• Aucun résultat trouvé

Assessing the ecological integrity of endorheic wetlands, with focus on Mediterranean temporary ponds

N/A
N/A
Protected

Academic year: 2021

Partager "Assessing the ecological integrity of endorheic wetlands, with focus on Mediterranean temporary ponds"

Copied!
11
0
0

Texte intégral

(1)

EcologicalIndicators54(2015)1–11

ContentslistsavailableatScienceDirect

Ecological Indicators

jou rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / e c o l i n d

Review

Assessing the ecological integrity of endorheic wetlands, with focus on Mediterranean temporary ponds

Maarten Van den Broeck

a,c,∗

, Aline Waterkeyn

a,b

, Laila Rhazi

c

, Patrick Grillas

b

, Luc Brendonck

a

aLaboratoryofAquaticEcology,EvolutionandConservation,UniversityofLeuven,CharlesDeberiotstraat32,Leuven3000,Belgium

bTourduValatResearchCentreforMediterraneanWetlands,LeSambuc,Arles13200,France

cLaboratoiredeBotanique,MycologieetEnvironnement,UniversitéMohammedV,FacultédesSciencesdeRabat,4AvenueIbnBattouta,RabatBP1014, RP,Morocco

a r t i c l e i n f o

Articlehistory:

Received2October2014

Receivedinrevisedform6February2015 Accepted10February2015

Keywords:

Biologicalindicators Temporarywetlands Ecologicalassessment WFD

a b s t r a c t

EUcountriesarerequiredtoperformanassessmentofallfreshwaterhabitatslargerthan50haby2015 tomeettherequirementssetbytheWaterFrameworkDirective(2000).Toachievethis,anarrayof indicatorsandmultimetricindiceshasbeendevelopedtomonitorEuropeanwaters.Ingeneral,these indicatorsaredevelopedforlargewaterbodies,whiletheyarestilllargelylackingforsmallerwetlands.

Thisisincontrastwiththeconservationvalue,valuableecosystemservicesandtheoftenuniquebio- diversityofthesesystems,andthefactthatlikelarge(>50ha)wetlandstheyarealsocoveredbythe RamsarConvention.In(semi)aridregions,suchastheMediterraneanbasin,smallwaterbodiesareoften ofatemporarynature,areabundantandprovideanimportantsourceofwaterforthelocalpeople,their livestockandagriculture.Thequantityandqualityoftemporarywetlandsare,however,decreasingatan alarmingrateworldwide.Althoughsomemonitoringtechniqueswererecentlyproposed,thereisstill anurgentneedforaconsistentpolicyandauserfriendlysetofmonitoringtoolsfortemporarywetlands thatcanbeappliedindifferentregions.Inthefollowingreview,wepresentawholerangeofindicators usedtomonitordifferenttypesoffreshwaterhabitats,anddiscusshowsomeofthesemethodscould beappliedtotemporarywetlands.Finally,weformulatesomerecommendationsfortemporarywetland monitoringandconservation.

©2015ElsevierLtd.Allrightsreserved.

Contents

1. Introduction... 2

2. Overviewofsuitableindicators... 3

2.1. Abioticindicators... 3

2.2. Bioticindicators... 3

2.2.1. Vertebrates... 3

2.2.2. Macroinvertebrates... 3

2.2.3. Zooplankton... 6

2.2.4. Macrophytes... 6

2.2.5. Phytoplankton... 7

2.2.6. Multimetricindices(MMI)... 7

2.2.7. Modelingapproaches... 7

3. Discussion... 7

3.1. Temporalandspatialregionalvariabilityintemporaryponds... 7

Correspondingauthorat:KULeuven,DepartmentofBiology,CharlesDeberiotstraat32,Box2439,3000Leuven,Belgium.Tel.:+3216373750.

E-mailaddress:Maarten.VandenBroeck@bio.kuleuven.be(M.VandenBroeck).

http://dx.doi.org/10.1016/j.ecolind.2015.02.016 1470-160X/©2015ElsevierLtd.Allrightsreserved.

(2)

2 M.VandenBroecketal./EcologicalIndicators54(2015)1–11

3.2. Monitoringguidelinesfortemporarywetlands... 8

3.2.1. Dryphase... 8

3.2.2. Aquaticphase... 8

3.3. Concludingremarks... 9

Acknowledgments... 9

References... 9

1. Introduction

Wetlandsareoneofthemostbiologicallydiverseecosystemson earth(MitschandGosselink,2007).Theyusuallyhouseadiverse faunaandflora,includingmanyrareandthreatenedspecies(Keddy, 2010).Wetlandsalsoperformmanyimportantecosystemservices, includingwaterstorage,carbonsequestration,floodreduction,sed- imenttrappingandreducing theeffectsofpesticides andother typesofpollutionthroughfiltration(Costanzaetal.,1997;Joyce, 2012).Althoughwetlandsonlycover6%ofthetotallandsurface (NaimanandDécamps,1997),thevalueoftheseareasisestimated torangebetween49billionto3.4trillioneurosperyear,measured asthebudgetneedediftheseservicesweretobereplaced(Schuyt andBrander,2004).AccordingtotheRamsarConvention(Ramsar, 2013),wetlandsincludemarshes,peatlandandfens,ditches,lakes, ponds,lagoons,floodplains,estuariesand coastalzones(includ- ingcoralreefs)notdeeperthansixmeters(atlowtideincaseof tidalsystems).Theyarecharacterizedby:(i)awatersaturatedsoil, (ii)adifferentsoilcompositioncomparedtothesurroundingnon- wetlandareasand(iii)specificallyadaptedvegetationthattolerates highwaterlevelseitherpermanentlyortemporarily,dependingon thetypeofwetland(Maltbyetal.,2009).

Ingeneral,highpressureduetohumanpopulationgrowthoften resultsinthedisappearanceofnaturallandscapecomponents,such asnaturalwaterbodiesandriparianzones.Globally,awetlandloss of50%inthelast centuryiscommonlyreported(Finlaysonand D’cruz,2005), and differentmodelspredicta lossrangingfrom 11%to62%by2080forcoastalwetlands alone(Nicholls,2004).

Togetherwithintensifiedagriculture,anthropogenicpressurehas also led to diffuse pollution and eutrophication in freshwater ecosystems(Arheimeretal.,2005).Thislossanddegradationof wetlandsingeneralandtheirecosystemservicesisfurtheraccel- eratedbyclimatechangeandintroductions ofinvasive species.

Despite theurgent need of protection of wetlands, monitoring andconservationareoftenhamperedbysometimesinconsistent andcontradictoryinternationalagreementsandnationalpolicies (Turner et al., 2010), which makes their ecological assessment difficulttoachieve. Even thoughthe socio-economicvalue and ecologicalimportanceof wetlandsystemshaswidely (butonly recently)beenaccepted,particularlyinthesubtropics,norecovery hasyetbeenobserved(Prigentetal.,2012).

TheWaterFrameworkDirective(WFD)(Directive2000/60/EC) commitsEuropeanUnionmemberstatestoachievegoodqualita- tiveandquantitativestatusofall(groundandsurface)waterbodies by2015accordingtoasetofstandardcriteria.Inordertoassess thecurrentstatus ofEuropeansurfacewaters andmonitorany changesaftermanagementpracticesareimplemented,awidearray ofindicatorsweredeveloped,notonlybasedonstandardchemi- calparameters,butalsoonbiologicalcharacteristics,focusingon macrophytes,fish,phytoplanktonandbenthicmacroinvertebrates (Soliminietal.,2009).Manyindicatorshavebeendevelopedfor differenttypesofaquaticecosystemsrangingfromsmallstreams tolargelakesasreviewedinBirdandDay(2010)andBirketal.

