• Aucun résultat trouvé

Weak thermal points or thermal bridges

N/A
N/A
Protected

Academic year: 2021

Partager "Weak thermal points or thermal bridges"

Copied!
39
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Technical Translation (National Research Council of Canada), 1964

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20338011

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Weak thermal points or thermal bridges

Berthier, J.; National Research Council of Canada. Division of Building

Research

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=8aabb173-9a3c-4a50-803d-870e017e831e https://publications-cnrc.canada.ca/fra/voir/objet/?id=8aabb173-9a3c-4a50-803d-870e017e831e

(2)

PREFACE

The tern1 " t h e r n a l b r i d g e " i s o f t e n used t o d e s c r i b e t h o s e loca- t i o n s i n t h e e n c l o s u r e of a b u i l d i n g through which h e a t i s conducted more e a s i l y than through a d j a c e n t c o n s t r u c t i o n . In g e n e r a l t h i s occurs where m a t e r i a l s of r e l a t i v e l y high therrnal conductance provide a low r e s i s t a n c e p a t h f o r h e a t flow from i n s i d e t o o u t s i d e . I n a heated b u i l d i n g d u r i n g cold weather, t h e i n s i d e s u r f a c e temperature a t a therrnal b r i d g e i s lower than t h a t of t h e surrounding c o n s t r u c - t i o n and t h i s is u s u a l l y more s e r i o u s t h a n t h e a d d i t i o n a l h e a t l o s s . The low s u r f a c e temperature may r e s u l t i n condensation on t h e s u r f a c e , o r r e q u i r e a low i n s i d e humidity i n o r d e r t o avoid such condensation. The v a r i a t i o n s i n s u r f a c e temperature due t o t h e presence of t h e thermal b r i d g e may a l s o cause u n d e s i r a b l e d u s t marking, s i n c e t h e r a t e of d e p o s i t i o n o f d u s t on a s u r f a c e i s a f u n c t i o n of t h e d i f f e r - ence i n temperature between a i r and s u r f a c e s . Thermal b r l d g e s a r e t h u s p a r t i c u l a r l y s i g n i f i c a n t i n cold c l i m a t e s , such a s e x i s t d u r i n g t h e w i n t e r f o r most p a r t s o f Canada.

For some b u i l d i n g s thermal b r i d g e s may n o t p r e s e n t any s e r i o u s problem, b u t f o r t h e ma j o r i t y it i s important t o a t l e a s t recognize t h e l i m i t a t i o n s which t h e y impose. In b u i l d i n g s where even moderate h u m i d i t i e s must be ~ ~ a i n t a i n e d , i t i s imperative t o e l i m i n a t e thermal b r i d g e s ; t h u s a knowledge of t h e i r c h a r a c t e r i s t i c s i s r e q u i r e d .

Unfortunately, h e a t flow i n t h e v i c i n i t y o f thermal b r l d g e s i s com- p l e x and i n many c a s e s t h e most p r a c t i c a l method of o b t a i n i n g t h e r e q u i r e d information i s by d i r e c t measurement. For t h i s r e a s o n , i n f o r m a t i o n i s s t i l l inadequa+.e.

Thermal b r i d g e s may t a k e many forms. The D i v i s i o n has made e x t e n s i v e s t u d i e s of thermal b r i d g e s a s s o c i a t e d with s t u d d i n g of con- v e n t i o n a l I n s u l a t e d wood-frame c o n s t r u c t i o n and with metal frames and

s a s h of windows. Another important type of thermal b r i d g e i s a s s o c i - a t e d with s t r u c t u r a l s t e e l o r c o n c r e t e framing, and it i s mainly w i t h t h i s type t h a t t h i s paper by J. B e r t h i e r of C.S.T.B. d e a l s . The

t r a n s l a t i o n i n c l u d e s o n l y P a r t s 1 and 2 of t h e paper, d e s c r i b i n g t h e r e s u l t s of l a b o r a t o r y measurements, s i n c e t h e s e a r e of p a r t i c u l a r i n t e r e s t t o t h e D i v i s i o n . The D i v i s i o n i s g r a t e f u l t o Mr. D.A. S i n c l a i r o f t h e N.R.C. T r a n s l a t i o n s S e c t i o n f o r p r e p a r i n g t h i s t r a n s l a t i o n . Ottawa N .B. Hutcheon August 1964 A s s i s t a n t D i r e c t o r

(3)

NATIONAL RESEARCH COUNCIL OF CANADA

Technical Translation 1143

T i t l e : Weak thermal p o i n t s o r thermal bridge8

(Les p o i n t s f a i b l e s thermiquea ou ponts thermiquee) Author: J . B e r t h i e r

Reference : Cahiers d u Centre S c i e n t i f i q u e e t Technique d u ~ a t i r n e n t

,

( 3 3 4 ) :

1-20, 1960

(4)

FOREWORD

The f o l l o w i n g i s

a

r e p o r t on a new s t a g e i n t h e r e s e a r c h e s undertaken by t h e Centre S c i e n t i f i q u e e t Technique du ~ g t i m e n t (C.S.T.B.) on what we c a l l t h e "hygrothermal c h a r a c t e r i s t i c s " o f e x t e r n a l w a l l s , 1 . e . t h e c h a r a c t e r i s - t i c s Involved i n problems of humidity and h e a t .

The f i r s t r e s e a r c h e s d e a l t w i t h t h e r e s i s t a n c e of w a l l s t o r a i n ; t h e r e s u l t s were published i n o u r C a h i e r s (No. 178, S e c t i o n 1 9 ) : " ~ e s i s t a n c e of porous m a t e r i a l s t o r a i n " (whole b r i c k s , c o n c r e t e blocks, s o f t l i m e s t o n e ) and

(NO. 312, S e c t i o n 39): "Some r e s u l t s of r a i n t e s t s on l i g h t masonry" ( w i t h o r without c o a t i n g ) . These i n v e s t i g a t i o n s made it p o s s i b l e t o develop t e s t i n g methods: " ~ e s e a r c h and checking t e s t s approved by C.S.T.B." ( ~ a h i e r No. 312, S e c t i o n

3 9 ) ,

t o which r e f e r e n c e has been made I n t h e acceptance r e s o l u t i o n s , e s p e c i a l l y w i t h r e f e r e n c e t o t h e c a p i l l a r i t y requirements under p r e s s u r e of w a l l m a t e r i a l s .

The i n v e s t i g a t i o n s were t h e n d i r e c t e d t o t h e U v a l u e s of w a l l s . The

r e s u l t s were published under t h e t i t l e : "~ecomrnendations f o r t h e use o f l i e f i t masonries'' (hollow t e r r a c o t t a bloclcs, c o n c r e t e blocks, l i g h t tamped c o n c r e t e , autoclaved c e l l u l a r c o n c r e t e ) Cahier No. 34, S e c t i o n 287. Here we f i n d f i r s t a r e p o r t on t e s t s ending w i t h t h e d e t e r m i n a t i o n of " u s e f u l U" v a l u e s , 1 . e . U

v a l u e s of w a l l s t a k i n g i n t o account t h e i r moisture c o n t e n t . We t h e n f i n d recommendations e s t a b l i s h i n g maxlrnurn a d m i s s i b l e U v a l u e s , and hence minimum t h i c k n e s s e s o f w a l l s , with s p e c i a l r e f e r e n c e t o t h e dangers o f s u r f a c e conden- s a t i o n depending on t h e r a t i n g o f t h e equipment and occupation of t h e b u i l d i n g .

The i n v e s t i g a t i o n s d e s c r i b e d h e r e concern t h e weak thermal p o i n t s , commonly h o w n a s thermal b r i d g e s . They owe t h e i r o r i g i n t o t h e d e s i r e t o combat s u r f a c e condensation. In P a r t 111 p r e c i s e , q u a n t i t a t i v e recommendations a r e made concerning means of r e d u c i n g t h e e f f e c t s o f weak thermal p o i n t s i n heavy c o n c r e t e frame w a l l s . It was p o s s i b l e t o e s t a b l i s h o n l y g e n e r a l p r i n c i - p l e s f o r t h i n l i g h t w a l l s w i t h wooden o r m e t a l framing. The p a r t i c u l a r c a s e of w a l l s w i t h a i r gaps h a s n o t been d e a l t with.

I n v e s t i g a t i o n s a r e now underway on a i r gaps i n w a l l s and r o o f s w i t h two o b j e c t i v e s : t o combat condensation i n t h e w a l l m a t e r i a l , and t o p r o v i d e pro- t e c t i o n a g a i n s t i n s o l a t i o n . The former problem has a l r e a d y been touched on in

connection with r o o f s i n Cahier No. 31, S e c t i o n

259

onde dens at ion

below s e l f s u p p o r t i n g aluminium roof i n g s "

.

A summarization and s y n t h e s i s o f t h e s e v a r i o u s i n v e s t i g a t i o n s w i l l be found i n Vol. I1 of t h e R.E.E.F.-58, t h e c h a p t e r on "Hygrothermics and v e n t i l a t i o n .

