• Aucun résultat trouvé

Partial cross sections for dissociative electron attachment to tetrahydrofuran reveal a dynamics-driven rich fragmentation pattern

N/A
N/A
Protected

Academic year: 2021

Partager "Partial cross sections for dissociative electron attachment to tetrahydrofuran reveal a dynamics-driven rich fragmentation pattern"

Copied!
6
0
0

Texte intégral

(1)

Partial

cross

sections

for

dissociative

electron

attachment

to

tetrahydrofuran

reveal

a

dynamics-driven

rich

fragmentation

pattern

R.

Janeˇcková

a

,

O.

May

a

,

A.R.

Milosavljevi ´c

b

,

J.

Fedor

a,∗

aDepartmentofChemistry,UniversityofFribourg,CheminduMusée9,CH-1700Fribourg,Switzerland bInstituteofPhysicsBelgrade,UniversityofBelgrade,Pregrevica118,11080Zemun,Belgrade,Serbia

Wereportpartialabsolutecrosssectionsfordissociativeelectronattachment(DEA)totetrahydrofuran C4H8O.Thehighsensitivityofthepresentsetup,quantitativeDEAspectrometerwithtime-of-flight

ana-lyzer,ledtoidentificationofanumberofpreviouslyunreportedfragments(CH2−,OH−,CHO−,C4H5O−,

C3H3−)thusrevealingcomplexdissociationdynamicsoftheinvolvedresonantstates.Thechemical

com-positionoffragmentanionswasassignedbyexperimentswithcompletelydeuteratedtetrahydrofuran. Wealsoshowthatthedominantheavyanionicfragmentwithm/z=41isC3H5−anionratherthanC2HO−

asreportedinthepreviousstudies,inspiteofthefactthatformationofthelatteroneisenergetically morefavorable.Thedynamicsontheresonantstateisthusmoredecisiveforthereactionoutcomethan theasymptoticenergetics.Theassignmentofresonancesandtheirdynamicpathwaysisdiscussedby usingcomparisonwithrecentcomplementaryexperimentsthatcharacterizeelectronicstatesofneutral andionictetrahydrofuran.

1. Introduction

Electroncollisionswithtetrahydrofuran(THF)attracteda sur-prisingamountofattentionduringthelast15years.Thisinterest– whichmayseemunusualforasmallorganicmolecule–hasbeen partofthelineofresearchinelectroncollisionswithmoleculesof biologicalrelevance.Thislineofresearchaimsatelucidatingthe role ofelectron-triggeredprocesses inradiationdamage.Inthis respectTHF,sinceitisthesimplestsaturatedfuranosering,canbe consideredasaprototypefortheDNAsugarbackbone. Addition-ally,incontrarytosugars,THFisaliquidatstandardlaboratory conditionswhichgreatlyfacilitatestheexperiments.

Theabove-mentionedlineofresearchhasbeentriggeredbya groundbreakingdiscoveryofSancheandco-workers[1]that low-energyelectronscausesingleanddoublestrandDNAbreaksevenat sub-ionizationenergy.Inspiredbythisdiscovery,variousresearch groupsstartedtolookattheelectron-inducedreactionsin molec-ularconstituentsofDNA.Oneofthefirstgroupsthatadoptedthis direction–and quicklybecame abeaconinthefield–wasthe groupofT.D.MärkinInnsbruck.Märkrecognizedthehighscientific potentialinthisfieldandtheexperimentsinhisgrouphavegreatly contributed to a renewal of the interest in electron-triggered

∗ Correspondingauthor.Tel.:+41300268697. E-mailaddress:juraj.fedor@unifr.ch(J.Fedor).

physicsandchemistry,especiallythedissociativeelectron attach-ment (DEA). This process, which proceeds via formation of a transientresonantstateisaneffectivebond-breakingreactionand theexperimentsinInnsbruckhaveelucidateditsroleinawhole rangeofmoleculeswithbiologicalrelevance:DNAbases[2,3], sug-ars[4],oraminoacids[5].Theexperimentshaverevealedaplethora ofphenomenaoccurringindissociativeelectronattachment: site-andbond-selectivity[6]orDEAfootprintsofvibrationalFeshbach resonancesinbiomolecules[7].ThegroupofT.D.Märkhasbeen alsothefirstonethatlookedintoDEAprocessinthemoleculeof presentinterest:tetrahydrofuran[8].

Basicallyallexperimentallyaccessibleelectron-triggered pro-cessesinTHFhavebeencharacterizedintherecentyears.Thetotal electronscatteringcrosssectionswerereportedbyZeccaetal.[9], Mozejkoetal.[10]andFussetal.[11].Theelasticscatteringin var-iousenergyrangeswasprobedbyMilosavljevi ´cetal.[12],Dampc etal.[13],Allan[14],Colyeretal.[15],Baeketal.[16],Chiarietal. [17]andHomemetal.[18].Thevibrationalexcitationcrosssections werereportedbyDampcetal.[19]andAllan[14]andelectronic excitationwasprobedbyDoetal.[20]andGiulianietal.[21].The electroncollisionswithTHFattractedalsoconsiderableamount ofattentionfromatheoreticalpointofview.Thescattering pro-cesseswerecharacterizedbyaSchwingermultichannelmethod [22],complexKohnvariationalmethod[23],orR-matrixmethod withBorncorrection[24].Thelaststudyisofspecialinteresthere sinceitidentifiedanumberofcore-excitedresonances. Comple-mentarytothegasphase,seriesofexperimentswithTHFdeposited

Published in ,QWHUQDWLRQDO-RXUQDORI0DVV6SHFWURPHWU\

± ±

which should be cited to refer to this work.