(2012).However,theWFDmonitoringprogramsdonotincorpo- rateassessment techniquesfor temporarywetlands. Infact,the WFDcurrentlyexcludesmosttemporarysystems,sincemanyof themaresmallerthanthestatedsizethresholdof50ha.Onthe otherhand,theNatura2000NetworkandtheRamsarConvention

dohaveaspecialresolutionontemporarywetlands(Ruiz(2008) andRamsarResolutionVIII.33,respectively)thatsuggeststheneed formonitoringprogramsbasedonbiologicalindicatorstoprotect andmanagetemporarywetlands.

In arid and semi-arid regions, temporary waters are often very abundant and are an important water source (Brendonck andWilliams,2000;Williams,2006;Bouahimetal.,2011).They areusuallydefinedaswetlandsthatoccurinendorheic depres- sions,characterizedbyalternatingdryandwetphases,wherethe wetphase is sufficientlylongtoestablish thespecificsoil con- ditionsand floral and faunal communities of ephemeral ponds (Williams,2006).Theyoftenhousediverseplantandanimalcom- munities (Williams, 1997; Blaustein and Schwartz, 2001) and contributetremendouslytoregional(gamma)biodiversity(Gibbs, 2000;Nicoletetal.,2004;Williamsetal.,2004),sometimeseven morethanlargewaterbodies(Biggsetal.,2014).Theyoffer(tem- porary)housingtobothgeneral(opportunistic)speciesaswellas tounique(temporarypondspecific)speciesthatareadaptedto livingunder time stressand extremeenvironmentalconditions (Grillasetal.,2004).Unfortunately,temporarywetlandsareoften neglectedanddisappearatanalarmingrate,withpercentageloss duringthelastcenturyrangingfrom60%to97%indifferentparts oftheworld(BrendonckandWilliams,2000;Nicoletetal.,2004;

Rhazietal.,2012).Duetotheirsmallsizeandshallowness,these habitatsarepoorlybufferedandeasilydestructedordegradedby humanactivities,suchasurbanization,agricultureandpollution (Rhazietal.,2012).Additionally,climatechangeisexpectedtohave amuchgreaterimpactonthesesmallwatervolumescomparedto largerlakes(Parmesan,2006).Therefore,vigilantmonitoringand conservationofthesesystemsiscrucial.Ontheotherhand,climate changecouldalsoincreasethenumberofhabitatsbytransforming currentlyperennialsystemsintotemporaryones.

Mediterraneantemporarypondsareapeculiartypeoftempo- rarywetlands,whichmainlyoccuraroundtheMediterraneanbasin insouthernEuropeandNorth-Africa,butalsoinotherregionsexpe- riencingaMediterraneanclimate(i.e.mildandrainywinters,hot anddrysummers),suchasthesouthwesterncoastalregionofSouth Africa, South-WestAustralia, California and Chile(Grillas etal., 2010).TheMediterranean temporaryponds insouthern Europe areincludedas aEU PriorityHabitat undertheauspicesofthe HabitatsDirective(Naturacode3170,92/43/CEE,21May1992).

Thesepondsharborseveralrareorthreatenedspeciesofplants, amphibiansandinvertebrateslistedoninternationalconventions (HabitatsDirective,theBernConventionandtheIUCNRedList) (Grillasetal.,2004).TheRamsarConventionisalsoimplemented intheMediterraneanWetlandsStrategy,aimedat“stoppingand reversingthelossanddegradationofMediterraneanwetlandsas acontributiontotheconservationofbiodiversityandtosustain- abledevelopmentintheregion”(Ramsar,2013).However,lackof politicalrecognitionofsmallwaterbodiesasanentityandvitalpart ofthewaterenvironmentremainsunacceptablyhighthroughout Europe(Oertlietal.,2005b).Currently,effortsaremadetoempha- sizetheneedtoprotectandincludesmall(temporary)watersinthe WFD,suchasthe“workshopontheprotectionandmanagementof smallwaterbodies”whichtookplaceinNovember2013andwas organizedbytheEuropeanEnvironmentalBureau,inco-operation withtheEuropeanCommission,theLithuanianPresidencyandthe FreshwaterHabitatsTrust(Biggsetal.,2014).

(3)

M.VandenBroecketal./EcologicalIndicators54(2015)1–11 3

In this paper, we do not aim at presenting an exhaustive overviewofallexistingindicatorsforwetlandsthatarecurrently usedoravailable.Instead,weaimtocriticallyreview examples ofdifferentindicatorsthatweredevelopedtoassesstheecolog- icalqualityofendorheicwetlands ingeneralandevaluatetheir usefulness for temporary wetlands more specifically. Although theseindicatorscannotsimplybeextended,webelievethatthey are a good starting point. Using thorough ecological research, theyshouldthenbemodifiedandcalibratedtoberepresentative for temporaryaquaticsystems. We also reviewnovel indicator approachesbasedspecificallyontheecologyoftemporarywet- lands.

2. Overviewofsuitableindicators

Niemi and Mcdonald (2004) define ecological indicators as componentsof structural,compositional, and landscape related processesthatareusedtoquantifyhumanimpactonecosystems.

Theseindicatorsmaybeofachemical,physicalorbiologicalnature.

Sinceecologicalindicatorsareessentialcomponentsofthewetland ecosystem,understandingtheroletheyplayintheecosystemis vital(Innisetal.,2000).Bycorrelatinggroupsofbioticvariables, suchasspecies richnessand lifehistorytraits,withabioticfac- tors,suchashydrology,oxygenconcentration,salinity,nutrient andpollutantlevels,theindicatorvalueofsuchbioticfactorscanbe assessed.Traditionally,onlyabioticindicatorssuchaswaterchem- istrywereusedtoassessanthropogenicdisturbance.Lateron,biotic indicatorswerepreferredsincetheyintegrateoverallwaterand habitatqualityandthereforedocumenthowepisodicandcumu- lativedisturbancesimpacttheecologicalintegrityofanecosystem (Burtonetal.,1999).Nowadays,modernstatisticalapproachesare usedtoconstructindicatorsfordifferenttypesofhabitats.Such a statistical approach is based oncalculating distance matrices (e.g.Bray–Curtisdistances,Euclidiandistances)from(a)bioticvari- ablesbetweensamplingsites.Then,byusingManteltests(Mantel, 1967)orothermatrixcorrelationtests,communityconcordance canbeassessedbetweenthesematrices,asdescribedbyforexam- plePadialetal.(2012),toprovideinformationonhowcommunities arecorrelatedwiththemeasuredenvironmentalvariables.

Morethan75studieswerereviewedtoselectindicatorsofvar- iousfreshwaterhabitats.Table1summarizesdifferentindicator groups,includingsomespecificexamples,theiradvantages and disadvantages,andindicatesforwhichtypeofhabitatandanthro- pogenicdisturbance/pressuretheywereoriginallydeveloped.