M. C r o i s e t

(5)

Table of Contents

I n t r o d u c t i o n

...

5

P a r t I. Q u a l i t a t i v e approach t o t h e problem by semi-natural t e a t s P r i n c i p l e of semi-natural t e s t s

...

8

R e s u l t s

...

9

P a r t 11. Q u a n t i a t i v e s t u d y

.

a r t i f i c i a l t e s t s C h a r a c t e r i s t i c s o f a thermal b r i d g e

...

9

T e s t method

...

10

Choice of types of thermal b r i d g e s

...

12

Heavy w a l l s

...

13

Light w a l l s (curtain walls. fagade p a n e l s )

...

16

R e s u l t s

...

17

Heavy w a l l s

...

17

Light w a l l s ( c u r t a i n walls. faqade p a n e l s )

...

20

References

...

24

Tables

...

25

(6)

WEAK THERMAL POINTS OR THBRMAL BRIDGES

Summary

Uniformity of temperature on t h e i n t e r n a l s u r f a c e i s one of t h e e s s e n t i a l hygrothermal c h a r a c t e r i s t i c s of a w a l l .

The weak thermal p o i n t s , which a r e t h e cause o f uneven temperatures, c o n s t i t u t e a weakness which ought to be e l l m i - na t e d

.

The a u t h o r d e s c r i b e s a l a r g e number of t e a t s c a r r i e d o u t with v a r i o u s t y p e s of w a l l (dense w a l l s and l i g h t w e i g h t p a n e l s )

i n o r d e r t o a s s e s s t h e Importance o f thermal b r i d g e s and t o determine t h e e f f e c t i v e n e s s of p o s s i b l e remedies. He shows t h a t t h e accepted t h e o r y used in t h e c a l c u l a t i o n o f U v a l u e s i s

u n s a t i s f a c t o r y when e s t i m a t i n g s u r f a c e temperatures. The r e s u l t s obtained can be explained, however, by two simple hypotheses. From t h e s e , p r a c t i c a l r u l e s a r e d e r i v e d by which t h e e f f e c t of a thermal b r i d g e can be e s t i m a t e d , and recommendations a r e made f o r reducing t h i s e f f e c t .

I n t r o d u c t i o n

C o n s i d e r a t i o n s of comfort, econonly and h e a l t h r e q u i r e t h e U v a l u e of t h e e x t e r n a l w a l l s of a b u i l d i n g t o be k e p t s m a l l . The upper l i m i t depends on a number of f a c t o r s , f o r example:

-

t h e f u n c t i o n of t h e w a l l ( r o o f , fagade, gable, e t c . );

-

t h e t y p e o f b u i l d i n g ( s c h o o l , o f f i c e , v a r i o u s c a t e g o r i e s of d w e l l i n g ) ;

-

g e o g r a p h i c a l l o c a t i o n of t h e b u i l d i n g ( c l i m a t i c zone);

-

t h e w a l l mass.

Tables p u b l i s h e d i n C.S.T.B. C a h l e r s No.

34

and t h e b u i l d i n g r u l e s

contained i n R.G.E.F.-58 ( 2 , 3 ) give maximum recommended U v a l u e s i n each c a s e . Merely t o f o l l o w t h e s e r u l e s , however, is n o t enough t o a s s u r e s a t i s f a c - t o r y hygrothermal behaviour of t h e w a l l . For t h i s t h e i d e a l would be f o r t h e temperature t o be t h e same a t e v e r y p o i n t on t h e I n t e r i o r f a c e o f t h e w a l l .

In t h e c a s e of a homogeneous w a l l s e p a r a t i n g two s p a c e s , an i n t e r i o r one o f temperature TI and a n o u t s i d e one of temperature Te, t h e t e m p e r a t u r e

e1

on t h e i n t e r i o r s u r f a c e of t h e w a l l once e q u i l i b r i u m h a s been e s t a b l i s h e d , is given by t h e e q u a t i o n

(7)

where U i s the o v e r a l l c o e f f i c i e n t of h e a t t r a n s m i s s i o n and hi i s t h e i n s i d e s u r f a c e conductance*

.

The above e q u a t i o n shows t h a t t h e r e a r e two c a u s e s of non-uniforniity i n t h e s u r f a c e t e m p e r a t u r e s . F i r s t t h e r e i s h e t e r o g e n e i t y i n t h e w a l l , producing d i f f e r e n t l o c a l U v a l u e s . T h i s i s v e r y f r e q u e n t because m a t e r i a l s w i t h d i f - f e r e n t thermal c o e f f i c i e n t s a r e i n c r e a s i n g l y b e i n g p l a c e d s i d e by s i d e i n con- s t r u c t i o n s , f o r example:

-

a f i l l i n g of hollow b r i c k s n e x t t o a framing of r e i n f o r c e d c o n c r e t e ;

-

a metal framing around a p a n e l of a faqade o r i t s i n t e r n a l framing,

n e x t t o t h e i n s u l a t i o n which i t e n c l o s e s .

A l l t h o s e elements which have l e s s i n s u l a t i n g e f f e c t t h a n t h e main p a r t of t h e w a l l a r e weak p o i n t s from t h e thermal p o i n t of view. They a r e conlmonly known a s " t h e r m a l b r i d g e s " .

The second cause i s a v a r i a t i o n of s u r f a c e h e a t exchange r e s u l t i n g in a v a r i a t i o n of t h e c o e f f i c i e n t hi. These v a r i a t i o n s may be produced by a de- c r e a s e i n t h e exchanges due t o r a d i a t i o n ( o n an alunliniurn nloulding, f o r example) o r convection ( a t c o r n e r s , behind f u r n i t u r e ) .

G e n e r a l l y s p e a k i n g t h e observed phenomena a r e t h e r e s u l t s of t h e s e v a r i o u s c a u s e s and i t i s i m p o s s i b l e t o determine t h e s h a r e of each.

T r a c e s of condensation on t h e c e i l i n g of a basement apartment room on cold s p o t s produced by t h e t i e bean and t h e

j o i s t s of t h e ground f l o o r

The d i s a d v a n t a g e s of non-uniformity of s u r f a c e t e m p e r a t u r e s a r e numerous. I n sumer thermal b r i d g e s l e a d t o warmer t e m p e r a t u r e s . In a temperate c l i n i a t e t h i s i s n o t v e r y s e r i o u s and t h e w a l l does n o t s u f f e r from i t . During

cold weather, however, when t h e t e m p e r a t u r e of a thermal b r i d g e i s lower t h a n

*

The c o e f f i c i e n t c h a r a c t e r i z e s t h e t h e r m a l exchanges between t h e a i r and t h e s u r f a c e of t h e w a l l . It depends t o a s m a l l e x t e n t on s u r f a c e c o n d i t i o n and much more on t h e v e l o c i t y o f t h e a i r i n c o n t a c t w i t h i t .

(8)

t h e main p a r t of t h e w a l l t h e s i t u a t i o n I s d i f f e r e n t . S e v e r a l phenomena may t h e n be observed

Condensation t r a c e s i n t h e room o f a ground f l o o r a p a r t m e n t a t t h e g a b l e end on c o l d s p o t s produced by t h e c o r n e r s

o f t h e f l o o r s and t h e e x t e r n a l w a l l s

The main one i s c o n d e n s a t i o n o f m o i s t u r e from t h e room a i r on t h e s u r f a c e of t h e w a l l . T h i s w i l l happen a s soon a s t h e dew-point of t h e humid a i r o f t h e room i s above t h e t e m p e r a t u r e of t h e t h e r m a l b r i d g e s u r f a c e . Condensation w i l l o c c u r f i r s t a t t h i s p o i n t and t h e amount o f c o n d e n s a t i o n w i l l b e g r e a t e s t e i t h e r d u r i n g a p e r i o d of h i g h h u m i d i t y o r one o f s e v e r e c o l d .

