• Aucun résultat trouvé

A PARAMETRIC SONAR PERFORMANCE CALCULATOR

N/A
N/A
Protected

Academic year: 2021

Partager "A PARAMETRIC SONAR PERFORMANCE CALCULATOR"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00219529

https://hal.archives-ouvertes.fr/jpa-00219529

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A PARAMETRIC SONAR PERFORMANCE CALCULATOR

Thomas Pederson

To cite this version:

Thomas Pederson. A PARAMETRIC SONAR PERFORMANCE CALCULATOR. Journal de

Physique Colloques, 1979, 40 (C8), pp.C8-137-C8-139. �10.1051/jphyscol:1979824�. �jpa-00219529�

(2)

JOURNAL DE PHYSIQUE Colloque C8, supplement au n°ll, tome 40, novembre 1979, page C8-137

A PARAMETRIC SONAR PERFORMANCE CALCULATOR Thomas B. Pederson

Westinghouse Défense and Eleotronio Systems Centev, Command and Contvol Division, P.O.Box 1897, Mail Stop 687, Blatimore, Maryland 21203, USA.

Résumé.- La prédiction des niveaux de source de fréquence différence et des ouvertures du faisceau, engendrés par un émetteur sonar paramétrique est un processus compliqué, qui entraîne de nombreux calculs et l'emploi de plusieurs courbes et notnogrammes. Le savant ou l'ingénieur ayant souvent be- soin d'une estimation rapide et facile de ces paramètres, on a mis au point un calculateur de type règle à calcul destiné à aider à la conception d'un tel émetteur. Le calculateur donne des valeurs précises pour des réseaux paramétriques fonctionnant en régime non-saturé en utilisant les équations développées pour ce cas par F.H. FENLON. Cette étude décrira les hypothèses utilisées pour la réali- sation des échelles ainsi que les limitations à prendre en compte lors de l'emploi du calculateur.

Abstract.- Predicting the difference frequency source levels and beamwidths which will be developed by a given parametric sonar projector is a somewhat complicated procedure involving a number of cal- culations and the use of several curves or nomograms. Since a scientist or engineer often needs a quick and easy estimate of these parameters, a slide-type calculator was developed as a design aid.

The calculator yields accurate values for arrays operating in the unsaturated regime by using equa- tions developed by F.H. Fenlon for this case. In this paper the assumptions used in the preparation of the scales and the limitations to be kept in mind while using the calculator will be described.

1. Introduction and background.- When a scientist is using or considering the use of a parametric sonar he will need to be able to determine the source le- vel and beamwidth at the difference frequency. Un- fortunately these quantities must be calculated by the use of equations which are somewhat complex. A number of investigators have developed equations for calculating source level and beamwidth at a pa- rametric sonar's difference frequency or have deve- loped families of curves, nomographs and other aids to help the sonar engineer determine these quanti- ties. In this paper, a slide-type calculator is in- troduced that should prove to be a useful design tool. Tbe philosophy followed in this design will be presented along with explanations regarding its use.

2. Parametric gain.- The entire front face of the slide calculator has been devoted to the calculation of difference frequency source level in the form of parametric gain. This is simply the difference bet- ween the source levels at the difference and mean primary frequencies, that is :

G = SL_ - SL where :

G = parametric gain

SL_ = difference frequency source level SL. = mean primary source level

The equation developed by Dr. F.H. Fenlon, currently with ARL-Penn State, for the difference frequency

source level of a parametric source / l / i s : SL_ = 20 log1 0 (PQr0) - 20 l o g1 0 ( | r )

where :

PQ = total rms primary amplitude at the source rQ = Rayleigh distance

fQ = mean primary frequency f_ = difference frequency A = Ej (aT rQ) exp {aT rQ}

where aT=2an-a_ = total attenuation coeffi-

' u cient

f0 f0

A' = Ej (aT rQ j - ) exp {aT rQ j - }

E l (y) " ffi 6 " X dX

0 P0c0 D

where :B = 1 + -rj = nonlinear parameter for liquids k0 = 2u fg/CQ = mean primary wave number cQ = small signal speed of sound

P0 = density of the medium

^ P k0P0 l,2r0

Xl , 2 = p ^

I Q . I J = modified Bessel functions.