(2)

onasurfacewasperformedbyLepageetal.[25],Anticetal.[26,27], Bretonetal.[28],Jäggleetal.[29],andParketal.[30].

ThedissociativeelectronattachmentchannelsinTHFhavealso beenthesubjectofseveralstudies,Sulzeretal.[8]andIbanescu etal.[31]reportedyieldsofindividualDEAfragmentsasafunction oftheelectronenergyandAflattonietal.[32]measuredtotalDEA crosssectionusingatotalioncollectioninstrument.Surprisingly, thefirsttwostudiesonlypartiallyagreewitheachother:theyagree ontheoccurrenceofthe(strongest)fragmentwithatomicmass 41,whichwasassignedbybothgroupstobetheC2HO− anion.

However,Sulzeretal.alsoreported theoccurrenceof aparent anionTHF−andadoublydehydrogenatedparentanion(THF-2H)− around2eV,whichwerenotdetectedbyIbanescuetal.who,on theotherhand,reportedhydrideanionH−andanionwithmass43 (C2H3O−).TheoccurrenceofstableparentanionsinDEAatenergies

considerablyhigherthan0eVisveryrare,sincetheexcessenergy (electronaffinityandincidentelectronenergy)hastobestored withininternaldegreesoffreedom.Suchsituationoftenleadsto metastabilityoftheparentanioninthemicrosecondtime win-dow[33,34]:theexcitationenergyrandomizesovertheinternal degreesoffreedomandthedecayoftheparentanionresultsfrom theconcentrationofsufficientenergyintherelaxationchannel.

OurprimarymotivationtostudyTHFwastheeventual occur-rence of such metastability, which can be detected with a time-of-flightsetupsuchastheoneavailableinourlaboratory.We reportnegativeevidenceformetastableprocessesinourtime win-dow,however,wehavediscoveredseveralsurprisingaspectsofthe DEAtoTHF.Thehighsensitivityofourinstrumentenabled iden-tificationofanumberofpreviouslyunreportedanionicfragments, thusrevealingmuchmorecomplexfragmentationdynamics.We alsoprovidenewassignmentofthestrongestheavyanionic frag-ments with the mass 41, which turned out to be C3H5−. We

provideabsolutepartialDEAcrosssectionsforallreported frag-mentsanddiscussthepossibleoriginsofresonantstatesleadingto thereporteddissociationpattern.

2. Experiment

ThequantitativeDEAspectrometerhasbeendescribedindetail previously[35–37].Theelectronbeamisproducedbyatrochoidal electronmonochromator,passesthroughacollisioncellfilledwith thesamplegasandiscollectedbyaFaradaycup.Anionscreated byDEAareextractedthroughanarrowslitinthecell’swalltoa time-of-flightmass(TOF)spectrometer.Theexperimentworksin apulsedmode.Theelectronbeampassesthroughthecollisioncell for200nswhileitisfield-free.Afteranother200ns(sothatthe electronsareallowedtoleavethecell)avoltagepulseof−300V isappliedacrossthecelltoexpeltheanions.Theyaredetectedby amicrochannelplatecoupledwithphosphorusscreenand pho-tomultiplier,countedandtheirarrivaltimesareanalyzedusinga delayedcoincidencescheme.Thespectraarerecordedasa two-dimensionalmapoftheionsignalasafunctionofelectronenergy andtheflighttime(whichreflectstheanionmass).Therepetition rateis50kHz.Thepressureinthecollisioncelliscontrolledbya needlevalveandmonitoredbyacapacitancemanometer.Itwas keptintherangeof3×10−4to6×10−4Torr.Sincetheprevious studiesdidnotrevealanyfinestructuresinDEAionyields,the elec-tronmonochromatorwasoperatedtoyieldhighelectroncurrent (around100nAintheCWmode)andthusatotalhighsensitivity. Theelectronenergyresolutionduringthepresentmeasurements was250meV.

TheTOFsetuphastwoaccelerationregionsandadriftregion. Thefirst accelerationregionis betweenthe pulsedpusher and thewallofthecollisionchamber,thesecondaccelerationregion is betweenthewallof the chamber and thefront plateof the

time-of-flighttube.TheTOFtube(driftregion)isnotentirely field-free,itisconstructedasafocusingionlensandtheentiresetupwas designedtokeeptheextractionanddetectionefficiency indepen-dentofthemassandinitialkineticenergyofthedetectedanions [37].Additionally,itsfirstparthasadeflectingcapacityinorderto compensatefortheeffectofthemagneticfield.Ithasbeenshown bysimulationsandextensiveteststhatonlytwotypesofvoltage settingsarenecessaryforthepropercollection:‘lightionsettings’ forH− andD−ionsand‘heavyionsettings’forionswithlarger masses.Themassscaleiscalibratedwithionsofknownmasses fromothercompounds(O−fromO2,H−,C2−andC2H−from

acety-lene)andthecalibrationisbasedonthefactthatthetime-of-flight isdirectlyproportionaltothesquarerootofmass.Themass assign-mentisverifiedbythefactthatallassignedmassesfitperfectlyon thecalibrationcurve.

Theelectronenergyscalewascalibratedusingthe4.4eVO−/CO2

peak.Theshapeofthisband(withathresholdat3.99eV)hasbeen measuredwithhighelectron-energyresolution[38].Wedetermine boththeenergyscalecalibrationandtheelectronenergyresolution byfittingtheconvolutedhigh-resolutiondatatoourmeasurement. Absolutemagnitudesofthecrosssectionswerecalibratedonthe sameO−/CO2bandwithapeakcross-sectionvalueof14pm2[35].