It i s n o t o u r p u r p o s e h e r e t o s t u d y t h i s phenomenon and i t s consequences i n d e t a i l , b u t we wish t o p o i n t o u t t h a t a c o l d s p o t on t h e s u r f a c e of a w a l l i s i t s p r i m a r y c a u s e . The e x t e n t of c o n d e n s a t i o n w i l l depend, o f c o u r s e , on t h e c o n d i t i o n s of o c c u p a t i o n of t h e b u l l d i n g ( p r o d u c t i o n o f m o i s t u r e , v e n t i l a t i o n , h e a t i n g , e t c . ) b u t b e f o r e a t t e m p t i n g t o p r o t e c t a g a i n s t t h e e f f e c t s o f t h i s phenomenon i t a p p e a r e d n e c e s s a r y t h a t t h e w a l l i t s e l f s h o u l d be designed t o p r e v e n t i t by p r o v l d l n g a s u f f i c i e n t l y uniform t e m p e r a t u r e on t h e I n t e r i o r f a c e . F u r t h e r m o r e , I n t h e a b s e n c e o f any h u m i d i t y i n t h e room, a c o l d s p o t g i v e s r i s e t o a n o t h e r phenomenon known a s d u s t p a t t e r n s . Even i n rooms used a s o f f i c e s , where t h e atmosphere Is always dry, t h e c o l d zones r e s u l t i n g from t h e beams, t i e s o r even j o i n t s between masonry b l o c k s e v e n t u a l l y become

(9)

o u t l i n e d by a c o n s i d e r a b l e d e p o s i t of d u s t . T h i s phenornenorl can a p p a r e n t l y be explalned a s f o l l o w s :

The d u s t p a r t i c l e s a r e kept i n suspension I n t h e a i r by molecular a g i t a t i o n and t h e shocks r e s u l t l n g from i t . T h i s a g i t a t i o n i n c r e a s e s w i t h i n c r e a s i n g temperature. In t h e v i c i n i t y of a cold s p o t a d i s e q u i l i b r i u m occurs I n t h e i n t e r a c t i o n , and t h e d u s t p a r t i c l e s a r e thrown a g a i n s t t h e cold s p o t . Since t h e l a t t e r i s g e n e r a l l y moist a s a r e s u l t of even very s l i g h t condensa- t i o n , t h e d u s t p a r t i c l e s c l i n g b e t t e r t o i t .

Although t h i s phenomenon i s n o t a s s e r i o u s a s condensation, i t i n d i c a t e s t h a t whatever t h e type of c o n s t r u c t i o n , a thermal b r i d g e i s always a d e f e c t .

The purpose of t h e p r e s e n t a r t i c l e i s t o r e p o r t on t h e s t u d i e s made by C.S.T.B. w i t h a view t o i n v e s t i g a t i n g p r a c t i c a l methods of o b t a i n i n g s a t i s - f a c t o r y u n i f o r m i t y o f temperatures on i n t e r i o r s u r f a c e s . P a r t I w i l l be devoted t o a q u a l i t a t i v e s t u d y of t h e phenomena. P a r t I1 w i l l r e p o r t on some a r t i f i c i a l q u a n t i t a t i v e t e s t s c a r r i e d o u t on a number of s p e c i a l c a s e s . P a r t I11 w i l l a t t e m p t t o e x p l a i n t h e r e s u l t s on t h e b a s i s of a s i m p l i f i e d t h e o r y . From t h i s we s h a l l be a b l e t o g e n e r a l i z e I n a number of simple c a s e s .

F i n a l l y , i n P a r t N , drawing c o n c l u s i o n s from o u r s t u d y , we s h a l l g i v e p r a c t i c a l r u l e s f o r e s t i m a t i n g t h e e f f e c t of a thermal b r i d g e and c o r r e c t i n g

i t .

P a r t I

Q u a l i t a t i v e Approach t o t h e Problem by Semi-Natural T e s t s

P r i n c i p l e of s e m i - n a t u r a l t e s t s

The p r i n c i p l e u n d e r l y i n g t h e s e t e s t s i s a s f o l l o w s .

I n a b u i l d i n g , whose e x t e r n a l w a l l s a r e t h e w a l l s t o be s t u d i e d , a warm and humid atmosphere i s produced d u r i n g t h e w i n t e r in t h e i n t e r i o r c l o s e t o t h e I n s i d e s u r f a c e of t h e w a l l . The e x t e r n a l c o n d i t i o n s a r e n a t u r a l .

These t e s t s were c a r r i e d o u t o n l y on w a l l s of t h e r e l n f o r c e d c o n c r e t e frame type f i l l e d w i t h l i g h t w e i g h t masonry.

To f a c i l i t a t e o u r s t u d y we have chosen f o r t h e f i l l i n g c e l l u l a r c o n c r e t e of d e n s i t y

0.6

kg/dm3 ( k = 0.3 kcal/mh0c) which i s d e c i d e d l y more i n s u l a t i n g t h a n t h e mass c o n c r e t e of t h e framework (d = 2.2; k = 1 . 5 ) .

Three t y p e s of thermal weak p o i n t s have been c o n s i d e r e d .

-

t o t a l b r i d g e , with framework t r a v e r s i n g t h e w a l l completely;

-

p a r t l a l b r i d g e w i t h i n t e r n a l o r e x t e r n a l i n s u l a t i o n ;

-

b r i d g e and i n t e r n a l c o n c r e t e s l a b d i f f u s i n g t h e h e a t f l u x .

In t h e second c a s e t h e width of t h e thermal b r i d g e was v a r i e d a s w e l l a s t h e thickness of t h e i n s u l a t i o n .

(10)

These w a l l s had a n e x t e r n a l c o a t i n g of lime-cement mortar and an i n t e r i o r c o a t i n g of p l a s t e r 1 cm t h i c k . A r e a c t i v e p a i n t was applied over t h e p l a s t e r i n o r d e r t o emphasize t h e condensation and t o permit a rough e s t i m a t i o n o f i t s

e x t e n t . R e s u l t s

Figure 1 shows both the c o n s t r u c t i o n of the d i f f e r e n t bridges and t h e r e s u l t s obtained.

In t h e case of t h e t o t a l bridge, 1 . e . t h e framework t r a v e r s i n g t h e e n t i r e t h i c k n e s s of the wall, whether t h i s bridge was wide ( v e r t i c a l framing member

in t h e c e n t r e of the f i g u r e ) o r narrow ( h o r i z o n t a l frame member t o t h e l e f t ) very considerable t r a c e s of condensation appear.

A t t h e extreme l e f t , on the thermal bridge with d i f f u s e d h e a t f l u x t h e mildews a r e def i n i t e l y l e s s apparent.

A t t h e r i g h t , on t h e various p a r t i a l cold b r i d g e s with i n t e r i o r Insula- t i o n , t h e t r a c e s of condensation a r e p r a c t i c a l l y non-existent. No d i f f e r e n c e can be discerned between t h e wide and narrow ones on t h e one hand and t h e more o r l e s s i n s u l a t e d ones on t h e o t h e r .

However, t o the l e f t , on t h e two p a r t i a l cold b r i d g e s with e x t e r n a l i n s u l a t i o n t h e condensation t r a c e s a r e very marked, p r a c t i c a l l y s i m i l a r t o those obtained on t h e t o t a l cold b r i d g e s .

A t first glance t h i s appears t o be

a

s u r p r i s i n g r e s u l t . Actually, t h e c a l c u l a t e d thermal conductance of t h e wall a t t h e thermal bridge i s t h e o r e t i - c a l l y t h e same whether t h e i n s u l a t i o n i s placed i n s i d e o r o u t s i d e . S i m i l a r l y t h e thermal bridge with d i f f u s e d h e a t f l u x has t h e same U value a s t h e t o t a l bridge.

In f a c t , t h e s e r e s u l t s 'show t h a t t h e problem i s much more complex, and t h a t merely conlparing wall U values a t t h e thermal b r i d g e s with c o e f f i c i e n t s a t r i g h t a n g l e s t o t h e U v a l u e s i n t h e main p a r t of t h e wall i s by no means s u f f i c i e n t t o s o l v e i t o r even t o p r e d i c t t h e form t h a t t h e phenomena w i l l

t a k e .

It is because of t h e s e d i f f i c u l t i e s t h a t we have undertaken much more

p r e c i s e a r t i f i c i a l t e s t s which w i l l enable us t o d e a l q u a n t i t a t i v e l y with t h e s e phenomena.

P a r t I1 7

Q u a n t i t a t i v e Study

-

A r t i f i c i a l T e s t s C h a r a c t e r i s t i c s of a thermal bridge

The problems presented by thermal b r i d g e s can be reduced t o t h e d e t e r - mination o f t h e temperatures on t h e I n t e r i o r f a c e of t h e heterogeneous

wall

(11)

when t h e l a t t e r i s s i t u a t e d i n a cold e x t e r n a l and warm i n t e r n a l environment. The curve g i v i n g t h e temperature d i s t r i b u t i o r l on t h e i n t e r n a l s u r f a c e , a s shown f o r example i n F i g . 2, then e n a b l e s us t o c h a r a c t e r i z e t h e thermal

bridge. Two elements must be considered, f i r s t t h e spreading o u t of t h e curve which e n a b l e s u s t o determine t h e width of t h e zone where condensation i s t o be f e a r e d , and second t h e temperature of t h e c o l d e s t s p o t . The a b s o l u t e value of t h i s temperature i s n o t s o important because i t depends e s s e n t i a l l y on t h e i n t e r i o r and e x t e r i o r temperatures. We t h e r e f o r e i n t r o d u c e a c o e f f i c i e n t which c h a r a c t e r i z e s t h e h e t e r o g e n e i t y of i n t e r i o r s u r f a c e temperature:

where Ti i s t h e i n t e r i o r a i r temperature, 8 t h e I n t e r i o r s u r f a c e temperature of a p o i n t i n t h e thermal bridge zone and., 0, t h e i n t e r i o r s u r f a c e t e n ~ p e r a t u r e a t a p o i n t remote from t h e thermal b r i d g e i n t h e main p a r t of t h e w a l l .

