• Aucun résultat trouvé

Evolution of graphite structure under irradiation : A new scenario

N/A
N/A
Protected

Academic year: 2021

Partager "Evolution of graphite structure under irradiation : A new scenario"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: cea-02442359

https://hal-cea.archives-ouvertes.fr/cea-02442359

Submitted on 16 Jan 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Evolution of graphite structure under irradiation : A

new scenario

Alain Chartier, Laurent van Brutzel

To cite this version:

Alain Chartier, Laurent van Brutzel. Evolution of graphite structure under irradiation : A new scenario. MMM 2016 - 8th international conference on Multiscale Materials Modeling, Oct 2016, Dijon, France. �cea-02442359�

(2)

EVOLUTION OF GRAPHITE STRUCTURE

UNDER IRRADIATION: A NEW SCENARIO

| PAGE 1

(3)

Framework: decommissioning of graphite from "UNGG"

 Graphite = moderator in "UNGG" → neutrons, temperature  In 11 years of exploitation 2.6 dpa

 Activation of some impurities

i-graphite contains 14C & 36Cl (½ life 5 500 & 3×105 years)

Foreseen Solutions:

 Decommissioning under water interaction: graphite ↔ H2O, O2, CO2

 Treatment to eliminate 14C & 36Cl, (3H) depends on the localization of 14C & 36Cl after

irradiation

 Graphite microstructure evolution under irradiation?

Irradiated graphite in graphite-gas nuclear reactors

Stacking of Graphene sheets

Simulation of the primary damage with molecular dynamics

simulations

Polycrystal graphite Clusters of Crystallites (Nanostructure)

Monocrystal (HOPG)

(4)

Scenarii of radiation damages of graphite

Question:

Neutron damages in nuclear graphite?

Answers:

▪ Some review articles

Heggie (2007)

Marsden, Burchell and Fachinger (2012)

However, few data on Primary Damage State

▪ Two main scenarii proposed to describe radiation damages:

1. Creation of point defects, then

clustering via diffusion and dislocation formation

2. Creation of point defects, then

wrinkling, sliding, and dislocation formation (Heggie & Telling)

(5)

Modeling of irradiations

Dose Effects: Point Defects Accumulation Creation of random Frenkel pairs

Dose rate: 1010 dpa/s

Dose: 0.1 → 1 dpa

300 – 1000 K (relaxation NPT) → Swelling

Frenkel pair

Study of Primary Damage with Molecular Dynamics

Code: LAMMPS

Empirical potential: LCBOP (bond-order)

Primary Damage: Displacement Cascades Primary Knock-on Atom: C

EPKA = 0.5 → 10 keV T = 300 – 1000 K

(6)

Primary damage in graphite

Example: Cascade with 5 keV PKA

Projectile C - direction [100] – 300 K Three Stages: 1. Collision Stage : 2 ps 2. Thermal Spike : 5 ps 3. Relaxation : 10 ps Damage:  No Amorphisation

 Numerous Point defects

 Few Recombination

 No influence of the initial PKA orientation

 Number of vacancies ≈ interstitials

Point Defect Accumulation method

(7)

16 JANVIER 2017

Dose effect from MD – Analysis from curvature

criterion, HRTEM, SAED and XRD calculations

HRTEM SAED

→ Vizualization of defects in graphene planes (MD and HRTEM) → Vizualization of wrinkles (MD analysis)

→ Swelling from size of box (not easy from XRD) → amorphization at 0.10 dpa (SAED and XRD)

MD calculations c c c c

XRD

(8)

Dose effect modeling

Three Steps:

1. Point Defects

2. Pinning on small

disordered cluster and Wrinkling of graphene sheets

3. Growth of amorphous pockets → Amorphisation

(9)

HRTEM from atomic simulations

Common explanation: Decrease of graphene sheet’ size with increasing dose → small graphene sheets in “noodles shape”

What simulations show: graphite amorphizes at 0.10 dpa

G rap he ne she et s in re d, de fec ts in blue

MD 0.04 dpa exp. Tsai et al, JNM (2012) MD 0.10 dpa

2 nm

exp. J. Pageot (CEA)

(10)

Swelling under radiation

Expansion along the c-axis and shrinking of the graphene sheets

Interstitials pushing graphene sheets Wrinkling of graphene sheets: 0.8 dpa simulation experiment dpa disordering wrinkle defects 0 0.036 0.072 0.108 Dose (dpa) (C -C 0 ) 4 (x 1 0 6Å 4) (a-a0) (Å)

c

4

∝ a

Tapaszto 2012 Nature Physics Letters1

(11)

Summary - Conclusion

Primary Damage: Displacement Cascades

- Point Defects (large variety)

- Localized along PKA track

- # Vacancies ≈ # Interstitials → Frenkel pairs

Dose effects: Frenkel Pair Accumulation method - New scenario for Amorphisation in 3 steps:

1. Point Defects

2. Pinning + Wrinkling of graphene sheets

3. Growth of amorphous pockets → Amorphisation

- Swelling due to both defects + wrinkling of graphene sheets

(12)

Direction de l’énergie Nucléaire Département de Physico-Chimie Service de Corrosion et du Comportement des Matériaux dans leur Environnement

alain.chartier @cea.fr

Commissariat à l’énergie atomique et aux énergies alternatives DEN/DANS/DPC/SCCME/LM2T bât. 450SEst

Centre de Saclay| 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 31 68 | F. +33 (0)1 69 08 92 21

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

| PAGE 11

réunion EdF - CEA | 13 Janvier 2014

Thank you for listening

Questions ?

Challenge project – C097073

Références

Documents relatifs

Other operations that can be safely performed on absolutely convergent series are passing absolute values inside the sum, and exchanging sums.. Again,

With the new set of TB parameters we have calculated the low-energy properties of graphite: the Fermi velocity, the Fermi surface, plasmon frequencies, and the ratio of conduc-

In this study, we computed our results using bridged (atoms at the two sides along width are restrained) and cantilevered (atoms at one side along width are restrained)

Searches for a diffuse flux of cosmic neutrinos by the IceCube collab- oration have yielded the observation of an excess of events over the ex- pected atmospheric background [4, 5,

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. Access

Here, we demonstrate that Abcg2 transporter is expressed with two other stem/progenitor cell markers (i.e. Nestin and Musashi1) in distinct and overlapping domains of the

AD: axial diffusivity; DLPFC: dorsolateral prefrontal cortex; FA: fractional anisotropy; IFOF: inferior fronto-occipital Fasciculus; ILF: inferior lateral Fasciculus; M1: primary

In this paper, we have examined in detail how a combined use of relevant models, tools, platforms and benchmarks could be used to define a robust design space exploration