2.1. Abioticindicators

Abioticindicatorsarespecificsoilorwaterconditionsthatcan beusedtoquantifythelevelofanthropogenicdisturbanceimpact- ingthewetlandecosystem.Theycanbedividedintophysicaland chemicalindicators.Mostphysicalindicators(e.g.soilgranulom- etry,%of organicmatterandsediment redox potential)canbe impactedbylanduseandchangesinthehydrologyofthesystem suchasdrainage.Hydrologicalchangeshaveanimpactonthedura- tionofflooding,maximumdepthandnumberoffloodingevents peryearoftemporarywetlands.Chemicalindicators(e.g.pH,con- centrationsofions,dissolvedgases,pollutantsandnutrients)are potentiallyusefulfordetectingandquantifyingthelevelofenvi- ronmentalstressimpactingtheecosystem(Feldetal.,2009).For example,measuringthenutrientconcentrations(e.g.totalnitrogen (tN),totalphosphorus(tP),ammonium(NH4+),orthophosphates (PO43−)andnitrates/nitrites(NOx))inthesoilorwatercolumn cangiveanindicationofthelevelofeutrophication,whilethecon- centrationofionsmayreflectsecondarysalinizationandpHvalues giveanideaofthelevelofacidification.Specificallyforwetlands

andshallowlakeswithfluctuatingwaterlevels,thecorrectproduc- tivityassessmentisimportantfordistinguishingbetweennatural andanthropogeniceutrophication(Elkiathietal.,2013).Forexam- ple,Golterman(2004)describedaccurateP-fractionationmethods tomeasuretheP-bindingcapacityofwetlandsedimentsasanesti- mationofeutrophication(asthisrepresentstheP-bioavailability forprimaryproducers).Toassessthedegreeoforganicpollution, chemicalandbiologicaloxygendemand(CODandBOD)testscan beusedsincetheyareanindirectmeasureoftheamountoforganic componentsthatcanbebrokendown(i.e.oxidized,biologicallyor chemically)byaerobicorganismsinthewatercolumn(Kadlecand Wallace,2008).

2.2. Bioticindicators

Biotic indicators or bio-indicators can involve single indi- cator species or entire assemblages/communities whose pres- ence/absence, abundance or diversity patterns can provide information about ecological changes and health of a system (AngermeierandDavideanu,2004;CousinsandLindborg,2004).

Animalindicatorsforaquaticsystemsmainlyfocusonmacroin- vertebrates,since theyarewellstudiedandhave a widespread distribution (Resh, 2008). Many bio-indicators are also based on macrophytes and phytoplankton (Resh, 2008; Bornette and Puijalon,2011).Below,weevaluatethesuitabilityofdifferentani- malandplantgroupsthatarepresentintemporarypondsasbiotic indicatorsForeachgroup,thisassessmentisfollowedbyapresen- tationofsomespecificexamples(seealsoTable1),makinguseof speciescomposition,communitystructureanddiversityofassem- blages/communities,oronfunctionaltraitsofselectedspecies.

2.2.1. Vertebrates

Althoughfisharethemostcommonvertebrategroupusedas biotic indicators in aquatic environments (e.g. indices of biotic integrity,physiological/behavioraltraits,etc.(AdamusandBrandt, 1990)),theyarelackingin mosttemporarywatersandwillnot furtherbediscussed.Similarformammals,althoughrelativelysim- plytoidentify,theirpresenceishighlyvariableandisaffectedby migration(CroonquistandBrooks,1991).Foramphibians,arela- tivelyeasywayofquantifyingtheirabundances(especiallyAnura) hasbeendevelopedviatheircallintensity,asusedintheWiscon- sinIndex(WI)(Balcombeetal.,2005;Paloskietal.,2014).Although itisnotalwayspossibletoquantifyexactnumbersofindividuals, thismethodischeap,relativelyfastandnon-invasive.Rarestud- ieswithwaterfowlhaveshownsomepotentialfortheiruseasa bioindicator,withcontrastingbirdcommunitiesinpristinehabi- tatscomparedtoheavilyimpactedhabitats,bothonalocaland regionalscale(AmatandGreen,2010).Birdspeciescomposition anddiversityingeneralcanthereforemainlyactasanindicatorof landusealteration,habitatfragmentation,andotherhumaninflu- ences.Whilewaterfowlcaneasilybeidentified,haveahighsocietal valueandawell-knownlifehistory,theyarehighlymobileandare oftenmoreaffectedbyhabitatcharacteristics(e.g.watersurface, vegetation)andseasonthanbywaterquality.

2.2.2. Macroinvertebrates

Macroinvertebratesarethemostcommonlyusedorganismsas aquaticbioindicatorsbecauseoftheirwell-knownlifehistoryand ecology(RosenbergandResh,1993;Innisetal.,2000).Abundance andcompositionofmacroinvertebrateshavebeenusedvariablyto developsometimescountryspecificbiotic indices.Invertebrates areusually highlyadaptedtoa particularenvironment, making themsusceptibletostressorssuchaslackofoxygenorhighsalinity (Keddy,2010),andarethereforeintegratedintheWFD(ascompo- sitionandabundanceofbenthicinvertebrates).Oertlietal.(2005a) developedarelativelycost-efficientmethodforassessingthestatus

(4)

4M.VandenBroecketal./EcologicalIndicators54(2015)1–11

Table1

Overviewofindicatorsusedforsurfacewatermonitoring,withemphasisonlenticwetlandsystems.Thedifferentindicatorgroupsarepresentedwithsomespecificexamples,alsomentioningtheirindicatorvalueforthewetland typeforwhichtheyweredeveloped,theiradvantagesanddisadvantagesandtherespectivereference(s).Bioticintegrity:definesthegeneralstateoftheecosystemfunctioning.

Indicatorgroup Indicator Indicativeof Wetlandtype Advantages Disadvantages References

Abioticindicators Concentrationsof nutrientsandions

-Eutrophication -Salinization -Acidification

Allwetlands Easytomeasure Snapshotofcurrentstate Yangetal.(2008)

COD/BOD Organicpollution Allwetlands CODfasterthanBOD CODnodifferentiation

betweenbiological active/inactivesubstances

KadlecandWallace(2008)

Sediment P-bindingcapacity

Eutrophication Allwetlands Highsensitivityandaccuracy towardsotherP-fractionation methods

Golterman(2004)

Vertebrates WisconsinIndex (WI),frogcall intensity

Bioticintegrity Allwetlands -Cheapandrelativelyfast Non-invasive

-OnlyforAnura -Notalwayspossibleto estimateabsolutenumbers

Paloskietal.(2014)

Diversityof waterfowl

-Landcoveralteration -Habitatfragmentation

Allwetlands -Highsocietalvalue -Well-knownlifehistoryand identification

-Moreaffectedbysiteand seasonthanbywaterquality -Mobilityandmigrations

BeckandHatch(2009)

Macroinvertebrates PLOCH -Eutrophication -Organicpollution

Ponds Relativelyeconomical Oertlietal.(2005a)

Diversityofhigher taxaofColeoptera

Bioticintegrity Mediterranean

ponds

-Fast

-Nodetailedidentification needed

Sánchez-Fernándezetal.

(2006)

MIdiversity -Humandisturbance -Phosphorousconcentration -Pesticides

-Eutrophication

Mediterranean ponds

Lessdetailedidentification required(genuslevel)

Interannualvariationnot considered

Trigaletal.(2007,2009)

Coleoptera diversity

-Magnesiumconcentration -Conductivity

-Turbidity

Temporary wetlands

-Cheap Limitedperiodperyearwhere

samplingcanoccur

Gutiérrez-Estradaand Bilton(2010)

Zooplankton ACCO(aspartof QAELS)

-Nutrientinput -Salinity -Organicpollution

Mediterranean wetlands

-Occuringreatnumbers -Easilycaptured -Highsensitivitytowards disturbances

-Knowninteractionswith macrophytesand phytoplankton-Limited mobility

-Lowperceivedsocietalvalue -Seasonal/dailyfluctuations -Difficultidentification

Boixetal.(2005)

-Hatchingofeggs -Diversityof unhatchedeggs

Physicalandchemical disturbances

Temporaryand permanent wetlands

-Easyandcostefficient sampling,possibleduring wholeyear

-Deeperlayerswitheggs availabletoreflectpast changes

Difficultieswithdetermining diversityofeggs

(hatching/identification)

AngelerandGarcía(2005), Vandekerkhoveetal.