Theerroroftheabsolutemeasurements(twostandarddeviations) istakentobe±25%.Thisisthecombinederrorof±20%ofthe rel-ativemeasurementswiththe±15%erroroftheO−/CO2 absolute

crosssection.We haveshownrecently[39]thatthis calibration approachisnotappropriateiftherearenarrowbandsintheDEA spectraduetoeffectofelectronbeamresolutiononthepeakwidth, however,itisperfectlysuitableforthepresentmoleculesinceonly broadbandsappearinthespectra(seebelow).

3. Resultsanddiscussion

3.1. Anionicfragmentsandpartialcrosssections

Fig.1(top)showsthenegativeionmassspectrumof tetrahy-drofuranoriginatingfromtheimpactof8.5eVelectrons.Onecan observearichfragmentationpatternwithanumberofpreviously unreportedanionic fragments. The chemical composition of all

Fig.1.NegativeionTOFmassspectrumoftetrahydrofuran(top)andfully deuter-atedtetrahydrofuranTHF-d8(bottom).

(3)

Fig.2.PartialcrosssectionsforproductionofanionicfragmentsinTHF.

fragmentswasdetermineduponcomparisonwiththemass spec-trumoffullydeuteratedTHF(Fig.1bottom).Fig.2showsthepartial absolutecrosssectionsforallfragments.Inspiteofacareful acqui-sitionwedidnotdetectanysignalbelow5eVelectronenergy.Note thatthemassspectrainFig.1weretakenatheavyionsettings,thus theintensityofH−peakisnotdirectlycomparablewithFig.2.This isalsothereasonforashorterflight-timeshoulderoftheH−signal. The previouslyunreported fragmentsare CH2−,OH−,COH−,

C3H3−andC4H5O−[triplydehydrogenatedtetrahydrofurananion

(THF-3H)−].Thestrongestheavyfragmentwiththemass41has beenreportedbothbySulzeretal.[8]andbyIbanescuetal.[31]. Theshapeandpositionofthebandagreesverywellwithpresent results.Additionally,Ibanescuetal.reportedC2H3O−andH−

frag-ments.Thepositionandshapeofthebandsagainagreewellwith presentresultsforC2H3O−andreasonablywellforH−.Inthelatter

case therelative intensitiesofthetwobands showcertain dis-crepancies.Itshouldbenotedthatthetwoexperimentsarenot directlycomparable–Ibanescuetal.usedaquadrupolemass fil-terwherethetransmissionefficiencyisknowntodependstrongly ontheionmassandontheinitialkineticenergy.Allthenewly reportedfragmentsexceptCH2−have verylowcrosssections–

below0.01pm2whichisprobablythereasonfortheirabsencein

earlierstudies.Comparisonofthetwomassspectraalsoshowsthat thepeakwiththemass41shiftstomass46upondeuterationof theprecursormolecule.ThusitschemicalcompositionisC3H5−,

theallylanion,insteadofC2OH−,deprotonatedketene,asitwas

assignedinbothpreviousmass-resolvedstudies[8,31].Thereason fortheirassignmentwasprobablythefactthattheformationof C2OH−isenergeticallymorefavorable.

Table1summarizesthresholdenergiesforthereactionchannels leadingtoproductionofanionswithmolecularmass41amu.The calculationswereperformedattheB3LYP/6-311++G(2df,2pd)level oftheory.Thismethodhasbeenshowntoyieldreliableasymptotic energiesinarangeofmolecules[40,41].Ithasbeenpointedout innumberoftheoreticalinvestigations(seeRef.[21]forreview), thatneutralTHFhasseveraldifferentconformationscloselyspaced

Table1

DFT[B3LYP/6-311++G(2df,2pd)]thresholdenergies(eV)forvariouschannels lead-ingtoproductionofanionswithm/z=41.

Process Products Eth(eV)

e+THF→ C2HO−+C2H5+H2 1.84

C3H5−+CH3O 2.59

C3H5−+CH2O+H 3.63

inenergy,allofthembeingconnectedviaout-of-planering defor-mation(pseudorotation).Thehigh-levelab-initiocalculations[42] revealthatthetwolowestconformers,withC2andCssymmetry,

haveonly6meVdifferenceinenergy,whichresultsinalmostequal Boltzmannpopulationofthesetwostructuresinthegasphase.We haveoptimizedtheneutralTHFwithintheC2geometry.The

calcu-latedstructureofC3H5−correspondstoallylanion,thecalculated

structuralformulaoftheC2OH−isHCCO−.AscanbeseeninTable1,

thechannelleadingtoC2HO−+C2H5+H2isindeedthe

energeti-callymostfavorable.BothchannelsleadingtoproductionofC3H5−

arehigherinenergy:theoneleadingtoproductionofthemethoxy radicalCH3Oby0.75eV,theoneleadingtoproductionof

formalde-hydeandhydrogenatomby1.79eV.However,asonecanseein Fig.2,theC3H5−bandstartsatapproximately6.7eV,withall

chan-nelseasilyaccessibleanditisnottheasymptoticenergeticsbut ratherthedissociativedirectionoftheinvolvedresonantpotential energysurfacethatdeterminesthefragmentationpathway.This showsdominantroleofthefastnucleardynamics–theinternal energydoesnotredistributeandseekthelowestenergypathway (asonecouldintuitivelyexpectforsuchrelativelylargemolecule) butratherfollowsthedirectpathonthepotentialenergysurface.

