• Aucun résultat trouvé

Including caseine αs1 major gene effect on genetic and genomic evaluations of French dairy goats

N/A
N/A
Protected

Academic year: 2021

Partager "Including caseine αs1 major gene effect on genetic and genomic evaluations of French dairy goats"

Copied!
14
0
0

Texte intégral

(1)

HAL Id: hal-02738980

https://hal.inrae.fr/hal-02738980

Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Including caseine αs1 major gene effect on genetic and genomic evaluations of French dairy goats

Céline Carillier-Jacquin, Helene Larroque, Christèle Robert-Granié

To cite this version:

Céline Carillier-Jacquin, Helene Larroque, Christèle Robert-Granié. Including caseineαs1 major gene effect on genetic and genomic evaluations of French dairy goats. 66. Annual Meeting of the European Federation of Animal Science (EAAP), Aug 2015, Varsovie, Poland. 577 p. �hal-02738980�

(2)

.01

Including αs1 casein gene effect on genomic evaluations of French dairy goats

Céline Carillier

Christèle Robert-Granié, Hélène Larroque

INRA-GenPhySE, Toulouse, France

66th EAAP meeting, 02 September 2015, Warsaw, Poland

SELGEN

(3)

.02

Why adding major gene in genomic evaluations?

αs1 casein major gene in dairy goat

genomic selection : all SNP = equal part of variance

French dairy cattle 1: Adding QTL in genomic evaluation  accuracy +3% to +12 %

Goats with αs1 casein genotypes:

3 861 bucks

2 949 dams of bucks

1 Boichard et al., 2012, Anim Prod Sci, 52: 115-120

823 with 50k genotypes

Alpine

+

Saanen

(4)

.03

Breed differences in αs1 casein allele frequencies

0 2 4 6 8 10 12

α s1 g en o ty p e fr eq u en cy ( % )

Alpine : supremacy of allele A

Saanen : supremacy of genotypes AE, CO and EE

(5)

.04

αs1 casein: a major gene for dairy goat

Multi-breed Alpine Saanen

Milk yield 9 12 7

Fat content 20 24 17

Protein content 41 43 38

Part of genetic variance (%) explained by αs1 casein genotype:

Genetic Model used:

with y: DYD, u: polygenic part, w: αs1 casein genotype random effect e

Tw Zu

y = + +

(6)

.05

Three classes of αs1 casein genotypes (strong, medium and weak effects)

0 2 4 6 8 10 12

E ff ec t o f g en o ty p e o n p ro te in c o n te n t (g /k g )

strong effect medium effect

weak effect

(7)

.06

How to integrate αs1 casein genotype in genomic evaluations?

1.

Based on male phenotypes (DYD) and genotypes

•.

fixed ≈ random effect

•.

no significant effect on milk yield and fat content

0 0,1 0,2 0,3 0,4 0,5 0,6

0,7 +19%

+9%

+53%

C o rr el at io n (D Y D ,G E B V )

(8)

.07

2.

Based on female phenotypes (genotyped or not)

2.1 Predict genotype for females using peeling iterative method2

How to integrate αs1 casein genotype in genomic evaluations?

2 Vitezica et al., 2005, Genet Sel Evol, 37: 403-415

Example (biallelic marker): D d

58,5 41,5

Probability for genotype of animal 2:

è

Frequencies in population (%)

Probability for genotype of animal 3 (%):

DD ?

?

animal 1 animal 2

animal 3

DD Dd dd

32 53 15

frequencies in population (%):

DD Dd dd

58,5 41,5 0

(9)

.08

AA AB AC AE AF AO BB BC BE … FF

Female 1 0,10 0,05 0 0,05 0,25 0,05 0,15 0,10 0 0

Female n 0 0,15 0 0 0 0,25 0 0,35 0,20

How to integrate αs1 casein genotype in genomic evaluations?

2 Vitezica et al., 2005, Genet Sel Evol, 37: 403-415

1)

Random probabilities : each combination of 19 probabilities = level of random effect

2)

3 groups of probabilities : 3 fixed effects (strong, medium and weak effects)

Including probabilities in genomic evaluation:

2.1 Predict genotype for females using peeling iterative method2

probabilities for each 19 possible genotypes

(10)

.09

2.

Based on females phenotypes

2.2 Predict genotype for females using gene content3,4 approach:

multiple trait model using simultaneously pedigree, known genotypes and phenotypes

How to integrate αs1 casein genotype in genomic evaluations?

model for genetic evaluation of phenotype

model for gene contents of each allele ( , … , :

number of copie of allele (0,1 or 2) )

3 Gengler et al., 2008, J Dairy Sci, 91: 1652-1659 4 Legarra and Vitezica, EAAP 2015 session 50 fixed

effect genomic effect

permanent environment

~

polygenic

 

 

 

 

+ +

=

+ +

=

+ +

=

+ +

=

+ +

=

+ +

=

+ +

+

=

6 6

6 6

O

5 5

5 5

F

4 4

4 4

E

3 3

3 3

C

2 2

2 2

B

1 1

1 1

A

e u

Z μ

y

e u

Z μ

y

e u

Z μ

y

e u

Z μ

y

e u

Z μ

y

e u

Z μ

y

e p

W u

Z β

X

y

g g g g g g g

u

i

( , σ

2u

) A

i

0 N

y

A

y

O

(11)

.010 0

2 4 6 8 10 12

c o rr e la ti o n ( G E B V ,D Y D )

Using gene content approach improved GEBV prediction

1)

Random probabilities

2)

3 groups of probabilities

3)

Gene content

Three models used :

iterative peeling

without casein iterative

peeling

2.

Based on females phenotypes

+14% +4%

+8%

(12)

.011

Include αs1 casein genotype in genomic evaluation improved prediction of breeding values

αs1 casein major gene : 40% of genetic variance of protein content

Include αs1 casein effect improved breeding values prediction

Based on male performances :

-

fixed effect ≈ random effect

-

gain Saanen > gain Alpine > gain multi-breed

genomic evaluation

Based on female performances :

è

Predict genotypes of non genotyped females

-

gene content >> peeling iterative

-

gain : 4 to 14% on protein content

(13)

.012

Appendix

(14)

.013

Design of cross validation

reference population

validation set

(252 males born between 2006 and 2009) genotypes

training set

(425 males born between 1993 and 2005 )

predicting equation

DYD in 2013 GEBV

DYD in 2008

r² ( DYDobs, GEBV)=

prediction reliability

genotypes

Références

Documents relatifs

The objectives of this study were: (1) to estimate addi- tive and dominance variance components for fertility and milk production traits in Holstein and Jersey cows using

In the case of a rare recessive favourable allele at the major locus, where the method S G appeared to be the most appropriate, the polygenic variance at generation 5

For genetic evaluation schemes integrating genomic information with records for all animals, genotyped or not, this is often not the case: expected means for pedigree founders

For example, an implementa- tion for US dairy cattle (VanRaden, 2008; VanRaden et al., 2009) requires 3 steps: a) regular evaluation by the animal model, b) estimation of

INRA-SAGA, UR631, 24 Chemin de Borde Rouge, Auzeville, CS 52627, 31326 Castanet-Tolosan Cedex. Modelisation of genomic selection in French

Using real data of the French Lacaune dairy sheep breed, the purpose of this study was to compare the observed accuracies of genomic estimated breeding values using different

Diane Buisson, Jean-Michel Astruc, Guillaume Baloche, Xavier Aguerre, Patrick Boulenc, Francis Fidelle, Béatrice Giral, Pascal Guibert, Patrice. Panis,

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des