(2005)

Macrophytes WMI Eutrophication

Organicpollution

Lakes -Immobile

-Wellknownidentification andlifehistory

-Susceptibletostress

-Sometimeslongrecovery timeafterdisturbance -Variablesuccessionpatterns

BornetteandPuijalon (2011),Croftand Chow-Fraser(2007)

Multispectral remotesensing

Physicalandchemical disturbances

Allwetlands Largeareasatonce Reflectionsfromdifferent vegetationspeciesaredifficult todistinguish

Adametal.(2010)

(5)

M.VandenBroecketal./EcologicalIndicators54(2015)1–115 Table1(Continued)

Indicatorgroup Indicator Indicativeof Wetlandtype Advantages Disadvantages References

Phytoplankton DIWC -Pesticides

-Sedimentation -Habitatalteration

-Marshes -Estuaries

-Longhistoryofuse -Cosmopolitandistribution -Lowsamplingeffort

Lowperceivedsocialvalue Resh(2008)

Multimetric indices(MMI)

TrophicStateIndex (TSI)

Eutrophication Lakes -Relativelyeasytomeasure

-Canbeappliedforwhole rangeofstandingwaters

Snapshotofcurrentstate Carlson(1977)

QAELS -Nutrientinput

-Salinity -Organicpollution

Mediterranean wetlands

SeeACCO SeeACCO Boixetal.(2005)

WZI BioticIntegrity Lakes -Occuringreatnumbers

-Easilycaptured -Highsensitivitytowards disturbances

-Knowninteractionswith macrophytesand phytoplankton-Limited mobility

-Lowperceivedsocietalvalue -Seasonal/dailyfluctuations -Difficultidentification

LougheedandChow-Fraser (2002)

MMIformacroin- vertebrates

Eutrophication Arableditches -Lifehistoriesandecology oftenwellunderstood -Oftenspecializedand sensitivetowardsdisturbances -Widespreadandabundant -Limitedmobility

-Lowperceivedsocietalvalue -Communitiesmaybe predatedselectivelybybirdsor fish

Verdonschotetal.(2012)

PSYM Bioticintegrity Pondsand

canals

-Rapidassessment -Nodetailedidentification neededformacroinvertebrates

OnlydevelopedforUK Biggsetal.(2000)

LEMN Eutrophication Shallowcoastal

lagoons

-Changesinstructural hydrologicpatternsareoften theunderlyingcausefor changesinbiological correlations

-Sometimeslong-termdata available

Extensivemeasurements required

Souchuetal.(2000), Brehmeretal.(2011)

Predictivemodeling RIVPACS Bioticintegrity (UK)rivers -O/Eratiosareeasyto interpret

-Standardizedstatistical modeling

-SometimesnoReference conditionsleft

-Hastobedevelopedforeach region

Wrightetal.(1998)

(6)

6 M.VandenBroecketal./EcologicalIndicators54(2015)1–11

ofSwissponds,calledPLOCH(‘Plans(PL)d’eau(O)suisses(CH)’).

Thequalitystatusisallocatedbasedonthepresence/absenceof aquaticGastropodaand Coleopteraand theabundanceofadult Odonata(inadditiontoquadratbasedpresence/absenceofmacro- phytes,andabundanceofadultAmphibia).Thenumberofgenera orevenfamiliesofaquaticColeoptera(whichsparestheeffortof detailedspeciesidentifications)wereshowntobeusefulforfast, cost-efficientmonitoringoftheoverallqualityofSouthernSpan- ishlenticfreshwaterecosystems(Sánchez-Fernándezetal.,2006).

TheuseofmacroinvertebratesasbioindicatorsforSpanishwet- landsand Mediterraneanponds ingeneralhasbeen studiedas well.Trigaletal.(2007),forexample,foundthat thepondcon- ditionindex (toassess humaninduceddisturbance) alongwith pesticidesandphosphorousconcentration,werethebestpredic- torsofmacroinvertebratecommunities.Inafollow-upstudy,an indexwascreatedforthesamepondsusing differentmacroin- vertebratediversitycharacteristicsthatchangedwithincreasing levelsofeutrophication(Trigaletal.,2009).Also,fortemporary pondsGutiérrez-EstradaandBilton(2010)showedthatthediver- sityofColeopterawashighlycorrelatedwithdepth,conductivity, turbidityandmagnesiumconcentration.Anotherexampleisthe RICindex(‘richnessofinsectsandcrustaceans),developedbyBoix etal.(2005).Thismeasurementof taxonrichnessis thesumof thenumberofcrustacean,adultColeopteraandHeteropteragen- era,plusthenumberofimmatureinsectsandispartoftheQAELS index(Catalanfor‘waterqualityoflenticshallowenvironments’).

2.2.3. Zooplankton

Althoughtheyare notincludedin theWFD, thereare many characteristicsofzooplankton(microcrustaceans)thatmakethem usefulasbioindicatorsespeciallyinlenticwaterbodies(Lougheed andChow-Fraser,2002;Boixetal.,2005):(i)theyoccuringreat numbersandareeasilycaptured,(ii)theircommunitystructure variesaccordingtotrophicstatedifferencesandrespondsquickly tochangesintheenvironment,(iii)trophicinteractionsbetween microcrustaceansandphytoplanktonaswellasmacrophytesare wellknownand(iv)theyhaveahightaxonomicresolutionallowing verydetailedecologicalassessments.Incaseofproblemstoiden- tifyallgroupsdowntospecieslevel,evenamixed-taxonresolution canbeappliedtoobtainacceptableresultsinamorecost-efficient way.ThisisillustratedbytheACCOindex,aspartoftheQAELS- indexforMediterraneanwetlands(Boixetal.,2005).Thisindex isbasedontherelativeabundanceofzooplanktongroups(ACCO:

AbundanceofCladocera,CopepodaandOstracoda),andassesses thetaxonsensitivitytowaterquality.Nevertheless,zooplanktonas anindicatorgrouprequireshighdeterminationskillsandusually hasalowperceivedsocietalvalue.Moreover,seasonalorevendaily fluctuationscanoccurmakingthetimingofsamplingtheactive communitiesanimportantfactor.

Tosurviveperiodicunsuitableconditions(suchasdrought,pre- dation,lowtemperaturesoroxygenlevels),zooplanktonspecies producerestingeggsthataccumulateasrestingeggbanksinthe soiland from which theyrecolonize thehabitat when suitable conditionsrestore(BrendonckandDeMeester,2003;Angelerand García,2005).TheconceptualstudybyAngelerandGarcía(2005) suggeststhattheprocessofhatchingfromtheeggbankscanbe disturbedbybothphysicalandchemicalstressorsandmaythere- forebeusedasanindicatorforanthropogenicstress.Thisallows monitoringtheecologicalintegrityofsystemswhenitisdifficult tosampletheactivecommunities.Itcanalsobeusedtocomple- mentthesnapshotsamplingofactivecommunitiesastheeggbank integratestemporalvariationincommunitydynamics.Sediment samplingcaneasily bedoneyear-round, even whenponds are dry.Deepersedimentlayerscanevenbesampled(usingasedi- mentcore)toreconstructpastchangesonthebasisofbiological remainsand liferestingeggsarchivedin thesediment(Cousyn

etal.,2001;WhitmoreandRiedinger-Whitmore,2014).Astudy byVandekerkhoveetal.(2004)showedthatitispossibletoesti- matethebiodiversityofcladoceransinshallowlakesbydirectly identifyingtheephippialeggsusingmorphologicalcharacteristics.

Asaresult,onlyasinglesamplingeffortisrequiredandsediment samplescanbeprocessedquicklyaftercollection.Identificationof restingstagesisnotyetstudieddowntospecieslevelinalltaxa,so adequatedeterminationkeysarerequired(Vandekerkhoveetal., 2004).