In P a r t I11 i t w i l l be shown t h a t t h i s r a t i o i s p r a c t i c a l l y independent of t h e i n t e r i o r and e x t e r i o r temperatures. Denoting t h e maximum value of p

by P,, then

where Qm i s t h e temperature of t h e c o l d e s t p o i n t on t h e thermal b r i d g e .

T h i s c o e f f i c i e n t , which we s h a l l c a l l t h e c o e f f i c i e n t of i n t e r i o r s u r f a c e temperature h e t e r o g e n e i t y i n d i c a t e s t o a c e r t a i n e x t e n t by how much t h e

c o l d e s t p o i n t i s c o l d e r i n r e l a t i o n t o t h e i n t e r n a l a i r temperature t h a n t h e main p a r t of t h e w a l l .

We s h a l l wish t o compare t h i s c o e f f i c i e n t t o t h e c o e f f i c i e n t pc ( t h e o r e t - i c a l c a l c u l a t e d c o e f f i c i e n t ) which i s determined from t h e w a l l U value a t t h e thermal b r i d g e ( U ) and t h e w a l l U value away from t h e thermal bridge* ( u c )

P a s f o l l o w s : T e s t method Exact d e t e r m i n a t i o n of t h e curve of p v a l u e s by c a l c u l a t i o n i s i m p r a c t i c - a b l e .

*

T r a n s l a t o r ' s n o t e : There i s no e x a c t r e n d e r i n g f o r " l a p a r t i e c o u r a n t e du mur". It means b a s i c a l l y any p a r t of t h e w a l l n o t c l o s e t o the edges.

(12)

The method of d i r e c t o b s e r v a t i o n i s d e l i c a t e , because t h e measurement of a s u r f a c e temperature i s d i f f i c u l t t o c a r r y o u t with p r e c i s i o n . However, i t

i s t h e o n l y way i n which t h e v a r i o u s f a c t o r s which may i n f l u e n c e p can be taken I n t o account.

The t e s t s were c a r r i e d o u t i n t h e thermal roorn of t h e Champs-sur-Marne experimental s t a t i o n ( ' ) ( F i g .

3 ) .

The w a l l c o n t a i n i n g t h e thermal b r i d g e s t o be s t u d i e d divided t h e room i n t o two s p a c e s . The i n t e r i o r warm space was k e p t a t a c o n t r o l l e d temperature of approximately 30°C while t h e e x t e r i o r cold space was kept a t about - 5 O C .

The i n t e r i o r temperature was placed i n t e n t i o n a l l y h i g h e r t h a n average room ter;lperature i n o r d e r t o i n c r e a s e t h e d i f f e r e n c e between t h e two environments, t h e r e b y enhancing t h e accuracy of t h e measured i n t e r i o r s u r f a c e temperature. T h i s w i l l n o t a f f e c t t h e r e s u l t s because t h e values of p a r e p r a c t i c a l l y

Independent of temperature. A i r teniperatures were recorded c o n t i n u o u s l y d u r i n g t h e t e s t by means of r e s i s t a n c e thermometers connected t o a r e c o r d i n g p o t e n t i - ometer. Furthermore, s i n c e t h e purpose of t h e s t u d y was t o e l i m i n a t e condensa- t i o n , m a t t e r s were arranged s o t h a t t h e thermal c h a r a c t e r i s t i c s of t h e

m a t e r i a l s and t h e i r temperature would n o t be a f f e c t e d by condensation. The atmosphere of t h e i n t e r i o r room was d r y (approximately

35%

r e l a t i v e humidity) s o t h a t no condensation would t a k e p l a c e on t h e cold s p o t s .

The w a l l s u r f a c e tenrperaturee were measured w i t h Iron-constantan thermo- couples 1/10 rnm i n diameter. These thermocouples were connected t o a 12-point r e c o r d i n g potentiomneter. Temperatures were t h u s recorded s i m u l t a n e o u s l y a t 12 p o i n t s on t h e zone in q u e s t i o n . We t h u s obtained an a c c u r a t e summary of t h e s u r f a c e temperature curve ( F i g . 2 )

.

Note I:

Glc wish t o r e c a l l one of t h e c h a r a c t e r i s t i c s of t h e room which i s

e s s e n t i a l t o t h e s t u d y . This has t o do with t h e s u r f a c e h e a t exchanges between * t h e a i r and t h e w a l l . A c e r t a i n number of measurements c a r r i e d o u t on homoge-

neous w a l l s have shown t h a t t h e convection c o n d i t i o n s c r e a t e d I n t h e two rooms, f o r w a l l s with U values of approximately 1.2 kcal/(m2hoc), gave s u r f a c e con- ductances of approximately 7 kcal/(m2hoc) f o r t h e i n t e r i o r environment and 1 8 kcal/(m2h0c) f o r t h e e x t e r i o r . It was very Important t h a t t h e I n s i d e s u r - f a c e h e a t exchanges d u r l n g t h e t e s t s were s i m i l a r t o p r a c t i c a l s u r f a c e h e a t f o r t h e t e s t w a l l o r a t l e a s t t o t h e o r e t i c a l l y determined v a l u e ( 1 . e . hi =

7 kcal/(m2h0c). It may then be assumed t h a t s u r f a c e temperature v a r i a t i o n s

(13)

Note I1

Some i n v e s t i g a t o r s have t a k e n advantage of t h e s i m i l a r i t y between t h e e q u a t i o n s o f e l e c t r i c a l t r a n s m i s s i o n and those of h e a t t r a n s m i s s i o n i n o r d e r t o c o n s t r u c t e l e c t r i c roodels of w a l l s ( 9 ) . Thus a continuous model can be

obtained with e l e c t r o l y t e s . The d e t e r m i n a t i o n of t e m p e r a t u r e s i s t h e n replaced by a d e t e r m i n a t i o n of v o l t a g e , which i s rrruch more a c c u r a t e .

However, t h e s e provide o n l y approximate s o l u t i o n s , f o r t h e f o l l o w i n g two r e a s o n s :

Surface conductance, which i s r e p r e s e n t e d by f i x e d r e s i s t a n c e s i n such a model, i s a f u n c t i o n o f t h e temperature d i f f e r e n c e b e t ~ e e n t h e environment and t h e w a l l , t h u s o f what we a r e t r y i n g t o determine. A method i n v o l v i n g succes- s i v e approximations should enable us t o t a k e t h e v a r i a t i o n o f s u r f a c e conduc- t a n c e i n t o account. Accuracy may be decreased, however, s i n c e t h e way in

which s u r f a c e conductance v a r i e s with temperature i s n o t v e r y w e l l known.

The second reason i s much more s e r i o u s , because t h e r e i s no simple way of a v o i d l n g i t . T h i s has t o do with t h e f a c t t h a t h e a t exchange between two m a t e r i a l s i n c o n t a c t i s dependent n o t o n l y on t h e i r c o n d u c t i v i t y c o e f f i c i e n t b u t a l s o on t h e i r s p e c i f i c h e a t and d e n s i t y . E l e c t r i c a l analogy methods

cannot reproduce c o n d u c t i v i t y r a t i o s and do n o t t a k e i n t o account thermal c a p a c i t y .

Choice of t y p e s of thermal b r i d g e s

The t e s t method used i s n o t v e r y quick. It i s n e c e s s a r y t o w a i t f o r t h e e s t a b l i s h m e n t of s t e a d y s t a t e h e a t flow c o n d i t i o n s f o r each w a l l . T h i s may

t a k e t e n o r more hours f o r l i g h t p a n e l s and a s much a s f o r t y - e i g h t h o u r s f o r heavy masonry w a l l s .

Once s t e a d y s t a t e h a s been e s t a b l i s h e d w i t h t h e thermocouples i n p l a c e from t h e beginning o f t h e t e s t , a i r and s u r f a c e temperatures can be recorded i n f i f t e e n minutes. The a c t u a l measuring time i s t h u s very s m a l l compared w i t h t h e time r e q u i r e d t o r e a c h s t e a d y s t a t e . A s a r e s u l t s e v e r a l t e s t models, g e n e r a l l y f o u r , a r e grouped i n

a

s i n g l e w a l l . Only t h e most c h a r a c t e r i s t i c t y p e s a r e s t u d i e d .

Our choice was guided by one prime c o n s i d e r a t i o n . W c l a s s i f i e d t h e w a l l s e i n t h r e e c a t e g o r i e s a c c o r d i n g t o t h e thermal c h a r a c t e r i s t i c s of t h e m a t e r i a l s from which t h e y a r e made:

F i r s t we have pure masonry w a l l s , i n which r e i n f o r c e d c o n c r e t e i s n e x t t o

l i g h t masonry (hollow b r i c k , a r t i f i c i a l s t o n e , l i g h t - w e i g h t c o n c r e t e , e t c . ) . These w a l l s may be c o n s t r u c t e d i n t h e t r a d i t i o n a l manner o r may c o n s i s t o f l a r g e p r e f a b r i c a t e d p a n e l s c o n t a i n i n g t h e s e elements. The t h i c k n e s s o f t h e s e w a l l s v a r i e s between 20 and 30 cm, t h e r a t i o of d e n s i t i e s of t h e m a t e r i a l s

(14)

p r e s e n t i s between 2 and 4 and t h a t of t h e thermal c o n d u c t l v i t l e s between

3

and 5.