Article published online by EDP Sciences and available at

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1979824

(3)

~ 8 - 1 3 8 JOURNAL DE PHYSIQUE

U n f o r t u n a t e l y t h i s equation has proven t o be t o o complex f o r e v a l u a t i o n on a s l i d e - t y p e c a l c u l a t o r . However, i f we r e s t r i c t ourselves t o primary source l e v e l s below t h e l e v e l s where shock waves begin t o develop, i.e., t o t h e unsaturated regime, t h e equa- t i o n s s i m p l i f y immensely. This i s n o t t o o severe a r e s t r i c t i o n as most c u r r e n t parametric sonars ope- r a t e i n t h i s regime. The s i m p l i f i c a t i o n occurs be- cause Xo, XI, X2 <<< 1 i n t h i s r e g i o n and t h e equa- t i o n f o r parametric gain becomes :

where S L ~ = SLO

+

20 loglO fo

This i s t h e equation solved on t h e f r o n t f a c e o f t h e c a l c u l a t o r .

a. Rayleigh Distance, ro

The Rayleigh d i s t a n c e a t t h e mean primary f r e - quency i s the s t r a i g h t f o r w a r d c a l c u l a t i o n normally used,

rO = A/XO = A c o / f 0 where A = a r r a y area

Xo = wavelength a t t h e mean primary frequency cO = small s i g n a l sound speed

Sound speeds o f 1481 and 1520m,$ec were used f o r f r e s h and sea water, r e s p e c t i v e l y .

b. Absorption C o e f f i c i e n t s

The S h u l k i n and Marsh /2/ equations were used i n t h e f o r m a t i o n o f t h e a b s o r p t i o n scales, namely :

2 For fcesh water : a = 2.68 x 10 -2

f

f~

and f o r sea water :

.

40f2 f o r f < 5 kHz

4100

+

f 2

SfT f 2 f

+

2 . 6 8 x 1 0 - ~

-

f o r f > 5kHz

f~

where fT = 21.9 x 10 6- 1520/ (T+273) T = temperature

S = s a l i n i t y i n p p t

A temperature o f 10°C (50°F) and a s a l i n i t y o f sea water o f 35 p p t were the values used i n t h e prepara- t i o n o f these scales.

c. E f f e c t i v e Array Length A '

The parameter A '

,

sometimes c a l l e d e f f e c t i v e a r r a y length, i s g i v e n by :

m

where El ( X )

=/y

e-' dZ

The exponential i n t e g r a l was evaluated using nume- r i c a l techniques /3/ t o generate t h e s c a l e f o r c a l - c u l a t i n g 20 loglO A ' . Equivalent a r r a y l e n g t h can a l s o be used t o determine t h e approximate n o n l i n e a r i n t e r a c t i o n range, i.e., t h e d i s t a n c e r e q u i r e d f o r t h e d i f f e r e n c e frequency souce l e v e l t o b u i l d up t o i t s u l t i m a t e value ( t h e value p r e d i c t e d by t h e c a l - c u l a t o r ) . The product o f e q u i v a l e n t a r r a y length, t h e Rayleigh distance, and t h e downshift r a t i o w i l l y i e l d t h e approximate i n t e r a c t i o n range,

d. Scaled Primary Source Level SL;

The scaled primary source l e v e l i s simply : SL; = SLO

+

20 loglO fo

and i s evaluated i n a s t r a i g h t f o r w a r d manner on one o f the f r o n t s i d e scales.

e. Parametric Gain

The l a s t scale on t h e f r o n t f a c e o f t h e c a l - c u l a t o r evaluates :

* fo

G = SLO

-

20 loglO f

+

20 loglO A '

-

287

-

which gives t h e d i f f e r e n c e frequency source 1 eve1 s i n c e G = SL -

-

SLO.

3. D i r e c t i v i t y and beamwidth.- On t h e reverse s i d e o f t h e c a l c u l a t o r t h e r e a r e scales f o r c a l c u l a t i n g t h e approximate d i r e c t i v i t y index and beamwidth a t t h e d i f f e r e n c e frequency.

a. D i r e c t i v i t y Index

The d i r e c t i v i t y index o f t h e d i f f e r e n c e f r e - quency beam w i l l be very c l o s e t o t h e d i r e c t i v i t y index o f t h e mean primary frequency beam p a t t e r n so t h e equation used f o r t h i s i s :

4lI A fo 2

DI = 10 loglO

7

Co

and again, small s i g n a l sound speeds o f 1481 and 1520m/sec were used f o r f r e s h and sea water, r e s - p e c t i v e l y .

b. Beamwidth

The half-power beamwidth i s g i v e n by one o f two equations, depending upon whether t h e a r r a y i s spreading l o s s l i m i t e d o r absorption l i m i t e d .