2.2.4. Macrophytes

Mostexamplesofstudiesinwhichplantcommunitiesareused toassess ecologicalquality ofa habitatconcern terrestrialsys- tems(Bobbinketal.,2010).However,macrophytesalsohavean importantindicatorvalue inaquaticenvironments due totheir well-knownlifehistoriesandsuccessionpattern,susceptibilityto stress,immobilityandtherelativeeaseofidentification(Bornette andPuijalon,2011).Aquaticplantsresponddirectly(throughcom- petitionforlightandnutrients)orindirectly(throughfoodweb interactions)tochangesinwaterquality.Especiallyeutrophica- tionisamajorstressorforaquaticbiodiversity,andparticularly formacrophytes,asshownbyRossetetal.(2014).Bornetteand Puijalon(2011)reviewedthedifferentresponsestoabioticfactors ofaquaticplantsinfreshwaterhabitats.Thisreviewshowsthat functionaltraits,dispersalanddynamicsofaquaticplantcommu- nitiesarenotonlyimpactedbyeutrophication,butalsobyother environmentalparameters,includinglight,temperature,substrate characteristicsandwatermovements.Astudyof110boreallakes ofFinland(Alahuhtaet al.,2013)shows that submergedplants aremoredependentonwatertransparency,nutrientconcentration andcarboninthewaterthantheemergentvegetation.Incontrast, emergingmacrophytesareonlyinfluencedbythelowavailabil- ityoflightintheearlystageofdevelopmentandcanusecarbon dioxidefromtheair.Theseemergingplantscanalsoobtainnutri- entsfrom thesediment andare thereforeless related towater quality. Macrophyte community composition and abundanceis alsopartoftheindicatorsintegratedintheWFD(Dudleyetal., 2013).It is alsogenerallyaccepted thatthere isa positive cor- relationbetweenthediversityandcomplexityofvegetationand diversityofvegetationdependentanimaltaxa(Nicoletetal.,2004).

CroftandChow-Fraser(2007)developedaWetlandMacrophyte Index(WMI)fortheGreatLakestoinfertheecologicalcondition ofthewetlandsbasedonpresence/absenceofemergentandsub- mergedmacrophytespecies.Amacrophyte-basednutrientindex forSwisspondswasdevelopedbySagerandLachavanne(2010), wherebytheecologicalresponsetototalphosphorouswasmea- suredusingindicatorvaluesandspeciescover.Alsointemporary pondsin southwestPortugal, effortshavebeenmade todistin- guishdifferentpondtypesbasedonpresence/absenceofselected indicatorplantspecies,whichhelpsdecisionmakersinapracti- calwaywithassessingtemporarypondstatus(Pinto-Cruzetal., 2011).Similarly,intemporarypondsonbothsidesoftheStraitof Gibraltar(IberianPeninsulaandMorocco),theplantcommunity structureisrelatedtonutrientloading,temperatureandprecipi- tation(Lumbrerasetal.,2012).Lastly,therichnessandabundance ofrareandtemporarypondspecificspeciesareagoodindicator ofchemicalandphysicaldisturbancesintemporaryponds(Rhazi etal.,2001b;Bouahimetal.,2014).Rareandtemporarypondspe- cificspeciesarenottolerantofdisturbances,impactingnegatively theirrichnessandabundance.

Submerged and emergent macrophytes in wetlands can be mappedbyremotesensingtechnology(Adametal.,2010;Dekker andHestir,2012).Basedontheirspectralsignature,macrophyte cover(bothsubmergedandemergentvegetation)andwaterqual- ity variables such as chlorophyll a, cyano-phycocyanin levels (reflectingthepresenceof algalblooms)and suspendedmatter

(7)

M.VandenBroecketal./EcologicalIndicators54(2015)1–11 7

canbeestimated.Althoughfreeandmultispectralimageryfrom Landsatarefrequentlyusedforlargewaterbodies,duetoitscoarse (30m)resolution,itis notsuitableforsmallsystems(DeRoeck et al.,2008).However, highmultispectral imagery (e.g.Ikonos, Worldview-2andRapidEye),isnowcommerciallyavailable(spa- tialresolution2–5m)andcanbeusedforthispurpose(Dekkerand Hestir,2012).

2.2.5. Phytoplankton

Phytoplankton (such as diatoms and cyanobacteria) have a longhistoryasecologicalindicators,beingcharacterizedbyacos- mopolitandistribution,shortgenerationtimeandlowsampling effort(Resh,2008).Theyarethereforealsoincludedasanindi- catorgroupintheWFD,wherethequalityscoreisbasedonthe composition,abundanceandbiomassofphytoplankton.Thecom- positionandtotalbiomassofalgalspeciesinaquaticsystemsserves indeedasanimportantmetricfororganicpollutionandnutrient loading,suchasnitrogenandphosphorus(Brucetetal.,2013).Dif- ferentanalyticalmethodsexist,suchastheinsitumeasurement ofphycocyanin(characteristicpigmentofcyanobacteria),analyz- ingthemorphologicalvariabilityofphytoplanktontoassessthe trophicstateoflakes(Naselli-Flores,2013)orthemoreuniversal assessmentofchlorophylla,asageneralindicatorofphytoplankton biomass(Paerletal.,2003;Boyeretal.,2009).Particularlydiatoms areoftenusedforbiomonitoring,forexampleintheDiatomIndex ofWetlandCondition(DIWC),whichwasdevelopedformarshes inFlorida,withepiphyticdiatomdensityasthemostresponsive factortoarangeofanthropogenicdisturbances(pesticides,sedi- mentationandhabitatalteration)(LaneandBrown(2007).Aswith macroinvertebrates,identificationuntilgenuslevel,oreventaxa basedapproachessuchasfunctionalgroups,canalsoactasasurro- gateforphytoplanktonrichnessandcommunitystructure(Gallego etal.,2012).Forareviewonusingphytoplankton(amongothers)as abioindicatorinEuropeanlakes,seeBrucetetal.(2013),wherethey showedthatassessmentmethodsbasedonphytoplanktonhadthe highestnumberofcorrelationsbetweenanthropogenicstressand impactontheirenvironment.

2.2.6. Multimetricindices(MMI)

Properassessmentofsurfacewaterhealthconditionsingeneral andofwetlandsmoreparticularrequiresthesimultaneousassess- mentofitsphysical,chemical,and biologicalcomponents(Sims etal.,2013).Theintegrationofmultiplespeciesgroupstogether withphysicaland/orchemicalparametersinmultimetricindices (MMI)isthereforepreferredoversinglecomponentindicators.The trophicstateindex(TSI)forlakes,developed byCarlson(1977), isbasedonSecchidisktransparency,chlorophyllandtotalphos- phorus.Whileabioticvariablesarerelativelyeasytomeasure,they havelimitedvaluewhennotcomplementedwithbiologicalassess- mentssincetheyonlyrepresent(spatial/temporal)snapshotsof thecurrentstateofawetland.Therefore,mostmultimetricindices implementbioticvariablesaswell.TheQAELSindex,developed byBoix et al.(2005) for assessingthe water qualityof tempo- rary and permanentfreshwater and thalassohaline wetlands, is agoodexampleoftheintegrationofdifferentfaunalgroupsand waterparameterstoassessecologicalintegrity.Thisindexisbased ontherelativeabundanceofeachmicrocrustaceantaxon(ACCO) andisimprovedbyaddingthetaxonomicrichnessofinsectsand crustaceans(RIC).LougheedandChow-Fraser(2002)developeda similarWetlandZooplanktonIndex(WZI)fortheLaurentianGreat LakesBasin,basedonwaterquality(totalphosphorus,totalnitro- gen,totalsuspendedmatter,chlorophylla,temperature,dissolved oxygen,pHandconductivity)andzooplanktonassociationswith aquaticvegetation.AnotherexampleistheMMIbyVerdonschot etal.(2012)toassesstheeutrophicationstatusofarableditches, whichincludesthenumberofTrichopteraandGastropodafamilies,

totalfreshwatertaxaandpredatortaxaandthenutrientloading.

