedicated resources and time, they can be rapidly implemented sincesome manufacturersprovide ready-to-use kits,thatarecompatiblewithstandardacademicfacilitiesand analytics. For example, micro-structured mixers, reactors or spinning-disc reactors efficiently demonstrate the impact of intensificationontheselectivityofchemicalsyntheses.Seesome examplesonrentingequipmentinSection3.1c.

•Tutoredprojectsmayalsobeanoptiontohelpstudentsprop- erlyunderstandPIconceptsandapplythemtomorecomplex problems,while gettingintohigher cognitivelevels:thetime dedicatedtotutoredprojectsisalsoappropriate tohelpthem becoming creativeand togobeyondtheircurrentknowledge (Appendix3.3inSupplementarymaterial).

•AnewandimportantlinkcanalsobeestablishedbetweenPIand materials(StankiewiczandYan,2019),sincePIisnotrestricted toreactorsizing/designandactivationmodesonly.Severalinten- sification strategies are directly related to various aspects of materialsproperties:thermalconductivityforheatrouting,hot spotscontrol,tortuosityandporosityforcatalyticapplications, etc. Other innovative solutions such as product formulations andcatalysiswerenotconsideredpartofPI.Materialscanbe formedtohave“shape-selective”geometries,fromthemolecu- lartothemesoscale.It issufficienttothinkofzeolites,which havecavitiesthatarebothsizeandshape-selective.Otherprop- ertiessuchassuper-wettability,super-hydrophobicity,magnetic andparamagneticproperties,magnetocaloricandmetamaterials offeruniqueopportunitiesforPI.Thedevelopmentsofthenew visualizationtechnologiesoutlinedinSection4.4.mayaccelerate evenmorethissynergy.

•New software modules for education and scale-up can help understanding transport phenomena, especially under non- conventionalconditions andincase ofnon-traditionaldriving forces.Thelackofpseudo-empiricalcorrelationsisoneofthefirst challengesastudentfaceswhentransformingorscalingup/down anewchemicalprocess(Zhangetal.,2018).Oftentaughtasan abstractwayofestimatingheatandmasstransfercoefficients, theseequationslimittheunderstandingandinnovativeaspectof processdesign.Seeappendix6.3inSupplementarymaterialfor anexampleonhowtoenhancemass-transferphenomenausing computer-aidedsimulations.

6. OpportunitiesforPItofulfilitspromises

Toensureindustry-pullintoPIsolutions,theremustbeaclear advantagetoconvincecompaniesand investorstoadoptit.We believethatarealisticapproachistofindabottleneckratherthan tooverhaulacomplete process.For example,aplantemployee explainsaprocesstoaPIexpert,andtogethertheydeterminewhat thebottlenecksare,andjointlydeviseasolution.Thefeasibilityof thePIoptionscanbeassessed,consideringthe(economic)goalsof

(8)

22 D.FernandezRivasetal./EducationforChemicalEngineers32(2020)15–24 theprocess,andusingavailablemethods(Reayetal.,2013),which

rangefrombeingfamiliartoobscure(Appendices6inSupplemen- tarymaterial).Atraditionalriskassessmentmustfollow.Logically, thisreasoningmustbetaughtatallrelevantlevelstothestudents orworkersreceivingtraining.

Therearetwomainsourcesthatcanbeconsultedforproven solutions.First,datafromtheIbDprojectoncontrolofanumberof PIprocesses/demoscanbeshownasexamplesoftherecentsuc- cessfulimplementationofPI.-(JannePaaso(VTT),RistoSarjonen (VTT),PanuMölsä(VTT),MarkkuOhenoja(OULU),ChristianAdl- hart(ZHAW),AndreiHonciuc(ZHAW),TimFreeman(FREEMAN), 2017)Second,IPIC:https://kuleuvencongres.be/ipic2019/Home.