Next, we have mixed w a l l s i n which r e i n f o r c e d c o n c r e t e and very l i g h t i n s u l a t i n g m a t e r i a l s a r e used s i d e by s i d e ; t h e s e a r e g e n e r a l l y l a r g e p r e f a b - r i c a t e d p a n e l s . They have about t h e same t h i c k n e s s a s t h e above w a l l s , b u t t h e r a t i o of d e n s i t i e s of t h e m a t e r i a l s v a r i e s between 20 and 100 and t h e r a t i o of c o n d u c t i v i t l e s between 3 0 and 50.

F i n a l l y , we have l i g h t w a l l s , of t h i c k n e s s between

3

and

5

cm, which c o n s i s t of very l i g h t i n s u l a t i n g m a t e r i a . 1 ~ s t a n d i n g n e x t t o wood o r m e t a l s .

The c h a r a c t e r i s t i c s of t h e m a t e r i a l s c o n s t i t u t i n g t h e d i f f e r e n t t y p e s o f w a l l s a r e summarized i n t h e f o l l o w i n g t a b l e :

Heavy w a l l s

Reinforced c o n c r e t e framework with l i g h t - w e i ~ h t masonry f i l l i n g o r l a r ~ e , l i y h t - w e i a h t nlasonry p a n e l s

We have adopted t h e same t y p e s of t h e r m a l b r i d g e s t h a t had been s t u d i e d C o n d u c t i v i t y k i n kcal/(mhoc) 1 . 5 0.3 t o 0.6 1 . 5 0 . 0 3 t o 0 . 0 5 0 . 1 t o

0.15

50 t o 170 0 . 0 3 t o 0 . 0 5

p r e v i o u s l y i n t h e s e m i - n a t u r a l t e s t s . For convenience t h e models c o n s i s t e d of blocks of c e l l u l a r c o n c r e t e (d = 600 k d m 3 , k = 0 . 3 ) i n t e r r u p t e d by a dense c o n c r e t e framing ( d = 2,200, k = 1 . 5 ) .

T o t a l b r i d g e . In a d d i t i o n t o t h e t o t a l thermal b r i d g e ( F i g . 4, models

A , and A , ) f o r which we took t h e same two widths a s s t u d i e d i n t h e s e m i - n a t u r a l t e s t s , namely 7 . 5 and 22.5 cm, we s t u d i e d v a r i o u s arrangements i n which, a p r i o r i , i t was p o s s i b l e t o o b t a i n more uniform i n t e r i o r s u r f a c e temperatures.

The d i f f e r e n t arrangements s t u d i e d can be reduced t o two.

F i r s t 2,rrangement: Thermal b r i d g e with i n t e r i o r d i f f u s i o n l a y e r ( F i g . 5 ) . One s o l u t i o n c o n s i s t s i n d i f f u s i n g t h e s u r f a c e t e m p e r a t u r e s by p l a c i n g a comparatively conductive m a t e r i a l o v e r t h e e n t i r e i n t e r i o r s u r f a c e of t h e w a l l . D e n s i t y In 2200 600 t o 1000 2200 2 0 t o 1 0 0 400 t o 700 3000 t o

8000

2 0 t o 1 0 0 Types of w a l l m rl 3 .

5

g

4 rl +.r a

63

c-l

Reinforced CONCRETE frame and

.

.

...

LIGHT \EIGHT IIASONRY f i l l i n g

...

Large p r e f a b r i c a t e d c o n c r e t e p a n e l i n c o r p o r a t i n g very l i g h t INS ULAT I O N

...

C u r t a i n o r p a n e l fagade w a l l s

...

with a framing of WOOD

...

o r PETAL

...

and very l i g h t INSULATION

(15)

The e f f e c t i v e n e s s of t h i s method had been demonstrated i n t h e semi- n a t u r a l t e s t s . I n t h e a r t i f i c i a l t e s t s we attempted t o c a l c u l a t e i t .

S t a r t i n g with a b r i d g e comprising a framework of compact c o n c r e t e i n t e r - s e c t i n g a c e l l u l a r c o n c r e t e block w a l l 20 cm t h i c k , we s t u d i e d t h e e f f e c t of

a

compact s l a b of c o n c r e t e 5 cm i n t h i c k n e s s ( B , ) f o r frame widths of 7.5 and 22.5 cn. W thought e i t would be i n t e r e s t i n g t o i n c r e a s e t h e c o n d u c t i v i t y of t h i s s l a b i n t h e l a t e r a l d i r e c t i o n , p e r p e n d i c u l a r t o t h e framing. For t h i s purpose, a d d i t i o n a l s l a b s , i d e n t i c a l t o t h e p r e c e d i n g ones except t h a t t h e y were s t r o n g l y r e i n f o r c e d viith i r o n rods running p e r p e n d i c u l a r t o t h e framework

(B,), were a p p l i e d t o t h e i n t e r i o r s u r f a c e .

S i m i l a r l y , we t r i e d t o i n c r e a s e t h e e f f e c t i v e n e s s of a p l a s t e r c o a t i n g (of r e l a t i v e l y low c o n d u c t i v i t y ) by r e i n f o r c i n g i t s t r o n g l y with two l a y e r s of g r i l l w o r k

(B,)

.

S t i l l o t h e r specimens were c o n s t r u c t e d t o determine t h e e f f e c t of v a r i o u s degrees of f l a r i n g of t h e framework.

F i n a l l y we sought t o determine t h e e f f e c t of a framing which by p r o j e c t - i n g g r e a t l y on t h e e x t e r i o r forms a cordon, and hence a kind of c o o l i n g f i n , by i n c r e a s i n g t h e a r e a of t h e e x t e r i o r s u r f a c e .

Second arrangement: I n s u l a t i o n of thermal b r i d g e . Rio s o l u t i o n s have been s t u d i e d :

(1) P a r t i a l b r i d g e s (Fig. 6 ) . I n t h i s s o l u t i o n t h e framing does n o t go a l l t h e way through t h e w a l l and i s t h u s i n s u l a t e d by a c e r t a i n t h i c k n e s s of t h e m a t e r i a l * v~hich c o n s t i t u t e s t h e main p a r t of t h e w a l l .

The s e m i - n a t u r a l t e s t s demonstrated t h a t t h e r e was a g r e a t d i f f e r e n c e I n

e f f e c t i v e n e s s depending on whether t h e i n s u l a t i o n was placed i n s i d e o r o u t s i d e . With a view t o determining t h e s e e f f e c t s more a c c u r a t e l y we s t u d i e d t h e same types of thermal b r i d g e s i n t h e a r t i f i c i a l t e s t s .

For t h i s purpose a c e l l u l a r c o n c r e t e w a l l 20 cm t h i c k was c o n s t r u c t e d . This w a l l was p a r t i a l l y i n t e r s e c t e d by two dense c o n c r e t e frameworks, one

7 . 5 cm wide and t h e o t h e r 22.5 cn wide. The r e s i d u a l t h i c k n e s s of t h e c e l l u l a r c o n c r e t e was

5

cm and

7.5

cm, r e s p e c t i v e l y . Four specimens were t h u s a v a i l - a b l e . T h l s w a l l was t e s t e d on both s i d e s s o t h a t t h e i n s u l a t i o n could be placed s u c c e s s i v e l y on t h e i n s i d e and on t h e o u t s i d e .

( 2 ) Corrected b r l d ~ e s ( F i g . 7 ) . This term r e f e r s t o a b r i d g e i n s u l a t e d by very e f f e c t i v e i n s u l a t i n g n a t e r i a 1 , t h e t h i c l m c s s of which was c a l c u l a t e d s o t h a t t h e U value a t r i g h t a n g l e s t o t h e i n s u l a t e d framework would be e q u a l t o t h a t c a l c u l a t e d f o r t h e main p a r t of t h e w a l l . (We then have pc = 1.) We

(16)

a g a i n took t h e c a s e of w a l l A, where t h e t h e r m a l b r i d g e c o n s i s t e d of a dense c o n c r e t e framework i n t e r l s c c t i n g a 20 cm t h i c k w a l l of c e l l u l a r c o n c r e t e covered by a p l a s t e r c o a t i n g 2.5 cm t h i c k . In t h e f i r s t t e s t t h e p l a s t e r was removed o p p o s i t e t h e frames which were 7.5 and 2P.5 cm widc, and r e p l a c e d w i t h 2 cm of a e r a t e d p o l y s t y r e n e

.