(4)

Thomas B. Pederson C8-139

For an a r r a y which i s spreading l o s s l i m i t e d t h e beamwidth i s given by :

2.7 c0

2 s i n - '

-

f o r a r e c t a n g u l a r o r 2

fo

d square a r r a y

63 dB =

1

2 sin-'

-

C0 f o r a c i r c u l a r a r r a y 2 fo d

where d = s i d e l e n g t h o r diameter a s a p p r o p r i a t e and f o r an absorption l i m i t e d a r r a y i t i s :

f o r square o r c i r c u l a r arrays.

Small s i g n a l sounds speeds o f 1481 and 1520 d s e c w e r e used i n t h e p r e p a r a t i o n o f the scales.

Whether t h e a r r a y under c o n s i d e r a t i o n i s spreading l o s s o r a b s o r p t i o n l i m i t e d t h e beamwidth can be found by o b t a i n i n g values from both scales and choosing t h e l a r g e r . This w i l l be t h e appropri- a t e value.

4. C r i t i c a l source l e v e l SLc.- The c r i t i c a l source l e v e l i s t h e mean primary source l e v e l a t which shock waves begin t o form. A t source l e v e l s above t h i s l e v e l t h e equations being solved on the f r o n t f a c e o f t h e c a l c u l a t o r no l o n g e r apply. A c t u a l l y , s i n c e the accuracy becomes worse t h e nearer SLO comes t o SL,,the r e s u l t s should be t r e a t e d w i t h c a u t i o n when SLo i s w i t h i n , say 3 o r 4 dB o f t h e c r i t i c a l l e v e l (see f i g u r e 1). The equation which was used t o c a l c u l a t e t h i s q u a n t i t y /1/ :

191.1 i n f r e s h water SLc = 101ogl~L

-

2010g10f0 + 192.2 i n sea water and the parameter L i s t h e s o l u t i o n t o :

water where 6 = n o n l i n e a r i t y parameter = 3.8 for sea

water The transendental equation f o r L was solved u s i n g i n t e r a t i v e techniques and t h e r e s u l t s f o r v a r i o u s a,, rg values i n c l u d e d as a separate s c a l e on t h e reverse side. The s c a l e f o r SLc i s immediately below i t and completes t h e s o l u t i o n .

5. Conclusions.- I t i s hoped t h a t t h i s c a l c u l a t o r w i l l prove t o be a handy t o o l f o r engineers and s c i e n t i s t s i n v o l v e d i n f i n i te-amp1 i tude sonar. I t i s intended t o g i v e them an easy way t o q u i c k l y es- t i m a t e parametric conversion e f f i c i e n c i e s , beam- widths and the. l i k e which were p r e v i o u s l y somewhat

inconvenient t o o b t a i n .

SCALED MEAN PRIMARY SOURCE LEVEL dB// 1 @PAM - k H z

Fig. 1

-

Comparison o f t h e o r e t i c a l r e s u j t s

References

/1/ Fenlon, F.H., "Parametric S c a l i n g Laws", Westinghouse Report 74-9M7-NONLN-R2, August 22,

( 1974).

/2/ U r i c k , R.J., " P r i n c i p l e s o f Underwater Sound (Second E d i t i o n ) " , McGraw-Hi 11 Book Company, New-York, 1975.

/3/ Abrarnowitz, M. and Stegun, I .E.(Ed).

,

"Handbook o f Mathematical Functions", NBS Applied Mathe- matics Series 55, 1964.

/4/ Mellen, R.H. and M o f f e t t , M.B., JASA

61

(1977) 25-337.

Références

Documents relatifs

For our work we start from the fact that a polynomial vector field with infinitely many limit cycles must contain a graph (bounded or unbounded, see Chapter i) which is accumulated

If our hypothesis holds, we would expect horses to respond to this same vocal order given by this same person by obeying whatever this person’s position and attentional state

The optimal filter designed for such an image does not look like a known low-pass filter but strongly depends on the principle of the sonar image formation in terms of size

[r]

Experimental results demonstrating concurrent mapping and localization (CML) using this approach to early sonar perception are presented, including results from an

The radiation was used to probe a rf capacitively coupled CH 4 plasma for a matrix of conditions, varying power (&lt; 180 W) and pressure (&lt; 1 Torr) in both direct

Cette technique fournit une vue en coupe de l'objet Ctudik : la position longitudinale (dans la direction de pro- pagation du faisceau ultrasonore) d'un rkflecteur

The time-frequency representation of transducer impulse response (PWVD) has proved to be an efficient tool to understand complex wideband signal and separate in the