Modellingduringthedesignofindustrialprocessreducestime requirements.Companiestendtocommissionnewprojectstomin- imizerisksanddelays.Theexpertsperformingthesesimulations musthaveasolideducationandunderstatingofprocessengineer- ingaswellascomputer-aidedsimulationtechniques.

7. Conclusionsandrecommendations(part2)

Itisimportanttoreachandeducateallthesocial layersand increasetheacceptabilityofthechemicalindustriesbyusingthe tightlinkbetweenProcessIntensification(PI)andsustainability.

PI offers opportunities to achieve the United Nations Sustain- ableDevelopmentGoals(UN-SDG)becauseitoffersstrategiesto implementtechnologieswithremoteinstallationandlowerCAPEX thanconventionalprocesses.Thisappliesinparticulartominiatur- izedchemicalplants(suchasmicro-pyrolysisorgasificationunits, micro-hydroormicrogas-to-liquidssystems).

WebelievePIhasthepotentialtoidentifysolutionswherecon- ventionalstrategiesfocusedonstep-by-stepincrementalprocess improvementsfail. However,PI solutionsintroduce more tech- nologicalandinvestmentriskthanconventionalapproaches.The involvementofcompaniesinthecontinuousacademiceducation iskey,aswellasnewmethodstocalculateinvestmentandassess risk,someofwhichweproposeinthisdocument.

A thorough analysis of the thermodynamics, kinetics, and transportinintensifiedprocessesaffordnewopportunitiestoillus- tratethecorepreceptsofchemicalengineering.Themultiphysics attributesthatcharacterizemostoftheintensifiedreactorsclearly introduceanon-linearbehaviourforthesedevices.Theaccelera- tionofphenomena(fastreactionskinetics,hightransfercapacities, processgainnonlinearity,etc.)alsorequiresfastmeasurementsand actuatorstoensurestability.Furthermore,theconversionofbatch processestocontinuousprocessesnecessitatesdrasticmodifica- tionsofthecontrolsystems,aswellastrainingforengineers.

Forthisreason,weconsiderthatprocesscontrolinthecontext ofPIshouldreceivespecial attentioninPIeducation.PI-specific casestudies,eitherintegratedinthelast-yearchemicalengineer- ingdesignproject,orinothercourses,isanapproachthatmostof theparticipantsoftheworkshoprecommend(seeAppendicesin Supplementarymaterial),andthatstudentsseemtoenjoy.Expos- ingallofthestudentstoPIalreadyattheundergraduatelevels, increasestheopportunityofthemtoproposePIsolutionsinthe futureintheindustrialcontexttheywillworkon.

Webelievethatthiswork,togetherwithPart1,willpavethe waytoamoreefficientadoptionofeducationonPI,andhopefully afasterimplementationintheindustry.

ReferencescitedintheSupplementarymaterial

AndersonandKrathwohl(2001),Andresen(2011),Charpentier (2010), Chen et al. (2015), Crooks (2007), Denbigh (1951), Durmayaz(2004),Fengetal.(2017),Ghanemetal.(2014),Janne Paaso(2017),KingstonandRazzitte(2017),Kockmannetal.(2017),

Lawetal.(2017),Leitesetal.(2003),Lieberman(1989),Livotov (2019),Livotovetal.(2019),LivotovandPetrov(2013),Milanovic andEppes(2016),Missenetal.(1998),Navarro-Brulletal.(2019), Noel(2019),PatienceandBoffito(2020),Reay(1991),Rivasetal.

(2018),ROSJORDEetal.(2007),StankiewiczandMoulijn(2002), Torabietal.(2019),TribeandAlpine(1986),WeberandSnowden- Swan(2019),Wright(1936).

