• Aucun résultat trouvé

Equations aux Différences & Modélisation

N/A
N/A
Protected

Academic year: 2022

Partager "Equations aux Différences & Modélisation"

Copied!
6
0
0

Texte intégral

(1)

Equations aux Différences dans R

Sandrine CHARLES - sandrine.charles@univ-lyon1.fr Arnaud CHAUMOT -arnaud.chaumot@irstea.fr Christelle LOPES -christelle.lopes@univ-lyon1.fr

3 octobre 2016

Bifurcation diagram of the logistic mapXn+ 1 =rXn(1Xn)

May RM. 1976. Simple mathematical models with very complicated dynamics.Nature:459–467.

(2)

0.0 0.2 0.4 0.6 0.8 1.0 2

4 6 8 10 12

x

(

t

)

h = 0.1 h = 0.2

Solution exacte

−2 −1 0 1 2

−3

−2

−1 0 1 2 3

x

f

(

x

)

(3)
(4)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

xn xn+1

0.0 x0 0.2 0.4 x * 0.8 1.0

λ = −1.5 Répulsif

λ = −1 Stable

λ = −0.5

Asymptotiquement stable

λ =0

Asymptotiquement stable

λ =0.5

Asymptotiquement stable λ =1

Asymptotiquement stable λ =1.5

Répulsif

(5)

−2 −1 0 1 2

−2

−1 0 1 2

xn xn+1=f(xn)

2 4 6 8 10

−3

−2

−1 0 1 2 3

n xn

−4 −3 −2 −1 0 1 2

−3

−2

−1 0 1 2

xn xn+1=f(xn)

2 4 6 8 10

−3

−2

−1 0 1 2 3

n xn

0 10 20 30 40 50

nt

λ =1.1 λ =1 λ =0.9

(6)

0 10 20 30 40 50 0.0

0.2 0.4 0.6 0.8 1.0

λ =1.5

xn

xE=0.333333

n Convergence directe

0 10 20 30 40 50

0.0 0.2 0.4 0.6 0.8 1.0

λ =2.7

xn

xE=0.62963

n Convergence avec oscillations

0 10 20 30 40 50

0.0 0.2 0.4 0.6 0.8 1.0

λ =3.1

xn

xE=0.677419

n Cycles de période 2

0 10 20 30 40 50

0.0 0.2 0.4 0.6 0.8 1.0

λ =3.51

xn

xE=0.7151

n Cycles de période 4

0 10 20 30 40 50

0.0 0.2 0.4 0.6 0.8 1.0

λ =3.6

xn

xE=0.722222

n Régime quasi−périodique

0 10 20 30 40 50

0.0 0.2 0.4 0.6 0.8 1.0

λ =3.892

xn

xE=0.743063

n Régime chaotique (1)

0 10 20 30 40 50

0.0 0.2 0.4 0.6 0.8 1.0

λ =3.892

xn

xE=0.743063

n Régime chaotique (2)

0 20 40 60 80

λ

1 e1 e2

N2* n'existe pas biologiquement N2* A.S. (convergence directe) N2* A.S. (oscillations)

N2* instable

Punaise Moustique

Scarabé

Références

Documents relatifs

The notion of very weak solutions (u, q) ∈ L p (Ω) ×W −1,p (Ω) for the Stokes or Navier-Stokes equations, corresponding to very irregular data, has been developed in the last

The Case analysis I and II above show also that the length of the prefix (or suffix) of any dependency in the problem, initial or derived under the Steps 2 and 3.b in the first run

The main idea is based on employing the mentioned above classes of analytic functions to build a mathematical model for image description for classification by either the

A simple mathematical model based on the cancer stem cell hypothesis suggests kinetic commonalities in solid tumor growth.. R Pardal MF Clarke

Littlewood-Paley theory, paradierential calculus with parameters, Besov spaces, strictly hyper- bolic operator, log Zygmund continuity, log-Lipschitz continuity, loss of

We propose to contruct a temporary wave on the surface of the ocean, as a particular solution of the Saint-Venant equations with a source term involving the friction, whose shape

[r]

As a lot of heuristics in artificial intelligence, the tuning of parameters is difficult, but for the proposed strategy, we can reduce them to the population size, the updating