ThePredictiveSYstemforMultimetrics(PSYM)method,similarto thePLOCHmethod,wasdevelopedfor(permanent)pondsinthe UK,tocompareaparticularsitetootherpondsonecologicalquality (Biggsetal.,2000).Here,thecombinationofseveralmacroinverte- brateandmacrophytemetrics,includingthenumberofOdonata, MegalopteraandColeopterafamilies,thenumberofuncommon plantspeciesandthetrophicrankingscores(i.e.eutrophication measure)foraquaticandemergentplants,areusedtoassessthe generalqualityassessmentoflenticsystems.TheLagoonEutroph- icationMonitoringNetwork(LEMN)method,developedbySouchu et al.(2000)for shallowlagoonsin Southern France,integrates informationonwaterquality(temperature,salinity,turbidity,con- centrationsofdissolvedoxygen,nutrientschlorophylla,tPandtN), soilquality(organicmattercontent,totalphosphorus,totalnitro- gen, granulometry, reduction potential), phytoplankton (abun- danceofcells <and>2␮m),acrophytesandmacroinvertebrates (speciescomposition,speciesrichness,specificbiomassdensity), togiveanindicationoftheeutrophicationstatusofthelagoons.

2.2.7. Modelingapproaches

Anotherwaytoestimatebiologicalqualityoffreshwaterhabi- tats is via predictive modeling approaches. An example is the RIVPACS(RiverInVertebratePredictionandClassificationSystem) method,originallydevelopedforrivers,whichallowspredicting macroinvertebratecommunitiesofahabitatbasedonmeasured environmental variables (Wrightet al., 1998).A series of pris- tineUKriversiteswerecarefullyselectedasreferencehabitats.

Foreachsite,macroinvertebratedataandphysicochemicalcharac- teristics(geographicaldata,historicaldata,substratecomposition analkalinity)werecollected,sometimesduringmultiplesampling campaignsovertheyear,afterwhichriverswereclassifiedinriver sitegroups.Modelingallowsthentorelatethecommunitydata withthephysicochemicaldata.Whenaphysicochemicalsampleis takenfroma(new)siteofinterest,theexpectedmacroinvertebrate faunacanbepredictedaccordingtothereferencesite.TheWFD definesthisexpectedfaunaasthe‘biologicalreferencecondition’.

Ifthenamacroinvertebratesampleistakenfromthisnewsite,the observedmacroinvertebratecommunitycanbecomparedwiththe expectedreferencecommunity.Theecologicalqualityofthesiteis thenassessedbytheobserved/expected(O/E)ratio.Theadvantage ofthismethod(atleastforUKrivers)isthattheO/Eratiocaneasily beconvertedtoEcologicalQualityRatios(EQRs),whichareusedby theWFD.Inaddition,O/Eratioscanbeinterpretedmoreintuitively andhaveabiologicalexplanation(CaoandHawkins,2004).

3. Discussion

Wehavegivenabroadoverviewofdifferentindicatortypesand indicesthat arecurrentlyusedtoassesstheecologicalintegrity of (mostly permanent)surface waters. We will now discuss to what extentwe expectsomeofthesemethodstobeusefulfor themonitoringoftemporarywetlands,onceadaptedtothispar- ticularecosystem.First,wefocusonthemostimportantecological characteristicsoftemporarywetlands,andwewillthenusethisas abasistoevaluateandrecommendpotentiallyusefulmonitoring approaches.Wewillalsosuggestspecificsamplingguidelinesto acquiretheneededbiologicalinformationinastandardisedway.

3.1. Temporalandspatialregionalvariabilityintemporaryponds

Temporarypondsare oftencharacterizedby theirsmallsize (generally not larger than 5ha)and shallowdepth (oftenonly a few decimeters deep). Such small water volumes are prone to strong diurnal and seasonal fluctuations in abiotic parame- terssuchaspH,oxygen,nutrients,temperatureandconductivity

(8)

8 M.VandenBroecketal./EcologicalIndicators54(2015)1–11

(Grillas et al.,2004; Williams, 2006). Waterlevelsalso tendto vary strongly betweenand within years depending onclimate conditions(Vanschoenwinkeletal.,2009;Waterkeynetal.,2009;

Sahuquilloetal.,2012).Thisimpliesthatsnapshotmeasurements of water quality parameters only provide information on the currentstateofthewetland,neglectingsometimesprominenttem- poralfluctuations.Thetimingofthesemeasurements(timeofday, season,year)isthereforecriticallyimportantfortheoutcomeof theassessment. The seasonal fluctuations in abiotic conditions alsoresult in a strong turnover of the animal and plant com- munities,withclearsuccessionalphases,eachrepresentedby a characteristicgroupoforganisms(Wigginsetal.,1980;Rhazietal., 2001b;Gascónetal.,2005;Jocquéetal.,2007;Waterkeynetal., 2009;Vanschoenwinkel et al., 2010).The community assembly processstronglydependsonthehydroperiod(lengthofinunda- tion)ofthewetlandssinceitrepresentsthetimewindowduring whichorganismsmusthatch/germinate/colonize,growandrepro- duce (Brooks, 2000; Serrano and Fahd,2005;Vanschoenwinkel etal.,2009).Alsointer-annualdifferencesinenvironmentalcondi- tionscanleadtodifferentcommunitiesinsubsequentinundations (Rhazietal.,2009;Waterkeynetal.,2009).Thetimingofsamp- lingthereforegreatlydetermineswhichtaxawillbeencountered (i.e.highbeta-diversityin time).Additionally,pondswithinone singleregion are often characterized by different communities andenvironmentalcharacteristicsandcontributethereforetohigh beta-diversityinspace(Williamsetal.,2004;Angeleretal.,2008), whichmakesitdifficulttofindgeneralindicatorspecies.Therefore, conservingandmonitoringnetworksoftemporarypondsinstead offocussingonsinglepondswassuggestedtobemoreaccurateand efficient(Gómez-Rodríguezetal.,2009;Rhazietal.,2012;Rosset etal.,2014).

3.2. Monitoringguidelinesfortemporarywetlands

Asfishesaregenerallylackingfromtemporarywetlands,with theexceptionofkillifishandlungfishinsome(sub)tropicalregions, indicesbasedonthisfaunalgrouparenotusefulandwillnotbe furtherdiscussed.Bioticindicessuchasthewaterfowlindexand thefrogcallintensityindexarealsolessusefulforassessingthe bioticintegrityoftemporarysystemssincethepresenceofthese faunalgroupsisoftenlimitedintime.Nonetheless,sincetempo- rarypondsareoftenusedasbreedingspotsforamphibians(Sala etal.,2008;Gómez-Rodríguezetal.,2009),thequantificationoflar- vaeduringspringtimecouldbeintegratedinamultimetricindex, especiallysinceamphibianlarvaeareverysensitivetopollution (Bakeretal.,2013).Withthedevelopmentofmulti-spectralremote sensingtechniques(Adametal.,2010;DekkerandHestir,2012), largewetlandareascanbeassessedatonceandfollowed-uponthe longterm.However,sincemosttemporarywetlandsaresmallsized waterbodies,evenonlyquantificationofthesehabitatsremains difficult(DeRoecketal.,2008).Incontrasttotheassessmentofthe ecologicalstatusofshallowpermanentlakesthatcanbedoneby visitingthelakeonlyoncetohaveanoverviewofthecatchment, measurepHand turbidity,and documentthegeneral structure ofmacrophytecommunities(Mossetal.,2003),temporaryponds aresuchfluctuating,highlydynamic systemsthat welladapted samplingprotocolsare required that incorporatethis temporal variability(Brocketal.,2003).Therefore,weproposestandardized guidelinesthatcanbeusedforsamplingpondswithaperiodically dryphase,takingintoconsiderationthisseasonality.