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompetingfinan- cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgments

TheauthorsthanktheLorentzCentrefor hostingthiswork- shop(EducatingonProcessIntensification)andallattendeesofthe workshopfortheirinvaluableinput,visionforprocessintensifi- cationtechnologies,andcandiddiscussions.Wearealsograteful tootherparticipantswho voluntarilyarenotco-authorsof this manuscript:M.Goes(TKIChemie),P.Huizenga(Shell),J.P.Gueneau deMussy(KULeuven),C.Picioreanu(TUDelft),E.Schaer(Univ.Lor- raine),MarkvandeVen(NationalInstituteforPublicHealthand theEnvironment(RIVM),TheNetherlands).

Theviewsandopinionsexpressedinthisarticlearethoseofthe authorsanddonotnecessarilyreflectthepositionofanyoftheir fundingagencies.

We acknowledge thesponsors of theLorentz’ workshop on

“EducatinginPI”:TheMESA+InstituteoftheUniversityofTwente, SonicsandMaterials(USA)andthePIN-NLDutchProcessIntensi- ficationNetwork.

DFRacknowledgessupportbyTheNetherlandsCentreforMul- tiscaleCatalyticEnergyConversion(MCEC),anNWOGravitation programmefundedbytheMinistryofEducation,CultureandSci- enceofthegovernmentofTheNetherlands.

NAacknowledgestheDeutscheForschungsgemeinschaft(DFG) -TRR63 ¨IntegrierteChemischeProzesseinflüssigenMehrphasen- systemen¨(TeilprojektA10)-56091768.

TheparticipationbyRobertWeber intheworkshopand this reportwassupportedbyLaboratoryDirectedResearchandDevel- opmentfundingatPacificNorthwestNationalLaboratory(PNNL).

PNNL is a multiprogram national laboratory operated for the US Department of Energy by Battelleunder contract DE-AC05- 76RL01830

Theviewsandopinionsoftheauthor(s)expressedhereindonot necessarilystateorreflectthoseoftheUnitedStatesGovernmentor anyagencythereof.NeithertheUnitedStatesGovernmentnorany agencythereof,noranyoftheiremployees,makesanywarranty, expressedorimplied,orassumesanylegalliabilityorresponsibility fortheaccuracy,completeness,orusefulnessofanyinformation, apparatus,product,orprocessdisclosed,orrepresentsthatitsuse wouldnotinfringeprivatelyownedrights.

AppendixA. Supplementarydata

Supplementarymaterial relatedto this articlecanbe found, intheonlineversion,atdoi:https://doi.org/10.1016/j.ece.2020.05.

001.

References

ABET,2017.ABETEngineeringAccreditationCommission:CriteriaforAccrediting EngineeringPrograms[WWWDocument].

Agreda,V.H.,Heise,W.H.,1990.High-puritymethylacetateviareactivedistillation.

Chem.Eng.Prog.86,40–46.

Références

Documents relatifs

Lo importante es aceptar las consecuencias, tener un espacio de aprendizaje y reflexión, qué significa eso para el programa y cómo se tomará la decisión y se informará a

– to implement multiscale application of computational chemical engineering modeling and simulation to real-life situations: from the molecule scale to the overall complex

Experimental observations, by optical or radio-frequency measurements, of the hyperfine structure of some atomic state are summarized by giving the values of

Inducible nitric oxide synthase activity in colon biopsies from inflammatory areas: correlation with inflammation intensity in patients with ulcerative colitis but not with

A mutant with bilateral whisker to barrel inputs unveils somatosensory mapping rules in the cerebral cortex... A mutant with bilateral whisker to barrel inputs unveils

CV: Coefficient of variation; eTN: Efficient tiller number average; FT: Flowering time after sowing; GWAS: Genome-wide association study; LD: Linkage disequilibrium; PBintL:

Art 61/1 code de procédure français : « … si l’infraction par laquelle elle est entendue est un ou un délit puni d’une peine d’emprisonnement du droit d’être assistée

Theorem 3 Given a set T of tiny-cycle binets and tiny-cycle trinets, we can decide in polynomial time if there exists a binary level-1 network displaying T and construct such a