ThemassspectrainFig.1alsocontainsomespuriouspeaks.The smallpeakwithmass35thatcanbediscernibleinbothspectrais atomicchlorineanionCl−whichcomesfrominteractionof elec-tronswithtraceamountsofchlorinatedspeciesthatarepresentin theexperimentalsetupfrompreviousexperiments.Wealsobelieve thatalargepartoftheO−signalisnotcausedbytheDEAtoTHFbut rathertospuriouswatermolecules:theenergydependence spec-trumoftheO−anionhasbasicallythesameshapeastheionyield ofO−comingfromDEAtowater[44].Itishighlyimprobablethata signalwiththesameshapewouldoriginatefromtheelectron col-lisionswithTHF,sincethe11.5eVresonanceisnotvisibleinany otherTHFfragment.Waterhasseveralordersofmagnitudelarger DEAcrosssection[45],thepresentsignalcorrespondsto approx-imately0.5%impurityofwaterinoursample.Thewaterimpurity isalsoareasonfortheH−signalvisibleinthespectrumof deuter-atedtetrahydrofuraninFig.1.SimilarlyasintheTHFspectrum,this peakhasashoulderatshortflighttimescausedbytheheavy-ion settingsoftheionlens.

3.2. TotalDEAcrosssection

Fig.3showsthesumofourpartialcrosssectionscomparedthe totalnegativeioncrosssectionofAflatoonietal.[32].Theirdata wereobtainedusingatotal ioncollectiontube,thusatelectron energieslargerthantheionizationenergy,aformationofpositive ionssetsinandinterfereswiththenegativeionsignal,causingthe abruptcutoffofthenegativecrosssection.Forthesakeofthe com-parison,thespectrumofAflatoonihasbeenshiftedby360meV towardshigherelectronenergy.Eventhoughtheinaccuraciesof theenergyscalecalibrationofthetrochoidalmonochromatoron theorderoftensofmeVareexpectable[46],thepresent discrep-ancyisrelativelylargeandwedonotknowthereasonforit.It shouldbenoted,thatourpresentenergypositionofthestrongest mass41 fragmentagreesexcellentlybothwithSulzeretal.and Ibanescuetal.Apartfromtheissueintheenergy-positionofthe resonances,theagreementofthepresenttotalcrosssectionswith

(4)

Fig.3.Comparisonofthesumofpresentpartialcrosssectionstototalcrosssection fromAflatoonietal.[32].TheverticalarrowshowstheionizationpotentialofTHF [43].

thetotalcrosssectionofAflatoonietal.isexcellentuptothe elec-tronenergyofapprox.8.5eV.Itshouldbenotedthatsuchhighlevel ofagreementisuptosomelevelfortuitousintheviewoftheerror barsofthebothexperiments(±25%ofthepresentvalues).Thetotal ioncollectiondataarelowerthanthepresentvaluesabove8.5eV. TheionizationpotentialofTHFis9.42eV[43].Wecanonly specu-late,whatcausesthedecreaseofthenegativeionsignalbelowthis value.Thecrosssectionsforpositiveionizationareusuallyorders ormagnitudelargerthanpresentDEAcrosssections.Thepositive signalcouldbecaused,forexample,byevenaveryweak shoul-derofhigh-energyelectronsintheelectron-energydistribution. Anotheroptionwouldbepresenceofanimpuritywithlower ion-izationenergyinthesample–duetolargeionizationcrosssections alreadyatraceamountofsuchimpuritywoulddecreasethetotal negativesignalconsiderably.

3.3. AssignmentofDEAbands

SpectraofalltheanionicfragmentsinFig.2showthreemain bandscenteredaroundtheelectronenergiesof6.6eV,7.7eVand 8.7eV.Thedominantfragmentoriginatingfromthefirstandthe thirdbandisH−,thedominantfragmentappearingatthe

posi-tionofthesecondbandisC3H5−.Intheenergyrangeofinterest

(above6eV)twoclassesofresonanceshavebeensuggestedtooccur inTHF:one-particleshaperesonancesorcore-excited(Feshbach) resonances.

Theshaperesonancesinthisenergyrangewereidentified theo-reticallybyTrevisanetal.[23]at8.6eVandbyWinsteadandMcKoy [22]at8.3and13eV.Also,experimentsonvibrationalexcitation [14]showedshaperesonancesat6.2and10.8eV.However,these resonancesareverybroad(feweV),whichisacommonfeaturefor shaperesonancesinorganicmoleculesinthisenergyrange.They usuallyarisefromtheelectronoccupationofthe*orbitals

associ-atedwithC HandC Cbondsandduetotheirlargeenergywidth theyarenotexpectedtoleadtodetectableDEAsignal.Theirshort autodetachmentlifetimeusuallycausesthattheelectrondetaches beforeatomicnucleimovetosuchconfigurationinwhichthe elec-tronicstatebecomesaboundstate,i.e.,whereoneofthefragments becomesastableanion.

Themoresuitablecandidatesforprecursorresonantstatesin thisenergy range arecore-excited Feshbach resonances.A Fes-hbachresonancehasacationiccoreand adoubleoccupationof Rydberg-likeorbitals.TheyarethuscloselyrelatedtoRydbergand cationicstates, thisrelationis demonstratedinthetoppanelof Fig.4.TheRydberg(parent)stateswhicharevisibleinVUVand

Fig.4.Upperpanel:schematicrepresentationoftherelationbetweenVUV,EELS, PESandDEAspectra(seetextfordetails).Graphs:(a)VUVspectrumofTHFtaken fromGiulianietal.[21],(b)EELSspectrumtakenfromDoetal.[20],(c)PES spec-trumfromGiulianietal.[21],and(d)presentDEAcrosssectionsforH−andC3H5− fragments.ThescaleofthePESspectrum(c)isshiftedby3.1eVasexplainedinthe text.