One t e s t was c a r r i e d o u t w i t h p o l y s t y r e n e on t h e i n t e r i o r and one w i t h p o l y s t y r e n e on t h e e x t e r i o r .

The 2 cm thlclcness was chosen i n such a way t h a t U = Uc, 1 . e . pc = 1. P

Large c o n c r e t e p a n e l w i t h v e r y l i g h t i n s u l a t i n g m a t e r i a l s i n c o r p o r a t e d i n i t

I n g e n e r a l , t h c s e p a n e l s a r e b u i l t i n sandwich f a s h i o n ; a v e r y good i n s u l a t i n g m a t e r i a l , vrliich p r o v i d e s good t h e r ~ r ~ a l i n s u l a t i o n , i s sandwiched

between two c o n c r e t e s l a b s of v a r i o u s t h i c k n e s s e s which perform t h e o t h e r func- t i o n s of t h e w a l l ( n ~ e c h a n i c a l s t r e n g t h , p e r m e a b i l i t y , t h e r m a l I n e r t i a , e t c

.

)

.

Very f r e q u e n t l y , t h e n , t h e r m a l b r i d g e s a r e formed by t h e c o n c r e t e J o i n i n g s t r i p s between t h e o u t e r and i n n e r s l a b s o r by t h e j o i n t s between two p a n e l s . The d i f f e r e n c e between t h e c o n d u c t i v i t i e s and s p e c i f i c g r a v i t i e s of t h e d i f - f e r e n t m a t e r i a l s involved ( k = 1 . 5 kcal/(mhoc); d = 2,200 kg/rn3 f o r t h e con- c r e t e and k = 0.03 t o 0.05; d = 20 t o 100 f o r t h e insulation) r e s u l t s i n v e r y s u b s t a n t i a l t h e r m a l b r i d g e s . I n t h i s c a s e w e t r i e d t o d e t e r m i n e p r e c i s e l y t h e r e s p e c t i v e r o l e of t h e two c o n c r e t e s l a b s , e s p e c i a l l y t h a t o f t h e I n t e r i o r one. The w a l l s s t u d i e d had t h e f o l l o w i n g t h i c k n e s s e s : A c o n c r e t e s l a b o f 5 cm; a s l a b of p o l y s t y r e n e 3 cm t h i c k ( g i v i n g a u s e f u l t h l c k r ~ e s s of a b o u t 2 . 5 cm, s i n c e t h e c o n c r e t e p e n e t r a t e d s l i g h t l y i n t o t h e p o l y s t y r e n e on both i t s f a c e s ) ; and a c o n c r e t e s l a b 1 5 cm t h i c k . Openings

7.5 cm, 1 5 cni, 22.5 crn and 45 cm wide were provided i n t h e p o l y s t y r e n e , t h u s c o n s t l t u t l n g a l i n k between t h e two s l a b s , and a t h e r l r ~ a l b r i d g e .

These w a l l s were t e s t e d w i t h t h e

5

cm s l a b and t h e 1 5 cm s l a b s u c c e s s i v e l y on t h e ;rarm s i d e .

S p e c i a l t h c r ~ t a l b r i d r e s

;:e a l s o I n i t i a t e d a s t u d y of therrnal b r i d g e s e x i s t i n g a t c o r n e r s . The s t u d y Is evcn more con,plex, because i t i s n e c e s s a r y t o d i s t i n g u i s h between t h e c o r n e r where ttro i d e n t i c a l e x t e r n a l w a l l s J o i n ( ~ 1 . g .

8 )

and t h e c o r n e r where an e x t e r n a l w a l l is joined by a partition o r f l o o r (I?ig. 9 ) .

T h e r c a l bridr;es a t t h e c o r n e r between two e x t c r n a l w a l l s . In t h i s c a s e , even k ~ i t h two w a l l s h a v i n g t h e same U v a l u e , t h e t e m p e r a t u r e s a t t h e c o r n e r t r i l l be d i f f e r e n t from t h e terirperatures e l s e w h e r e on t h e w a l l s . There a r e two r e a s o n s f o l h t h i s :

F i r s t t h e s u r f a c e a r e a of t h e e x t e r n a l w a l l Is g r e a t e r t h a n t h a t of t h e i n t e r n a l w a l l . Thc car;& f l o w of c o l d fro1-1 t h e e x t e r i o r w i l l t h u s l e a d t o

(17)

lower t e n ~ p e r a t u r c s th a n on a w a l l w i t h p a r a l l e l f a c e s .

Then, t h e r e i s a r e d u c t i o n i n t h e r a d i a t i o n and c o n v e c t i o n s u r f a c e h e a t exchanges. T h i s f u r t h e r c o n t r i b u t e s t o t h e l o w e r i n g o f t h e t e m p e r a t u r e on t h e i n s i d e s u r f a c e .

A r t i f i c i a l t e s t s on t h i s t y p e of t h e r m a l b r i d g e a r e r a t h e r u n c e r t a i n and

i t i s d o u b t f u l whether o r n o t t h e s u r f a c e h e a t exchanges can be e x a c t l y r e p r o - duced. On t h e o t h e r hand, we p o s s e s s t h e r e s u l t s o f n a t u r a l t e s t s c a r r i e d o u t i n Geriany a t t h e Holzkirchen ~ t a t l o n ( ~ ) , where t e m p e r a t u r e s were measured on t h e i n t e r i o r surfac'e of t h e n o r t h w e s t c o r n e r of more t h a n 20 houses w i t h d i f f e r e n t k i n d s o f w a l l s .

P a r t i t i o n s and f l o o r s . Where an e x t e r n a l w a l l meets a p a r t i t i o n o r f l o o r t h e problem I s v e r y d i f f e r e n t . The p a r t i t i o n o r f l o o r i s a t t h e i n t e r i o r room t e m p e r a t u r e (we assume t h a t t h e w a l l o r f l o o r s e p a r a t e s two e q u a l l y h e a t e d s p a c e s ) . The e x t e r i o r s u r f a c e a r e a i s n o t a s l a r g e a s t h e i n t e r i o r s u r f a c e a r e a . Thus t h e two e f f e c t s mentioned p r e v i o u s l y oppose one a n o t h e r . F u r t h e r - more, t h e p a r t i t i o n o r f l o o r o f t e n d i f f e r s g r e a t l y i n i t s therrnal c h a r a c t e r i s - t i c s from t h e e x t e r i o r w a l l .

F i n a l l y , b o t h p a r t i t i o n s and f l o o r s can t e r m i n a t e f l u s h w i t h t h e faqade, o r b e f o r e r e a c h i n g t h e fagade, o r can even extend beyond i t , forming a cordon. Only t h e c o r n e r between t h e e x t e r i o r w a l l and t h e p a r t i t i o n h a s been s t u d i e d . For t h i s purpose a s t r u c t u r e r e p r e s e n t i n g t h e p a r t i t i o n was joined a t r i g h t a n g l e s t o t h e 2 2 . 5 cm wide frames of w a l l s A, B and C. T h i s s t r u c t u r e was con- s t r u c t e d from s o l i d b l o c k s i d e n t i c a l w i t h t h e c o n c r e t e of t h e frame.

I n t h e c a s e of w a l l B we a l s o s t u d i e d t h e i n f l u e n c e of a n e x t e r i o r s t r u c - t u r e for*ming a cordon and c o o l i n g f i n .

L i g h t w a l l s ( c u r t a i n r r a l l s , fagade p a n e l s )

One of t h e e s s e n t i a l f e a t u r e s of t h i s kind o f c o n s t r u c t i o n i s t h e v e r y s m a l l t h i c k n e s s of t h e v:all which i s nade p o s s i b l e by t h e u s e of good i n s u l a - t i o n : t h e sane U v a l u e can be o b t a i n e d w i t h a w a l l u s i n g a 2 cm t h i c k n e s s of good i n s u l a t i o n ( k = 0.03 t o 0 . 0 5 ) a s w i t h one 20 cm t h i c k i n l i g h t masonry.

In o r d e r t o cornpensate f o r t h e i r l a c k of thermal c a p a c i t y t h e s e w a l l s must have v e r y good U v a l u e s (around 1 . 0 ) . Such c o e f f i c i e n t s a r e e a s i l y o b t a i n e d w i t h srnall t h i c k n e s s e s o f i n s u l a t i n g m a t e r i a l .

I.Shen t h i s i n s u l a t i o n i s i n t e r r u p t e d by a frame which i s a l s o v e r y t h i n , s i g n i f i c a n t therrnal b r i d g e s a r e formcd

.

b!e s h a l l d i s t i n g u i s h between t h e r n a l b r i d g e s produced by wooden menbers which g e n e r a l l y m ~ k e up t h e I n t e r n a l frzrning o f p a n e l s and t h o s e produced by m e t a l franics, whether t h e y a r e i n t e r n a l frames, a s a r e f r e q u e n t l y used i n t h i s

t-ype of c o n s t r u c t i o n t o ensure r i g i d i t y and e a s e of a s s e ~ ~ l b l y , o r a r e e x t e r n a l frar~ie:: i n which t h c kzo~r~o,o;encous p a n e l i s y1acc.d.

