• Aucun résultat trouvé

Needs in omega 3 and ocular pathologies

N/A
N/A
Protected

Academic year: 2021

Partager "Needs in omega 3 and ocular pathologies"

Copied!
28
0
0

Texte intégral

(1)

HAL Id: hal-02804634

https://hal.inrae.fr/hal-02804634

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Needs in omega 3 and ocular pathologies

Lionel Brétillon

To cite this version:

Lionel Brétillon. Needs in omega 3 and ocular pathologies. Journées Chevreul 2011 - Lipids and Brain

2, Mar 2011, Paris, France. pp.1-27. �hal-02804634�

(2)

Needs in omega-3

and ocular pathologies

Lionel BRETILLON, PhD

Eye & Nutrition Research Group Dijon

FRANCE

O H

C H2 C O R2

O P X OH O C H2 OCH CH R1

CH O

C H2 C O R2

O P X OH O C H2 OCH CH R1

CH O

(3)

Aging: a socio-economic issue in the future

0 5 000 000 10 000 000 15 000 000 20 000 000 25 000 000 30 000 000 35 000 000

1950 1990 2000 2005 2030 2050 P opul a ti o n (num be r of pe opl e )

0-19 years 20-59 years 60-75 years

>75 years

Population 2050 vs 2000 >60 years: ×2

>75 years: ×3

>85 years: ×5 in France

(4)

The neurosensory retina: a sensitive target of aging

18

10 12 8

7 6

3 3

3 2 2 9

17

Diabetic retinopathy: ~800,000

Of major concern in the next decades

France Age-related Macular Degeneration (AMD): 1.25 million

Leading cause of vision loss in Western countries

Maculopathies and AMD

2

nd

cause of blindness worldwide

Glaucoma: >800,000

O H

C H2 C O R2

OPX OH O C H2 OCHCHR1

CH O

C H2 C O R2

OPX OH O C H2 OCHCHR1

CH O

O H

C H2 C O R2

OPX OH O C H2 OCHCHR1

CH O

C H2 C O R2

OPX OH O C H2 OCHCHR1

CH O

O H

C H2 C O R2

OPX

OH O C H2OCHCHR1

CH O

C H2 C O R2

OPX

OH O C H2OCHCHR1

CH O

Prevalence of pathologies

after the age of 65 years

(5)

Structural organization of the retina

Retina

vitreous Anterior

chamber

macula lutea

lens cornea

Ganglion cells

Bipolar cells Amacrine cells Horizontal cells

Cones Rods

Pigment epithelium (RPE)

Choroid

(6)

Lipids in the retina

Bretillon et al., Exp Eye Res 2008

Ganglion cells

Bipolar cells Amacrine cells

Horizontal cells

Cones Rods

Pigment epithelium Choroid

0%

20%

40%

60%

80%

100%

Neuroretina RPE/choroid Phospholipids Triglycerides Cholesteryl esters Cholesterol Free fatty acids

Lipids: 25% of dry matter

(7)

opsin

cone rod

11cis-retinal

11

O

(8)

O O

O

P O O

H O

NH

3

+ O O

DHA

C22:6n-3

Phospholipid

25-30% in the rat

15-20% in humans

(9)

Na +

GMPc

Genesis of a membrane potential

Hyperpolarisation

11

O

11

Trans retinal O

(10)

Dratz & Holte, J Nutr 1993

The efficacy of the transduction pathway is

dependent to the activation of rhodopsin

(11)

Litman & Mitchell, Lipids 1996

DHA is crucial in rhodopsin activation

(12)

Chronic dietary deficiency in omega 3 impairs retinal function

1976 Lamptey & Walker, J Nutr

1989 Bourre et al, J Nutr

1993 Yehuda et al, Proc Natl Acad Sci USA

1999 Wainwright et al, J Nutr

1999 Scheaff Greiner et al, Lipids

2001 Moriguchi et al, J Lipid Res

2004 Niu et al, J Biol Chem

2007 Connor et al, Nat Med

Low DHA in the retina is associated with

reduced retinal function

(13)

Bourre et al, J Nutr 1989

DHA deficient rats showed reduced electroretinographic response

- 45%

Onde b de l’ERG

- 38%

Onde a

de l’ERG

(14)

Where does DHA come from?

Oleic acid

18:1n-9

Oleic acid

18:1n-9

20:3n-6 (dGLA) 20:3n-6 (dGLA)

20:4n-6 (AA) 20:4n-6 (AA)

18:4n-3 18:4n-3

20:4n-3 20:4n-3

20:5n-3 (EPA) 20:5n-3 (EPA) 18:3n-6 (GLA)

18:3n-6 (GLA)

-linolenic acid

18:3n-3

-linolenic acid

18:3n-3

Linoleic acid

18:2n-6

Linoleic acid

18:2n-6

22:6n-3 (DHA) 22:6n-3 (DHA) 22:5n-6

22:5n-6

Plants

Animals

Desaturation Elongation

12 15

6

5

But poor efficacy of the conversion pathway (<1-2%)

(15)

A balance between diet and endogenous recycling

Bazan NG, in: Inherited and environmentally induced retinal degenerations, LaVail MM,

Anderson RE, Hollyfield JG eds 1989

(16)

Would adipose tissue DHA correlate with retinal levels?