EELS(electron-energylossspectroscopy)spectraareshiftedwith respecttothecation(grandparent) states,visible inthe photo-electronspectra(PES),byatermenergy.Theresonanceisfurther stabilizedbytheelectronaffinityoftheparentRydbergstatewhich istypically0.3–0.5eVforthes2configuration[47].Recentworkon

excitedelectronicstatesofneutralandionicstatesofTHFby Guil-ianietal.[21]greatlyfacilitatestheassignmentofresonances.Fig.4 showstheVUV,EELSandPESspectratogetherwithpresentcross sectionsforthetwostrongestDEAfragments.Thehigh-level ab-initiocalculationsfromRef.[21]showedthatalltheelectronically excitedstatesofTHFhaveRydbergcharacter.ThefirstVUVand EELSbandbetween6and6.9eVisduetotransitionto3sRydberg state,thebandisbroadenedbyrichvibrationalprogressionsandby thefactthatthetwoTHFconformers(withC2andCsgeometries)

haveverticalexcitationenergiesseparatedby0.25eV.Thesecond bandcontainsamixtureof3pand3dstates,thethirdbandconsists ofprogressionof3dstates.AllthreebandsarevisiblealsoinEELS spectra.InthePESspectrumthefirstbandcorrespondstothehole inthe9bmolecularorbital,comparisonwiththeVUVspectrum showsthatthetermenergyofthecorrespondingRydbergstate

(5)

(9b)−13sis3.1eV.ThescaleofthePESspectruminFig.4startsat 9.1eV,by3.1eVhigherthanthescaleofVUVandEELSspectra.If onethenassumes0.2–0.3eVasstabilizationenergyofthe Fesh-bachelectronpair,thenthefirstbandofthePESspectrumoverlaps nicelywiththefirstH−DEAband,andtheelectronicconfiguration oftheresonancewouldbe(9b)−13s2.The8.7eVHDEApeak

over-lapswiththesecondbroadbandinthePESspectrum.Thisband correspondstoholesin11a,10a,8b,and9aorbitals.TheFeshbach resonancesresponsiblefortheDEAH−thuscorrespondtoa3s2

electronpairaroundioniccorewiththeholeinoneorseveralof theseorbitals.

ItisworthnoticingthatthePESspectrumhastobeshiftedonly byapprox.3.3eVinordertooverlapwiththeDEAbands.Often,this differenceisassumedtobe4.5eV[40].Thisassumptionisbasedon anusualtermenergyof4eVandstabilizationenergyofthes2pair

of0.5eV[47].Thesevalueswhichareoftenconsideredtobethe sameforallmoleculesbecauseoftheweakinteractionofthe dif-fuseRydbergorbitalwiththecationiccore.However,formolecules withlargeralkylchains,thetermenergyisdecreasedduetothe hin-deredapproachoftheRydbergelectrontothecationiccore,thus decreasingtheattractionenergyanddecreasingthetermenergy [48,49].Anextremeexamplewasshownintherecent studyof theTEMPO(2,2,6,6-Tetramethylpiperidine-N-oxyl)[50]wherethe shiftbetweenDEAandPESbandswasonly2.1eV.Inthepresent casewehavetheadvantageofknowingtheshiftbetweenPESand VUVspectratobe3eVduetothehigh-resolutiondataofGiuliani etal.[21].

Theassignmentofthe7.6eVbandleadingtotheproductionof theC3H5−fragmentisapuzzle.Itdoesnotoverlapwithanyband

intheshiftedPESspectrum,soitisnotpossibletodoan assign-mentasaFeshbachresonancewithanelectronpairina3sorbital. Inprinciple,onecouldspeculatethatitcouldbeaFeshbach res-onancewithanelectronpairina3porbital,orwitha3s3ppair. Such resonancesareseeninthetransmissionspectra,however, thestabilizationenergyofsuchelectronpairismuchlower,inthe orderof0.01–0.1eV[47].Thustheirlifetimeisexpectedtobetoo shorttoleadtoobservableDEAsignals.Thisisasimilarsituation, aswiththehigh-energyshaperesonancesmentionedabove:their energiesoverlapwiththeDEAbands,however,suchassignment isimprobableduetoashortlifetimetowardsautodetachment.For completeness,itshouldbementionedthatinthisenergyrangeDEA bandshavealsobeenfoundwhichoriginatefromresonanceswhere ans-likeelectronisboundtothesingletvalenceexcitedstate.Some examplesarenorbornadiene,cyclopentadieneorSO2 [51].

How-ever,noviableprecursorexcitedstateshavebeenidentifiedinTHF [21].

3.4. Noteonthemetastability

Ibanescuetal.[31]studiedDEAbond-breakinginarangeof lin-earethersandfoundthatFeshbachresonancesleadtoveryefficient cleavageoftheC Obond.SinceTHFisacyclicether,theysuggested thatinthefirststeptheC Obondisbreakingaswell,leadingto anopen-chainTHF−parentanion.Sincetheenergyreleasedupon thering-openingisstoredintheinternaldegreesoffreedom,this anionsubsequentlyundergoesdelayeddissociation.

Inatime-of-flightsetup,ifsuchadelayeddissociationhappens duringtheaccelerationstage,beforeTHF−reachesthedriftregion, theanionsaredetectedbetweentheflight-timeoftheparentanion andtheanionintowhichitfragments.Thiseffecthasbeenusedto estimatethelifetimeofvibrationallyhotSF6−[33]or

dinitroben-zeneanions[34].Inoursetupthecorrespondingmetastabilitytime windowis 0.2␮s<t<1␮s. Thelowestvaluecorrespondstothe delaybetweentheelectronpulseandtheion-extractionpulse,the largestdelaytothetimepointwhenionsenterthedrifttube.We

havedetectedneitheranyremainsoftheTHF−signalnorthe

sig-nalcorrespondingtoametastabledecay.Thisdoesnotmeanthat theprocesssuggestedbyIbanescuetal.isnotcorrect:duetohigh excessenergyitprobablyhappensonafastertime-scale.Theonly peakwithslightlynon-standardshapeisthatofCH2−whichhasa

tailtowardslongerflighttimes.Thisindicatesthatitisinfactpartly formedduringtheearlystagesoftheacceleration.