3.2.1. Dryphase

Duringthedryphaseofatemporarypond,thesedimentiseasy tosample.Bycollectingaspatiallyintegratedsampleoftheupper 3cmofthesediment(i.e.‘theactiveeggbank’;BrendonckandDe Meester,2003),andhatchingitinthelaboratoryundercontrolled

climateconditions,‘hidden’pondbiodiversitycanbeassessed(and restored)evenwhenthepondisnotinundated(Brendonckand Williams,2000;AngelerandGarcía,2005;Vandekerkhoveetal., 2005).However,sinceaproportionofeggsmayremainunhatched afteronelaboratoryinundation,‘sugarfloatation’canbeusedto isolatetheremainingeggs(Onbé,1978;Marcus,1990).Thisfrac- tioncanthenbefurtheridentifiedunderamicroscopebasedonegg morphology(Vandekerkhoveetal.,2005;Brendoncketal.,2008).

Similarly,thisalsoappliestoannualtemporarypondplants,which produceseedsthatbuilduptheseedbankintheupperlayersofthe sediment(Rhazietal.,2001a).Theisolationofseedsisbasedonthe methodbyMalone(1967),andidentificationcanbeperformedby comparingseedmorphology.

Duetopartialhatchingateachoccasioncombinedwithdisturb- anceofthesurfacesediment,eggsintherestingeggbankoften originatefromdifferentgenerations(BrendonckandDeMeester, 2003).Assuch,so-called‘mixed’eggbanksmaynotalwaysprovide informationonrecentchangesintheecologicalqualityofwetlands.

Insystemswhereconditionsaretemporarilyunfavorableforcer- tainspeciesthatdosurviveasrestingpropagulesinthesediment, assessingthe‘hiddenbiodiversity’maythereforeresultinadif- ferentecologicalstatusthaniftheassessmentwasonlybasedon theactivecommunities(Vandekerkhoveetal.,2005).Thisaspectis oftenneglectedinexistingindicesforpermanentwaters,butcan beimplementedinindicesfortemporarywaterstocreateamore integratedlongtermviewofthewetlandcondition.

Thesediment itself canalsobeused formeasuringsoil abi- oticindicators,suchasgranulometry,chemicalcharacteristics(pH, totalNandP)anddryorganicmattercontent,asdescribedinthe LEMNmethodbySouchuetal.(2000).Thesevariablesarelesssen- sitivetofluctuationsinthewatercolumnandmeasurementscan evenbedoneduringthedryseasonwhenthesedimentisexposed.

Someanthropogenicimpactsthatarepossiblyinvisibleduringthe wetseason,suchas theamountof landfillor patternsofcattle useintensity(tramplingandgrazing),mayalsobeeasiertoassess duringthedryseason.

3.2.2. Aquaticphase

Thesedimenthasastrongimpactontherecyclingofdissolved minerals(Golterman,2004).Intemporaryponds,thiseffectiseven stronger since the dissolvedminerals are recycled throughthe sediment each time theydryout. Therefore, trophic thresholds developedfordeepstratifiedlakescannotbeusedforassessingthe ecologicalqualityoftemporaryponds,implyingthenecessityfor anewmethodofeutrophicationassessment(Elkiathietal.,2013).

Assuch,basedontheequilibriummodelofGolterman(2004),the ratiobetweentheamountoftotalphosphorusandtheparticulate Ppoolscouldactasanindicatorforeutrophicationinthesetempo- raryhabitats.PreliminaryanalysesbasedonSpanishandMoroccan wetlanddataappeartoconfirmthis(Serrano,unpublisheddataand VandenBroecketal.,unpublisheddata).

Samplingoftheactivecommunities(zooplankton,phytoplank- ton,macroinvertebrates,macrophytesandamphibians)shouldbe accomplishedtoprovideadditional informationonspecies that permanentlyinhabitthepond butthatdidnothatchinthelab fromtheeggorseedbank.Suchsamplingisevidentlyalsoneeded tocollecttheactivedispersersthatusuallyleavethepondbefore itdries.Duetothehighanimalandplantspeciesturnover,multi- plesamplingcampaignsduringthewetseasonarepreferred(Boix etal.,2005; Bovenand Brendonck,2009).Samplingonemonth afterinundationandonemonthbeforedryingout,completedwith asamplingcampaignhalf-waythroughtheinundation,givesin mostcasesanintegratedviewofthecommunitystructure.Anaddi- tionalfloralsurveycanbeperformedafterdryingout,toassessthe communitystructureofthelatesuccessionalplantsaswell.

(9)

M.VandenBroecketal./EcologicalIndicators54(2015)1–11 9

Thehighsensitivitytowarddisturbancesand knownecology of zooplankton, macroinvertebratesand macrophytesallowthe integrationofthesediversegroupsinbioticindicesfortemporary waters.TheintegrativeQAELSindexdevelopedbyBoixetal.(2005) offersinterestingperspectives.First,thisindexisbasedonmulti- plesamplingperiodswhicharenecessarytogenerateanintegrated overviewoftheturnoverofspeciesandfluctuatingdynamics.Sec- ond,itintegratesbothzooplanktonandmacroinvertebratesinto onesingleindex.Althoughzooplanktonisaveryimportantpartof theecologicalintegrityofwetlands(Mossetal.,2003),theWFD currentlylackstheincorporationofazooplanktoncomponent.The useofmacro-invertebratesin(multi-metric)indices,however,is alreadywidelyusedinpermanentsystems(CriadoandAlaez,1995;

Verdonschotetal.,2012),andrecentlyalsointemporaryponds (Gutiérrez-EstradaandBilton,2010).Sinceithasbeenshownfor somegroups(e.g.Coleoptera)thatconsideringonlyhighertaxo- nomiclevelsalreadyallowsthemonitoringofwaterbodies(Criado andAlaez,1995;Oertlietal.,2005a;Gutiérrez-EstradaandBilton, 2010),detailedspeciesidentifications,whichareoftendifficultand time-consuming,maynot alwaysbenecessary. Nevertheless,if detailedspeciesidentificationsarerequired,weconsiderDNAbar- codingasapotentialtool toovercomeidentificationdifficulties, suchasshownforexamplebyHajibabaeietal.(2011)forbenthic freshwatermacroinvertebrates.Indicesbasedonmacrophytesare alsohighlyrelevantsincetemporarypondsoftenhousecharac- teristichighlyspecializedspecies(Bouahimetal.,2014)thatplay importantrolesintemporarywetlandecosystems(Bornetteand Puijalon,2011).

Predictivemodelingapproaches offeradditionaltoolsforthe bioassessment of temporary waters, not only using macroin- vertebrates,but also other taxonomicgroups that show strong associationswiththeirenvironment.Althoughtemporaryponds showstrongspatialandtemporalvariation,multiplesamplingof activefaunaland floralcommunities, incombination withana- lyzingtherestingcommunitiesandtheenvironmentalvariables, shouldindicatewhichsitesaremorepristineandcanbeusedas referencesitesinthearea.Temporarypondsofinterestcanthen beassessedusingtheO/Eratio,cfr.Wrightetal.(2000).However, currentlytoolittledataisavailabletovalidatethismethod.

Lastly,formonitoringtemporaryponds,wespecificallypromote theuseoflargebranchiopods(Anostraca,Notostraca,Laevicaudata, SpinicaudataandCyclestherida).Theseverycharacteristictempo- rarywetlandspeciesareconsideredtobetheflagshipspeciesof thesehabitats(Colburn,2004).Theyhaveaworldwidedistribution (Brendoncketal.,2008),theirecologyiswellstudiedandtheypro- ducerestingeggbankswhichcaneasilybesampledandhatched inthelaboratory(BrendonckandWilliams,2000).Mostofthem alsohave aspeciesspecificeggmorphology(Brendonckand De Meester,2003)makingthemeasilyidentifiableafterisolation.Dif- ferentstudiesindicatethatlargebranchiopodsareverysensitive towardstressors,suchassalinity(Waterkeynetal.,2010),hydro- logicalchanges(Pyke,2005;Tuytensetal.,2014),pollution(Hamer andBrendonck,1997)andhabitatmodification(Vanschoenwinkel etal.,2013).