(18)

Wooden o r s i i : ~ i l a r franiin:

T o t a l brid,yc. The main p a r t of t h e models was c o n s t r u c t e d of

3

cm t h i c k expanded p o l y s t y r e n e

(I<

= 0.03 kcal/(nlh°C); d = 20 k d 1 n 3 ) .

W s t u d i e d t h e e f f e c t of t h e width of t h e frame. e For t h i s purpose t h e i n s u l a t i o n was i n t e r r u p t e d by members having t h e same t h i c k n e s s a s t h e p a n e l ( 3 cm) b u t of d i f f e r e n t widths ( 0 . 6 , 1,

3

and 6 cm)

.

In 01-der t o e s t i m a t e t h e e f f e c t of changing t h e r a t i o of thermal charac- t e r i s t i c s of t h e m a t e r i a l s , models i d e n t i c a l w i t h t h e above were b u i l t , b u t i n which t h e wood was r e p l a c e d by pressed wood t h a t was more i n s u l a t i n g and

l i g h t e r ( k = 0.06 and d = 500 kg/m3) t h a n t h e v~ood used i n t h e p r e v i o u s t e s t . Bridge with i n t e r i o r d i f f u s i o n l a y e r . Me a g a i n wished t o determine t h e e f f e c t of a conducting l a y e r on t h e i n t e r i o r s u r f a c e . Some p a n e l s use alumin- ium f o i l under t h e i n t e r i o r l a y e r a s vapour b a r r i e r s . It i s q u i t e p o s s i b l e t h a t t h i s h i g h l y conductive m a t e r i a l s i g n i f i c a n t l y d i f f u s e s t h e temperatures d e s p i t e t h e small t h i c l m e s s e s employed. . In o r d e r t o c a l c u l a t e t h i s phenomenon

we cemented f i r s t a s h e e t of aluminium

1/10

mm

t h i c k on t o t h e models ( k =

170 k c a l / l n h O ~ ) and t h e n a s h e e t of copper 2/10 nm t h i c k ( k = 350 kcal/rnhOc). These s h e e t s had been p a i n t e d g r e y t o rilaintain t h e sane s u r f a c e h e a t exchange a s b e f o r e .

Metal framing

T o t a l b r i d g e . To begin with we s t u d i e d t o t a l b r i d g e s formed with v a r i o u s s t e e l s e c t i o n s i n t e r s e c t i n g a p o l y s t y r e n e p a n e l

3

cm t h i c k .

7Jc t h e n sought t o determine t h e i n f l u e n c e of i n c r e a s i n g o r d e c r e a s i n g t h e p r o j e c t i o n of an e x t e r i o r cordon c o n s t i t u t i n g a c o o l i n g f i n .

I n t e r r u p t e d b r i d g e . Seeking a remedy t o t h i s type of thermal b r i d g e we s t u d i e d , f o r a simple t h e o r e t i c a l case, t h e e f f e c t of an i n t e r r u p t i o n i n t h e thermal b r i d g e , o r more e x a c t l y a d e c r e a s e i n t h e metal c r o s s - s e c t i o n a l a r e a and an i n c r e a s e i n t h e thermal p a t h l e n g t h .

P r a c t i c a l e x a ~ i p l e s

.

F i n z l l y , we s t u d i e d some p r a c t i c a l examples of thermal b r i d g e s a t t h e j o i n t between two p a n e l s . Again, s e e k i n g t o c o r r e c t t h e thermal b r i d ~ c , we s t u d i e d t h e e f f e c t of i n t e r r u p t i n g t h e framing and i t s

i n s u l a t i o n with various t y p e s of I n t e r i o r and e x t e r i o r mouldings. R e s u l t s

Valls w i t h r e l n f orced c o n c r e t e framing and l i g h t masonry f i l l i n q

The r e s u l t s obtained a r e shown i n Table I., where we g i v e t h e v a l u e s of

P

, deterrnincd from tlie rneasu~>ed tenlperaturcs arld t h o s e of p c a l c u l a t e d from

C

(19)

T o t a l b r i d g e . A c t u a l l y a t r u e t o t a l b r i d g e was not t e s t e d s i n c e no such b r i d g e e x i s t s i n p r a c t i c e . There a r e always i n t e r i o r and e x t e r i o r c o a t i n g s . The f i r s t t e s t s c a r r i e d o u t on w a l l s A (A,

-

A S ) enabled us t o o b t a i n t h e r e a l value of t h e t o t a l b r i d g e i n a w a l l with c o a t i n g s and we found t h a t :

pm = 2 . 1 f o r t h e 7 . 5 cm width;

pm = 2.3 f o r t h e 22.5 cm width.

kle n o t e t h a t t h e narrower t h e framing t h e s m a l l e r pm, and t h a t i n both c a s e s i t i s l e s s than pc : pc = 2.4.

Thermal b r i d g e w i t h i n t e r i o r d i f f u s i o n l a y e r . The e f f e c t of t h e c o n c r e t e s l a b placed on t h e i n t e r i o r s u r f a c e i s t o f l a t t e n t h e curve of i n t e r i o r s u r f a c e temperatures. The important improvement o b t a i n e d w i t h a simple s l a b ( B , ) must be noted:

pm changes from 2 . 1 t o 1.4 f o r t h e 7 . 5 cm width; and from 2.3 t o 1.7 f o r t h e 22.5 cm width.

These v a l u e s a r e f a r l e s s than p c

'

which i s s t i l l e q u a l t o 2.4:

-

The f l a r i n g of t h e framework (B,

-

B,) makes i t p o s s i b l e t o o b t a i n s t i l l s m a l l e r pm v a l u e s . I n t h l s way w e achieved v a l u e s of

1.3

f o r 1 = 7.5, and 1.45 f o r 1 = 22.5;

-

P u t t i n g reinforcement (B,) i n t h e s l a b makes very l i t t l e d i f f e r e n c e . Depending on t h e width, pm changes from 1.4 t o

1.35

and from 1.7 t o

1 . 6 5 .

We a l s o t e s t e d t h e e f f e c t of reinforcement i n t h e p l a s t e r s l a b i n s t a l l e d i n such a way a s t o make t h e r e l a t i v e l y i n s u l a t i n g p l a s t e r more conductive in

t h e l a t e r a l d i r e c t i o n . Again (B,) t h e r e s u l t s were i n c o n c l u s i v e ; p, changes, depending on t h e width, from 1.95 t o 1.9 and from 2 . 2 t o 2.15. The e f f e c t i s

t h u s n e g l i g i b l e .

Generally speaking pm d e c r e a s e s a s 1 d e c r e a s e s and i t i s always l e s s p c .

Note. The e f f e c t of a n e x t e r i o r f i n (B) i s a l s o comparatively s l i g h t i n t h i s case; i t causes pm t o change from 1 . 7 t o 1.8 ( B compared t o B, ).

P a r t i a l b r i d g e s . The r e a d e r w i l l n o t e t h e l a r g e d i f f e r e n c e i n t h e shape of t h e curves obtailied when t h e i n s u l a t i o n i s on t h e i n s i d e ( C , and C,) and when i t i s on t h e o u t s i d e ( C , and C,).

( a ) In t h e c a s e of i n t e r i o r i n s u l a t i o n a v e r j good c o r r e c t i o n of t h e t h e r n a l b r i d g e i s o b t a i n e d , and t h e narrower t h e fraine t o be p r o t e c t e d , t h e b e t t e r t h e c o r r e c t i o n . The c o l d e s t p o i n t i s d i r e c t l y o p p o s i t e t h e c e n t r e of

t h e frame. Tne s n a l l d i f f e r e n c e obtalncd with d i f f e r e n t t h l c k n e s s e s of i n s u l a t i o n should be noted (C

,

conlpared t o C 2 )

.

(20)

Note ay;ain t h a t pm < pc.

( b ) \!hen t h e i n s u l a t i o n i s p l a c e d on t h e c x t e r i o r t h e r e i s no inlprovement and now i t secns a s though t h e s i : ~ a l l e r t h e width of t h e frame, t h e more pro- nounced i s t h e e f f e c t of t h e thermal b r i d g e . The t h i c k n e s s of t h e i n s u l a t i o n

i s more s i g n i f i c a n t

.

We a ~ a i n n o t e t h a t t h e p o s i t i o n of t h e c o l d e s t p o i n t i s s t i u a t e d o p p o s i t e t o t h e f r a n e , b u t n e a r t h e edge. Note a l s o t h e e x i s t e n c e of a warm s p o t n e a r t h e frame. The temperature t h e r e i s h i g h e r than i n t h e main p a r t o f t h e w a l l .