(17)

DHA in adipose tissue is not associated with DHA in the retina

Bretillon et al., Exp Eye Res 2008

Circulating DHA (to some extent

dietary) poorly participates to the

retinal levels

(18)

Despite cholesteryl esters in the RPE would be carriers of DHA and dietary fatty acids entering the

retina

RPE

Choroid

Neuroretina

Bretillon et al. Exp Eye Res, 2008

(19)

Intraretinal lipid metabolism

Tserentsoodol et al., Mol Vis 2006

(20)

Abrogating LDLR expression mimicks aging of the retina

Accumulation of lipids (incl. cholesterol)

Bretillon et al., Invest Ophthalmol Vis Sci 2008

Fundus (cSLO 488nm)

Reduced retinal functionality

control

apoB

100

,LDLR

-/-

Labelling of cholesteryl esters

(filipin, 350/420nm)

(21)

3 fatty acids and Age-related Macular Degeneration (AMD)

• The leading cause of visual loss in Western countries

• Dysregulations of the retinal pigment epithelium are suspected to play a major role in the pathophysiology of AMD: may be the starting point for the development of maculopathies and AMD

• Risk factors:

- age

- smoking habits

- genetics (ABCA4, ApoE, CFH)

- light, abnormal pigmentation of retinal pigment epithelium - dietary habits (saturated fat, cholesterol)

0 5 10 15 20 25 30 35 40

prevalence of AMD

43-54 55-64 65-74 75-84

years Beaver Dam Study

(4962 subjects, USA)

(22)

Normal fundus Large drüsen

Grading AMD: from maculopathy to severe forms

Criteria:

- Drusen

Size: <63µm – 63-125µm – >125µm Total area

Affecting 1 eye or both

- Pigment abnormalities affecting 1 eye or both - Geographic atrophy

- Neovascularization

4 grades: from

maculopathy to AMD

Hemorrhagy Foveal

neovascularization

Exsudate

Neovascular AMD Geographic Atrophy

(23)

Fish intake, 3 fatty acids and AMD

Meta-analysis from 7 databases

(88,974 people including 3204 AMD)

3 and late AMD

Fish intake and early AMD Fish intake and late AMD

Chong et al., Arch Ophthalmol 2008

(24)

Protection from AMD is associated above 2 servings of fish per week

Seddon et al., Arch Ophthalmol 2007

(25)

…primarily in patients with low intake in linoleic acid

Seddon et al., Arch Ophthalmol 2007

(26)

Mechanism: 3 fatty acids may be converted into

active metabolites in the RPE

(27)

Bazan, Invest Ophthalmol Vis Sci 2007

NPD1 exhibits protective properties against

angiogenesis, apoptosis, inflammation

(28)

Conclusion

• Lipids are essential components of the retina, 3 key actors of its function

• Intraretinal lipid metabolism limits the influence of circulating (dietary) lipids to retinal profile in fatty acids

• Dietary lipids may participate to the prevention of retinal aging and AMD: not only by means of supplementations with 3, but also via ameliorating the ratio between dietary linoleic acid and

3

• The mechanisms of this prevention remains uncertain, but may

involve intraretinal metabolism of fatty acids (active metabolites)

Références

Documents relatifs

Brain Energy Metabolism, Neuronal Activity, Glucose Utilization, and n-3 PUFAs: Early Studies PUFAs are crucial dietary fatty acids for human health as modulators of the

Effects of dietary coconut oil on blood transport and in vivo hepatic metabolism of fatty acids in the preruminant calf... Energy restriction had no effect on the liver fatty

In the preruminant calf, a functional monogas- tric, lipid composition of muscle tissues can be modulated by nutritional factors, mainly by the lipids of the milk

Effect of dietary lipids on fatty acid composition and fertility of fowl semen.. Elisabeth Blesbois, M Lessire,

The influence of both rearing temperature and dietary lipid origin on fatty acid composition of spermatozoan polar lipids in rain- bow trout (Oncorhynchus mykiss). Effect on

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

FIGURE 3 | (A) Overall lipid quality (LQ) effect and DHA supplementation (S) effect of the docosahexaenoic acid (DHA) proportions in brain, retina, heart, liver and red blood

Using a combination of morphological (i.e. immunohistochemical staining of circumvallate papillae - CVP), behavioral (i.e. two-bottle preference tests, licking tests