3.3. Concludingremarks

Althoughtemporarywetlandsareamainwatersourcein(semi) aridregionsandoftenhouseauniquediversity,officialmonitor- ingprogramsliketheWFDcurrentlydonotcoverthishabitattype.

Despitethebroadrangeofdifferenttypesofexistingindicatorsand indicesforlakesandwetlands,manylimitationsstillexistfortheir generalapplication(Innisetal.,2000).Onesuchconstraintisthe lackoftaxonomicallyskilledspecialistswhocaneasilyidentifytax- onomicgroupsdowntothedesiredlevel.Combinedwithfurther neededresearchontheauto-ecologyofparticulartaxa,thisshould

leadtothedevelopmentofmorereliableindicatorsthatcanbeused by wetland managers. These limitations and recommendations alsoapplyforthecurrentsetofmonitoringtoolsfortemporary wetlands that weregenerallyonly developedand appliedfor a particularregion.Theserestrictionscanleadtothefurtherdegra- dationoftemporarypondsworldwide,especiallyincombination withthevariousandofteninconsistentinternationalagreements andnationalpolicies.Basedonexistingtoolsforassessingdiffer- enttypesofwaterbodies,wehavemadesomerecommendations forstandardizedmonitoringofthislargelyignoredbutecologically andsocio-economicallyimportanthabitattype.Wehaveespecially highlightedtheuseoflargebranchiopods,mixedrestingeggand seedbanksand sedimentqualitytoassess thequalitystatusof temporaryponds.Asbothrestingegg andseedbanksand sed- imentintegratetemporal variationinwaterandhabitatquality, theycouldtosomeextentreplacelaborintensivefrequentsnap- shotsamplingoftheactivecommunities.Whenthesemethodsare furtherinvestigated,theycanbevalidatedforalargesetoftempo- rarypondtypesfromdifferentregions,followedbytherealization ofuserfriendlyprotocolsandtrainingsessions,especiallyforland ownersandconservationists.

Acknowledgments

MaartenVandenBroeckisaresearchfellowfundedbyaVLIR- UOS (VLADOC) grant. This project hasbeen achieved with the financial support of a VLIR-UOS SI project(No. ZEIN2011Z092/

2011-101).

References

Adam,E.,Mutanga,O.,Rugege,D.,2010.Multispectralandhyperspectralremote sensingforidentificationandmappingofwetlandvegetation:areview.Wet- landsEcol.Manage.18,281–296.

Adamus,P.R.,Brandt,K.H.,1990.ImpactsonqualityofinlandwetlandsoftheUnited States:asurveyofindicators,techniques,andapplicationsofcommunity-level biomonitoringdata.In:EPAReport600/3-90/073.

Alahuhta,J.,Kanninen,A.,Hellsten,S.,Vuori,K.-M.,Kuoppala,M.,Hämäläinen,H., 2013.Variableresponseoffunctionalmacrophytegroupstolakecharacteristics, landuse,andspace:implicationsforbioassessment.Hydrobiologia737,1–14.

Amat,J.,Green,A.,2010.Waterbirdsasbioindicatorsofenvironmentalconditions.

In:Hurford,C.,Schneider,M.,Cowx,I.(Eds.),ConservationMonitoringInFresh- waterHabitats,vol.5.Springer,Netherlands,pp.45–52.

Angeler,D.G.,García,G.,2005.Usingemergencefromsoilpropagulebanksasindi- catorsofecologicalintegrityinwetlands:advantagesandlimitations.J.North Am.Benthol.Soc.24,740–752.

Angeler,D.G.,Viedma,O.,Cirujano,S.,Alvarez-Cobelas,M.,Sánchez-Carrillo,S.,2008.

Microinvertebrateandplantbetadiversityindrysoilsofasemiaridagricultural wetlandcomplex.Mar.FreshwaterRes.59,418–428.

Angermeier,P.L.,Davideanu,G.,2004.Usingfishcommunitiestoassessstreamsin Romania:initialdevelopmentofanindexofbioticintegrity.Hydrobiologia511, 65–78.

Arheimer,B.,Löwgren,M.,Pers,B.C.,Rosberg,J.,2005.Integratedcatchmentmod- elingfornutrientreduction:scenariosshowingimpacts,potentialandcostof measures.AMBIO34,513–520(AJournaloftheHumanEnvironment).

Baker,N.J.,Bancroft,B.A.,Garcia,T.S.,2013.Ameta-analysisoftheeffectsofpesti- cidesandfertilizersonsurvivalandgrowthofamphibians.Sci.TotalEnviron.

449,150–156.

Balcombe,C.K.,Anderson,J.T.,Fortney,R.H.,Kordek,W.S.,2005.Wildlifeuseof mitigationandreferencewetlandsinWestVirginia.Ecol.Eng.25,85–99.

Beck,M.W.,Hatch,L.K.,2009.Areviewofresearchonthedevelopmentoflakeindices ofbioticintegrity.Environ.Rev.17,21–44.

Biggs,J.,Nicolet,P.,Mlinaric,M.,Lalanne,T.,2014.ReportoftheWorkshoponthe ProtectionandManagementofSmallWaterBodies.EuropeanEnvironmental Bureau(EEB).

Biggs,J.,Williams,P.,Whitfield,M.,Fox,G.,Nicolet,P.,2000.Biologicaltechniquesof stillwaterqualityassessment.Phase3.Methoddevelopment.In:Environment AgencyR&DTechnicalReportE110.EnvironmentAgency,Bristol.

Bird,M.,Day,J.,2010.AquaticinvertebratesasindicatorsofhumanimpactsinSouth Africanwetlands.In:WetlandHealthandImportanceResearchProgramme (WRCProjectNo.K5/1584).

Birk,S.,Bonne,W.,Borja,A.,Brucet,S.,Courrat,A.,Poikane,S.,Solimini,A.,Van DeBund,W.,Zampoukas,N.,Hering,D.,2012.Threehundredwaystoassess Europe’ssurfacewaters:analmostcompleteoverviewofbiologicalmethodsto implementthewaterframeworkdirective.Ecol.Indic.18,31–41.

Blaustein,L.,Schwartz,S.S.,2001.Whystudyecologyintemporarypools?Isr.J.Zool.

47,303–312.

Références

Documents relatifs

An analysis of diatom diversity metrics was performed on the dataset (from 2017 to 2019), including the number of species (richness; S), Shannon–Weaver diversity (H’), and

The effects of hydrology, disturbance, sowing and there interaction on the biomass (total, annuals and perennials) and the species richness (total, annuals and perennials) were

In 2008, the number of species per quadrat (respective- ly Total, Annuals and Perennials) decreased significantly with the maximum water depth (Table 3) but did not show

The plant communities of the studied temporary ponds were structured by local (maximum depth of the water, soil pH, sand content, silt content) as well as climatic (precipitation,

The aim of this work was to study the inter-annual dynamics of vegetation in relation to the rainfall during a 10-year period in a temporary pool in Morocco, while distinguishing

Using a set of 32 temporary ponds in northern Morocco we studied the respective importance of local (within the pond) and regional (density of ponds in landscape) factors and

(i) in our study area the largest pools were shallow and widely used for grazing and agriculture, which may result in less favourable conditions for pool characteristic and rare

The Temporary Foreign Worker Program (TFWP) requires a firm to make an application with Human Resources and Skills Development Canada (HRSDC) for a Labour Market Impact Assessment