F i n a l l y i t must be emphasized t h a t prfl i s d e c i d e d l y g r e a t e r t h a n p c . It

is t h u s a n e r r o r t o suppose t h a t t h e c l a s s i c a l c a l c u l a t i o n always y i e l d s a

margin of s a f e t y . These r e s u l t s a r e a b s o l u t e l y o p p o s i t e t o t h o s e o b t a i n e d f o r i n t e r i o r i n s u l a t i o n .

We s h a l l e x p l a i n t h i s i n P a r t 111.

Corrected b r i d g e s . ( a ) The above r e s p l t s , i n t h e c a s e of e x t e r i o r i n s u l a - t i o n , a r e r a t h e r s u r p r i s i n g ; t h e t e s t s c a r r i e d o u t on w a l l D with e x t e r i o r c o r r e c t i o n have confirriled them. Although c o n d i t i o n s were chosen s o t h a t t h e U

v a l u e of t h e w a l l a t t h e frame would be t h e same a s i n t h e main p a r t of t h e w a l l ( p c = l ) , very d i f f e r e n t temperatures a r e observed on t h e i n t e r i o r s u r f a c e .

I n p a r t i c u l a r , f o r t h e 7.5 cm width r e p l a c i n g t h e e x t e r i o r p l a s t e r c o a t i n g w i t h 2 cn of p o l y s t y r e n e has p r a c t i c a l l y no e f f e c t on t h e telnperatures and

g i v e s s u b s t a n t i a l l y t h e same v a l u e f o r pm.

An improvement of t h e t h e r m a l b r i d g e can be o b t a i n e d by having t h e

insulation o v e r l a p t h e frame c o n s i d e r a b l y on both s i d e s , b u t t h e r e s u l t s remain u n s p e c t a c u l a r . For a narrow b r i d g e a n o v e r l a p p i n g on b o t h s i d e s of 7 . 5 cm e q u a l t o 1 s t i l l g i v e s a hip& pin v a l u e ( 1 . 1 5 ) . F o r a wider b r i d g e a n o v e r l a p p i n g on b o t h s i d e s of 22.5 crn ( e q u a l t o 1 ) g i v e s pm =

1.5.

( b ) I n t h e c a s c of i n t e r i o r c o r r e c t i o n , t h e temperature o p p o s i t e t h e frame i s h i g h e r than on t h e main p a r t of t h e w a l l ; t h e c o l d e s t s p o t , however, i s

d i s p l a c e d o u t s i d e t h e frafilc. The t h e frame, t h e c o l d e r t h i s s p o t w i l l b e .

I n t e s t s

D,,

rcherc t h e i n s u l a t i o n o v e r l a p s t h e frame, good improvement can be observed. Horxver, i t does n o t appear t h a t t h e width o f t h e i n s u l a t i o n r e q u i r e d t o o b t a i n a given pm i s a l i l l e a r f u n c t i o n o f t h e width o f t h e frame. An o v e r l a p p i n g of

7.5

c n f o r a frame width of 7.5 cm i s s u f f i c i e n t (pm = 1 . 2 5 ) ~ while an o v e r l a p p i n j of 22.5 C I , ~ f o r a 22.5 v i d e fra~lie i s e x c e s s i v e ( p m = 0.87).

F i n a l l y , :.re ~ o t e t h c d i f f e r e n c e of form? i n t h e temperature curves

o b t a i n e d betrveel? t h e c a s c lrherc t h e i n s u l a t i o n i s i n s i d e , and t h a t where i t i s

o u t s i d e . To sho:.; t h i s r e z u l t rnorc c l e a r l y we have p l o t t e d t h e v a l u e s of p f o r both of t h e s e c a s e s on t h e sar3e graph ( P i g . 1 0 )

-

t e s t s D , and

D3.

Althou& t h e pm v a l u e s a r e n o t very d i f f e r e n t t h e curve of p f o r i n t e r i o r i n s u l a t i o n i s

(21)

~iluch l e s s f l a t i n t h c zonc of p > 1 . 5 than t h c curvc obtained f o r e x t e r i o r i n s u l a t i o n .

Lar.qc concre tc panel i n c o r p o r a t i n g l i ~ h t i n s u l a t i o n The p e s u l t s are ziven i n Table 11.

The very h i g h value of P , obtained when t h e framing Is very wide (pm = 3 . 2 ) should be noted.

l l i t h t h e

15

c m s l a b on t h e i n s i d e , t h e b e s t c o r r e c t i o n i s obtained with t h e narrow thermal b r i d g e . A width of

7.5

crn s t i l l g i v e s a h i g h pm value

(1.8).

With t h e

15

cm s l a b on t h e o u t s i d e , t h e v a l u e s of pm rcrnaln very high (above

3 ) .

For t h e l a r g e r b r i d g e widths (15 and 22.5 cm) t h e y a r e s l i g h t l y above p c ( p c = 3.Ll).

S p e c i a l thermal b r i d ~ c s

P a r t i t i o n s and f l o o r s . Table I11 shows t h e r e s u l t s obtained i n t h e f o u r c a s e s s t u d i e d .

The c o l d e s t p o i n t i s found on t h e p a r t i t i o n a few c e n t i m e t r e s away from t h e c o r n e r .

Ln

t h e l a s t c o l r n i of Table I11 a r e given v a l u e s of pill obtained on thermal b r i d g e s a t w a l l s without p a r t i t i o n s . Those obtained with p a r t i t i o n s a r e always

lower. T h i s i s due t o t h e f a c t t h a t tile c o n c r e t e p a r t i t i o n , away from t h e corner, i s a t tenipellature Ti throu&h i t s e n t i r e mass s o t h a t t h e r e i s a con- s i e e r a b l e flow of h e a t i n t h e d i r e c t i o n of t h e c o r n e r .

The t o t a l bridge ( A ) now g i v e s a pm value of o n l y 1 . 9 i n s t e a d of 2.4.

Wc again f i n d t h a t good d i f f u s i o n i s obtained w i t h t h e i n t e r n a l c o n c r e t e s l a b , e n a b l i n g t h c a t t a i n m e n t of p, =

1.5

without a cordon and p,= 1 . 5 5

d e s p i t e a l a r z e cordon. E x t e r n a l i n s u l a t i o n c o n t i n u e s t o be i n e f f e c t i v e (pm =

Corner b e t w e n two o u t s i d e v a l l s . A t a c o r n e r betwecn two e x t e r n a l w a l l s v a l u e s of pm, which can be derived from Gcrman t e s t s ( 7 ) a r e h i m e r . For w a l l s with U v a l u e s of 1.2 t o

1.5

t h e y a r e i n t h e v i c i n i t y of 1.8, while f o r w a l l s with U valucs of l c s s t h a n 1 t h e y reach 2.5.

Thc shape of the curvc i s t h e n d i f f e r e n t .

Figure 1 2 shov~s th e temperatures obtained a t t h e c o r n e r between t h e west and n o r t h v:alls, v;hicii were s o l i d b r i c k

38

cm t h i c k . The curve shotvs a s h a r p peak; t h e r e s u l t i s a c o l d e r b u t l c s s extensive a r e a . Thus t h e e f f e c t o f t h e maximurn p In uhich i s obtained con be l e s s s e v e r e .

~ i y h t w a l l s ( c u r t a i n w a l l s , fc?.$ade p a n e l s )

llooden _fra:ninz

T o c . Thc r e s u l t s a r e given i n Table

IT.

The narrower t h e fraln- i n & 'ihc s n . a l l c r t h e pl,: v a l u e s . They a r c a111ays sn!aller t h a n p c

'

wliich f o r

Figure

Fig.  4  T o t a l   b r i d g e   (a)  (b)  Fig.  6  P a r t i a l  b r i d g e   E x t e r i o r   i n s u l a t i o n   I n t e r i o r   i n s u l a t i o n   F i g

Références

Documents relatifs

Les résultats obtenus concernant l’activité antifongique des extraits aqueux sont représentés dans (Tableau 06). Avec les extraits des feuilles, l’activité antifongique est

Ce travail est focalisé à l’évaluation de toxicité aigue du mélange binaire d’un insecticide (Dursban) et fongicide (Mancozebe)et d’un insecticide seul (Décis) sur des

Au total, 31 parcelles agricoles ( Fig. 1 ), situées chez 10 agriculteurs représentatifs de la typologie (en termes de pratique et de gestion) et dans une station expérimentale, ont

Et dans notre travail, on a élaboré également une base de données avec cartes numérisées pour faciliter la gestion de fonctionnement du réseau d’alimentation

On étudie numériquement la convection naturelle laminaire de l’air (Pr=0.71) dans une enceinte rectangulaire, pour deux cas : Le premier cas c’est pour la paroi inferieur soumis

In particular, they know that adjectives name properties of entities named by nouns; they know that adjectives imply a contrast (i.e. values on a dimension are

The transcriptional activation of SREBP targets encoding the key enzymes of fatty acid biosynthesis (FASN) and the pentose phosphate pathway (G6PD) leads to a rapamycin-

words, it is critical to resolve between signaling intermediates in their free active and inactive forms (A * and A) from when they are bound to other intermediates, including