Sulzeretal.[8]reportoccurrenceofTHF−anion,however,at lowerelectronenergies,around2eV.Ithasbeenpointedoutby Neumarkandco-workers[52]thattheTHF−signalmighthavebeen causedbyasmallpresenceofclustersinthesample:theparention isstabilizedintheDEAtoacluster,sincetheneighboringmolecules actasaheatbath.Theclusteringmighthavebeenenhancedinthe experimentsofSulzeretal.sincetheyhaveusedamolecularbeam target,whileinotherstudies,includingthepresentone,stagnant gastargetwasused.

4. Conclusions

Inconclusion, wehaveinvestigated thedissociativeelectron attachmentintetrahydrofuran.Thepresentexperimentsusinga time-of-flightsetuprevealedmuchricherfragmentationpatterns thanpreviouslyreported.ThepartialabsoluteDEAcrosssections areverylow,thedominantfragmentH−hasapeakcrosssectionof 2.3pm2,theweakestdetectedfragmentC

3H3−hasthepeakcross

section0.002pm2.Thefragmentationtowardsthemostabundant

heavyfragmentisnotdrivenbyasymptoticenergeticsbutrather byfastdissociativedynamicsoftheresonantanion.Thespectra revealthreemainDEAbandscenteredaround6.6eV,7.7eVand 8.7eV.Basedonthecomparisonwiththeexcitedstatesofthe neu-tralandionicTHF,thefirstandthelastDEAbandcanbeassigned totheFeshbachresonancescorrespondingtotheholesinspecific molecularorbitalsanda(3s)2electronpair.Thesumofpresent

par-tialcrosssectionagreeswithpreviousdataofthetotalDEAcross sections[32]verywellintheenergyrangeupto8.5eV. Addition-ally,wehaveruledoutmetastabledecayprocesseshappeningin the0.2␮s<t<1␮stimewindow.

Acknowledgements

ThisworkispartoftheprojectNo.PZ00P2132357oftheSwiss NationalScienceFoundation.A.R.M.acknowledgessupportfrom theSNSFshortinternationalvisitgrantNo.IZK0Z2143984andby theMinistryofEducation,ScienceandTechnologicalDevelopment ofRepublicofSerbiaunderprojectNo.17020.

References

[1]B.Boudaiffa,P.Cloutier,D.J.Hunting,M.A.Huels,L.Sanche,Resonantformation ofDNAstrandbreaksbylow-energy(3to20eV)electrons,Science287(2000) 1658.

[2]G.Hanel,B.Gstir,S.Denifl,P.Scheier,M.Probst,B.Farizon,M.Farizon,E. Illenberger,T.D.Märk,Electronattachmenttouracil:effectivedestructionat subexcitationenergies,Phys.Rev.Lett.90(2003)188104.

[3]S.Denifl,S.Ptasinska,G.Hanel,B.Gstir,P.Scheier,M.Probst,B.Farizon,M. Farizon,S.Matejcik,E.Illenberger,T.D.Märk,Electronattachmenttouracil, thymineandcytosine,Phys.Scr.T110(2004)252.

[4]S.Ptasinska,S.Denifl,P.Scheier,T.D.Märk,Inelastic electroninteraction (attachment/ionization)withdeoxyribose,J.Chem.Phys.120(2004)8505. [5]S.Ptasinska,S.Denifl,P.Candori,S.Matejcik,P.Scheier,T.D.Märk,Dissociative

electronattachmenttogasphasealanine,Chem.Phys.Lett.403(2005)107. [6]S.Ptasinska,S.Denifl,P.Scheier,E.Illenberger,T.D.Märk,Bond-and

site-selectiveloss ofH atomsfromnucleobasesbyvery-low-energyelectrons (<3eV),Angew.Chem.Int.Ed.44(2005)6941.

[7]P.D.Burrow,G.A.Gallup,A.M.Scheer,S.Denifl,S.Ptasinska,T.D.Märk,P.Scheier, VibrationalFeshbachresonancesinuracilandthymine,J.Chem.Phys.124 (2006)124310.

[8]P.Sulzer,S.Ptasinska,F.Zappa,B.Mielewska,A.Milosavljevi ´c,P.Scheier,T.D. Märk,I.Bald,S.Gohlke,M.A.Huels,E.Illenberger,Dissociativeelectron attach-menttofuran,tetrahydrofuran,andfructose,J.Chem.Phys.125(2006)044304.

(6)

[9]A.Zecca,C.Perazolli,M.Brunger,Positronandelectronscatteringfrom tetrahy-drofuran,J.Phys.B:Atom.Mol.Phys.38(2005)2079.

[10]P.Mozejko,E.Ptasinska-Denga,A.Domaracka,C.Szmytkowski,Absolutetotal cross-sectionmeasurementsforelectroncollisionswithtetrahydrofuran,Phys. Rev.A74(2006)012708.

[11]M.Fuss,A.Munoz,J.C.Oller,F.Blanco,D.Almeida,P.Limao-Vieira,T.P.D.Do, M.J.Brunger,G.Garcia,Electron-scatteringcrosssectionsforcollisionswith tetrahydrofuranfrom50to5000eV,Phys.Rev.A80(2009)052709. [12]A.R.Milosavljevi ´c,A.Giuliani,D. ˇSevi ´c,M.Hubin-Franskin,B.P.Marinkovi ´c,

Elasticscatteringofelectronsfromtetrahydrofuranmolecule,Eur.Phys.J.D35 (2005)411.

