• Aucun résultat trouvé

Erratum : Carleman estimates for the Laplace-Beltrami equation on complex manifolds

N/A
N/A
Protected

Academic year: 2022

Partager "Erratum : Carleman estimates for the Laplace-Beltrami equation on complex manifolds"

Copied!
4
0
0

Texte intégral

(1)

P UBLICATIONS MATHÉMATIQUES DE L ’I.H.É.S.

A LDO A NDREOTTI E DOARDO V ESENTINI

Erratum : Carleman estimates for the Laplace-Beltrami equation on complex manifolds

Publications mathématiques de l’I.H.É.S., tome 27 (1965), p. 153-155

<http://www.numdam.org/item?id=PMIHES_1965__27__153_0>

© Publications mathématiques de l’I.H.É.S., 1965, tous droits réservés.

L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://

www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

ERRATUM TO :

CARLEMAN ESTIMATES

FOR THE LAPLACE-BELTRAMI EQUATION ON COMPLEX MANIFOLDS

by ALDO ANDREOTTI and EDOARDO VESENTINI

(Publications Mathematiques de PInstitut des Hautes Etudes Scientifiques, n° 25)

1. We draw the attention to a mistake which appears in the above quoted paper due to an error in computation. This has to be corrected as indicated below; the rest of the paper remains unchanged.

In the formula (29) p. 102 the curvature tensor s^.^ of the metric on the bundle E should be replaced by the expression of the <( covariant curvature tensor "

rya_ _r7 j a

0 60,P~ ^ 3 ^ 6 3 ?

and this is because we use the Riemannian connection on the bundle ©*.

Accordingly in formula (31) p. 102 the curvature forms s and L should respectively /-»»»/ ^^^

be substituted by the cc covariant " curvature forms s and L.

2. In the following § 5 the use of covariant curvature would however be cumber- some and it is therefore better to abandon the Riemannian connection and make use exclusively of the ^-connections and ^-connections (see 2 b) and 3 a)} to establish the inequality we need following the same lines. The argument we shall presently give has to be added as section 15^ of the paper.

First we note that, in terms of covariant derivatives with respect to the considered connection, the operator () has the expression

a=a+s,

where for (peC^X, E):

<?+!

(^^...^^(-I)^?^-!)-^^^,^,..^^

<?+! ___

(S9)l3,..^,=(-^\^s,(-I)r-lS^,V^3,.,a),..3,..-^,, S^ being the torsion tensor as defined in n° 3 a ) .

757

(3)

154 A L D O A N D R E O T T I AND E D O A R D O V E S E N T I N I Analogously we sec that

6=6+T where ^=—*#-lS#*, and for yeC^X, E)

(^...^.-(-i)3'-1^^,.^^

We now consider the vectors ^ and T] introduced in i ^ b ) (the covariant derivatives being intended to be with respect to the c)- and ~S- connections). We have

div S—div7]=2V^3—SV.,7]Y—2S(S^T—S,7]T),

where 8^=28^. A calculation of the same type as the one given in 14 b) gives:

(33') SVp^-SV^=(^-i)!{A(V9,V9)+A(Jf<p, 9)-A(Bq), 8^)-A(Q^ 69)}, where now

A)IB =,S(-1)*^^-.^^^ SLV^^.+ S(- I)'ESL^-p,p<pa^}.

For <:pe^w(X, E), by Stokes formula we get

(*) l|V9||

2

+(^,y)=||3<pl|

2

+l|e<p||

2

+2^S(S^

T

-S,7)

T

)rfX.

We have the following estimates

||a9||2<2(||"0y|12+||Sy||2)^2||aq,||2+^|S|2A(<p,<p)rfX, lieyll^adieyll^+llTyll^^alieyll^+^ISI^A^^X,

\^S^)dX\^c{s^\S\^,v)d^+^^A^,^)dX.},

|^(SS^)rfX ^c{£^|S|2A(y, y)rfX+^^A(69, 6y)rfX},

where c is a universal positive constant, e any positive number and |S[2 is the length of the torsion tensor.

We substitute these four estimates, with e=4<-, in (*). If we set .)r==Jt—(I6c2+5c)\S\'i

we obtain an inequality of the type

||V9||2+^(jr9,9)^^{||a9||2+||69||2}

where ^, c^ are positive universal constants. Proposition 15 and its corollaries can thus be stated using this expression of J^.

3. The use of identity (33') instead of identity (33) simplifies the argument of section 17^ in that that no covariant Levi form has to be introduced. What follows

758

(4)

LAPLACE-BELTRAMI EQUATION ON COMPLEX MANIFOLDS 155

replaces thus 17 d ) from line 7 from below of p. 112 onwards. From (33') we get (with the notations of ij d } )

^J^(S-^^S-||Vy|^+(^ ^-|] ^[^-[[^[^-^^(s^-S.^rfY;

^

hence

i|Vy||2Y+(Jf•y,9)Y+^l^J^^^(/){9,9}</S=|[^||2+||ey||2,

and thus as in section 15 c ) we derive the inequality

[|Vv||2Y+^(J^y,y)Y+^y,J^^^(/){9,¥^S^<•,{[|^||2+[|ey|]2}.

If <y{f) has 72—q -\-1 positive eigenvalues at each point of^Y we can choose a hermitian metric so that I^^CQ at each point of^Y with ^o>o. Also we can replace the metric h on the fibers of E by ^Tl/^. We will have

(^LW^^ ^>^S^ ^

A,(Jry,9)^TA,((p,cp),

with positive constants, c^ and c^ for any T>TQ with a convenient Tg^o, and for anv cpeB^Y, E) with supp((p)CU, provided s>q. From this we obtain by the same argument as the one given there (p. 113 from line n from below onwards) the las inequality of ij d ) (1).

(1) In the expression of j|9||-% there is a misprint: ^ should replace e^ .

759

Références

Documents relatifs

Related works The Laplace-Beltrami operator being a second order differential operator (divergence of the function gradient, see Sect. 2), a discrete calculus framework is required

Indeed, theoretical analysis on 2D curves shows that one cannot expect convergence of the dicretized Laplacian using exterior calculus toward the real Laplace-Beltrami on Rie-

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

In this section we investigate the practical benefits of adopting the proposed operator in two problems commonly arising in shape analysis, namely stable region detection and

Dans ce cadre, les r´ esultats que nous avons obtenus sont les suivants : si φ 0 a des points critiques non d´ eg´ en´ er´ es (donc en particulier φ 0 n’est pas la

Druet [1] has proved that for small volumes (i.e. τ &gt; 0 small), the solutions of the isoperimetric problem are close (in a sense to be made precise) to geodesic spheres of

Besides the dimension and the volume of the sub- manifold and the order of the eigenvalue, these bounds depend on either the maximal number of intersection points of M with a p-

Beltrami operator on digital surfaces which satisfies strong consistency (i.e. pointwise convergence) with respect to the Laplace–Beltrami operator on the underlying manifold when