[13]M.Dampc,A.R.Milosavljevi ´c,I.Linert,B.P.Marinkovi ´c,M.Zubek,Differential crosssectionsforlow-energyelasticelectronscatteringfromtetrahydrofuran intheangularrange20◦–180,Phys.Rev.A75(2007)042710.

[14]M.Allan,Absoluteangle-differentialelasticandvibrationalexcitationcross sectionsforelectroncollisionswithtetrahydrofuran,J.Phys.B:Atom.Mol.Phys. 40(2007)3531.

[15]C.J.Colyer,V.Vizcaino,J.P.Sullivan,M.J.Brunger,S.J.Buckman,Absoluteelastic cross-sectionsforlow-energyelectronscatteringfromtetrahydrofuran,NewJ. Phys.9(2007)41.

[16]W.Y.Baek,M.Bug,H.Rabus,E.Gargioni,B.Grosswendt,Differentialelastic andtotalelectronscatteringcrosssectionsoftetrahydrofuran,Phys.Rev.A86 (2012)032702.

[17]L. Chiari,L. Anderson, W. Tattersall, J.R. Machacek, P. Palihawadana, C. Makochekanwa,J.P.Sullivan,G.Garcia,F.Blanco,R.P.McEachran,M.J.Brunger, S.J.Buckman,Total,elastic,andinelasticcrosssectionsforpositronandelectron collisionswithtetrahydrofuran,J.Chem.Phys.138(2013)074301.

[18]M.G.P.Homem,R.T.Sugohara,I.P.Sanches,M.T.Lee,I.Iga,Crosssectionsfor elasticelectroncollisionswithtetrahydrofuran,Phys.Rev.A80(2009)032705. [19]M.Dampc,I.Linert,A.R.Milosavljevi ´c,M.Zubek,Vibrationalexcitationof tetrahydrofuranbyelectronimpactinthelowenergyrange,Chem.Phys.Lett. 443(2007)17.

[20]T.P.D.Do,M.Leung,M.Fuss,G.Garcia,F.Blanco,K.Ratnavelu,M.J.Brunger, Excitationofelectronicstatesintetrahydrofuranbyelectronimpact,J.Chem. Phys.134(2011)144302.

[21]A.Giuliani,P.Limao-Vieira,D.Duflot,A.Milosavljevic,B.P.Marinkovic,S.V.N. Hoffmann,J.Delwiche,M.-J.Hubin-Franskin,Electronicstatesofneutraland ionizedtetrahydrofuranstudiedbyVUVspectroscopyandabinitio calcula-tions,Eur.Phys.J.D51(2009)97.

[22]C.Winstead,V.McKoy,Low-energyelectronscatteringbydeoxyriboseand relatedmolecules,J.Chem.Phys.125(2006)074302.

[23]C.S.Trevisan,A.E.Orel,T.N.Rescigno,Elasticscatteringoflow-energyelectrons bytetrahydrofuran,J.Phys.B:Atom.Mol.Phys.39(2006)L255.

[24]D.Bouchiha,J.D.Gorfinkiel,L.G.Caroh,L.Sanche,Low-energyelectroncollisions withtetrahydrofuran,J.Phys.B:Atom.Mol.Phys.39(2006)975.

[25]M.Lepage,S.Letarte,M.Michaud,F.Motte-Tollet,M.-J.Hubin-Franskin,D.Roy, L.Sanche,Electronspectroscopyofresonance-enhancedvibrationalexcitations ofgaseousandsolidtetrahydrofuran,J.Chem.Phys.108(1998)5980. [26]D.Antic,L.Parenteau,M.Lepage,L.Sanche,Low-energyelectrondamageto

condensed-phasedeoxyriboseanaloguesinvestigatedbyelectronstimulated desorptionofH−andelectronenergylossspectroscopy,J.Phys.Chem.B103 (1999)6611.

[27]D.Antic,L.Parenteau,L.Sanche,Electron-stimulateddesorptionofH−from condensed-phasedeoxyriboseanalogues: dissociativeelectronattachment versusresonancedecayintodipolardissociation,J.Phys.Chem.B104(2000) 4711.

[28]S.P.Breton,M.Michaud,C.Jäggle,P.Swiderek,L.Sanche,Damageinduced bylow-energyelectronsinsolidfilmsoftetrahydrofuran,J.Chem.Phys.121 (2004)11240.

[29]C.Jäggle,P.Swiderek,S.P.Breton,L.Sanche,Productsandreactionsequencesin tetrahydrofuranexposedtolow-energyelectrons,J.Phys.Chem.B110(2006) 12512.

[30]Y.Park,H.Cho,L.Parenteau,A.D.Bass,L.Sanche,Crosssectionsforelectron trappingbyDNAanditscomponentsubunitsI:condensedtetrahydrofuran depositedonKr,J.Chem.Phys.125(2006)074714.

[31]B.C.Ibanescu,O.May,M.Allan,Cleavageoftheetherbondbyelectronimpact: differencesbetweenlinearethersandtetrahydrofuran,Phys.Chem.Chem. Phys.10(2008)1507.

[32]A.Aflatooni,A.M.Scheer,P.D.Burrow,Totaldissociativeelectronattachment crosssectionsformolecularconstituentsofDNA,J.Chem.Phys.125(2006) 054301.

[33]K. Graupner, T. Field, A. Mauracher, P. Scheier, A. Bacher, S. Denifl, F. Zappa,T.D.Märk,FragmentationofmetastableSF−6ionswithmicrosecond lifetimes incompetitionwith autodetachment,J. Chem.Phys.128(2008) 104304.

[34]A.Mauracher,S.Denifl,A.Edtbauer,M.Hager,M.Probst,O.Echt,T.D.Märk. [35]J.Fedor,O.May,M.Allan,Absolutecrosssectionsfordissociativeelectron

attachmenttoHCl,HBr,andtheirdeuteratedanalogs,Phys.Rev.A78(2008) 032701.

[36]O.May,J.Fedor,M.Allan,Absolutecrosssectionsfordissociativeelectron attachmenttoacetyleneanddiacetylene,Phys.Rev.A77(2008)040701(R). [37]O.May,J.Fedor,M.Allan,Isotopeeffectindissociativeelectronattachmentto

acetylene,Phys.Rev.A80(2009)012706.

[38]R.Dressler,M.Allan,EnergypartitioningintheO−/CO2dissociativeattachment, Chem.Phys.92(1985)449.

[39]R.Janeˇcková,D.Kubala,O.Ma,J.Fedor,M.Allan,Experimentalevidenceonthe mechanismofdissociativeelectronattachmentinformicacid,Phys.Rev.Lett. 111(2013)213201,inpress.

[40]B.C.Ibanescu,O.May,A.Monney,M.Allan,Electron-inducedchemistryof alco-hols,Phys.Chem.Chem.Phys.9(2007)3163.

[41]R.Janeˇcková,O.May,J.Fedor,Dissociativeelectronattachmentto methylacety-leneanddimethylacetylene:symmetryvs.proximity,Phys.Rev.A86(2012) 052702.

[42]V.M.Rayon,V.A.Sordo,Pseudorotationmotionintetrahydrofuran:anabinitio study,J.Chem.Phys.122(2005)204303.

[43]J.L.Holmes,F.P. Lossing,Ionizationenergiesofhomologousorganic com-poundsandcorrelationwithmolecularsize,Org.Mass.Spectrom.26(1991) 537.

[44]J.Fedor,P.Cicman,B.Coupier,S.Feil,M.Winkler,K.Gluch,J.Husarik,D.Jaksch, B.Farizon,N.J.Mason,P.Scheier,T.D.Märk,Fragmentationoftransientwater anionsfollowinglow-energyelectroncapturebyH2O/D2O,J.Phys.B:Atom. Mol.Phys.39(2006)3935.

[45]P.Rawat,V.S.Prabhudesai,G.Aravind,M.A.Rahman,E.Krishnakumar,Absolute crosssectionsfordissociativeelectronattachmenttoH2OandD2O,J.Phys.B: Atom.Mol.Phys.40(2007)4625.

[46]J.Fedor,M.Cingel,J.D.Skaln ´y,P.Scheier,T.D.Märk,M. ˇCíˇzek,J.Kolorenˇc,J. Horáˇcek,DissociativeelectronattachmenttoHBr:atemperatureeffect,Phys. Rev.A75(2007)022703.

[47]D.Spence,PredictionoflowenergymolecularRydbergstatesfromFeshbach resonancespectra,J.Chem.Phys.66(1977)669.

[48]M.B.Robin,HigherExcitedStatesofPolyatomicMolecules,AcademicPress, NewYork,1974.

[49]B.C.Ibanescu,M.Allan,SelectivecleavageoftheC Obondsinalcoholsand symmetricethersbydissociativeelectronattachment,Phys.Chem.Chem.Phys. 11(2009)7640.

[50]D.Kubala,K.Regeta,R.Janeˇcková,J.Fedor,S.Grimme,A.Hansen,P.Nesvadba, M.Allan,TheelectronicstructureofTEMPO,itscationandanion,Mol.Phys. 111(2013)2033.

[51]V.I.Khvostenko,A.S.Vorobyov,O.G.Khvostenko,Inter-shellresonancesinthe interactionsofelectronsandpolyatomicmolecules,J.Phys.B:Atom.Mol.Phys. 23(1990)1975.

[52]R.M.Young,M.A.Yandell,M.Niemeyer,D.M.Neumark,Photoelectron imag-ingoftetrahydrofuranclusteranions(THF)n−(1<n<100),J.Chem.Phys.133 (2010)154312.

Figure

Fig. 1 (top) shows the negative ion mass spectrum of tetrahy- tetrahy-drofuran originating from the impact of 8.5 eV electrons
Fig. 2. Partial cross sections for production of anionic fragments in THF.
Fig. 3. Comparison of the sum of present partial cross sections to total cross section from Aflatooni et al

Références

Documents relatifs

As a first test, we compare in figure 2 experimental data and theoretical predictions for the angle-differential elastic cross section for electron scattering from neon atoms in

We have measured absolute dissociative electron attachment cross sections for HX and DX 共 X = Cl and Br 兲 using a trochoidal electron spectrometer equipped with a total ion

University, Manhattan, KS 66506, U.S.A. Abstract - When a slow multiply charged ion captures electrons from a neutral target the angular distribution of the products is sensitive

The 2 u resonance is too sharp in the calculated data, as expected for a fixed-nuclei calculation, but it is also too low in energy (about 0.47 eV instead of 1 eV), probably

The distortion may be minor, for example, the C≡C bond lengthens because the π ∗ orbital into which the extra electron is accommodated is antibonding along the C≡C bond, or

Absolute partial cross sections for the formation of CN − in dissociative electron attachment to HCN and DCN have been measured using a time-of-flight ion spectrometer combined with

The collection electrodes are split into three sections, 1, 2, and 1 cm long, and cur- rent is collected only on the centre section. This compensates, to a large degree, the loss

The present v = 1 cross sections, shown in Fig. 10, agree well with those of Gibson et al. below the resonance region but are slightly higher in the resonance region, as already