• Aucun résultat trouvé

Thermoplastic polyolefin roofing membranes

N/A
N/A
Protected

Academic year: 2021

Partager "Thermoplastic polyolefin roofing membranes"

Copied!
5
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Construction Technology Update, 1999-12-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Thermoplastic polyolefin roofing membranes

Paroli, R. M.; Liu, K. K. Y.; Simmons, T. R.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=9cb06397-b2d5-4311-be46-6c02cb7bbd38 https://publications-cnrc.canada.ca/fra/voir/objet/?id=9cb06397-b2d5-4311-be46-6c02cb7bbd38

(2)

C o n s t r u c t i o n T e c h n o l o g y U p d a t e N o . 3 0

A typ ical low -slop e roofin g system con sists of th ree com p on en ts: a stru c-tu ral d eck, a th erm al in su lation barrier an d a w aterp roofin g m em bran e, w h ich con sists of rein forcin g fibres or fabric san d w ich ed betw een tw o sh eets of flexible m atrix. Th e m atrix m aterial is eith er asp h alt- or p olym er-based (Figu re 1). In “sin gle-p ly” m em bran es, th e m atrix is m ad e of flexible p olym er. Th e rein forcem en t p rovid es d im en -sion al stability for th e m em bran e as w ell as stren gth to resist stresses in service. It is gen erally m ad e of ch op p ed sh ort glass fibre stran d s p acked in a m at, or con tin u ou s p oly-ester fibre arran ged in a grid or in a n on -w oven m at (Figu re 2).

There are essentially two classes of polymer-based roofin g m em bran es: th erm osets (TS) an d th erm op lastics (TP) (see Text Box A). Th erm op lastics soften w h en h eated (th is p rocess is reversible) bu t th erm osets d o n ot. Th erm osets in clu d e th e com m on ly u sed eth ylen e p rop ylen e d ien e m on om er [also kn ow n as eth ylen e p rop ylen e d ien e terp olym er] (EPDM), w h ile th erolym op lastics en coolym -p ass a w id er variety of roofin g m em bran es, in clu d in g th erm op lastic p olyolefin s (TPOs).

All th erm op lastic roofin g m em bran es sh are certain ch aracteristics, e.g., seam in g can be d on e by h eat w eld in g. How ever, for th e m ost p art, th ey h ave very d ifferen t ch em ical, p h ysical an d m ech an ical p rop er-ties. It is im p ossible to exp lain th ese d iffer-en ces h ere, bu t th ere are d ifferiffer-en t ASTM m aterial-based stan d ard s for variou s TP

Thermoplastic Polyolefin

Roofing Membranes

Low-slope Roofing Membranes

Asphalt-based Built-up Roof BUR Modified Bitumen (Mod. Bit.) Thermosets (TS) Thermoplastics (TP) SBS Styrene-Butadiene-Styrene (Elastomer) APP Atactic Polypropylene (Plastomer) EPDM (Ethylene-Propylene-Diene Monomer or Ethylene-Propylene-Diene Terpolymer) PVC Poly (Vinyl Chloride)

KEE (Ketone Ethylene Ester) TPO (Thermoplastic Polyolefin or Flexible Polyolefin) CPE (Chlorinated Polyethylene) CR (Polychloroprene) Polymer-based

b y Ra lp h M. Pa roli, Ka re n K.Y. Liu a nd Te rra nce R. S im m ons

Thermoplastic polyolefins are a “new generation” of single-ply roofing systems.

This Update reviews their characteristics and performance to date and clarifies

some misunderstandings related to terminology.

Figure 1.Categories of low-slope roofing membranes

Figure 2.Reinforcement commonly used in roofing membranes: (a) random short glass fibre mat; (b) polyester scrim; (c) non-woven polyester mat

(3)

2

p rod u cts. To avoid con fu sion , on e sh ou ld n ot ju st label all of th ese p rod u cts sim p ly as TP p rod u cts. TPOs d iffer from oth er TPs in several resp ects, an d th u s m u st be h an d led an d ap p lied d ifferen tly.

De finit ion of T PO

Defin in g “th erm op lastic p olyolefin ” is d iffi-cu lt. “Th erm op lastic” is a gen eric term in p olym er scien ce; it en com p asses a class of p olym ers th at, as m en tion ed above, soften w h en h eated in a reversible p rocess. Th e term “olefin ” is even m ore gen eric, bein g an old ch em ical n am e for an y m olecu le con tain in g carbon -carbon d ou ble bon d s (th e m od ern n am e for th is fam ily of m olecu les is alken es). An y p olym er form ed by ch em i-cally lin kin g u p m an y olefin m olecu les is term ed “p olyolefin .”

Accord in g to th e latest d raft ASTM stan d ard for TPOs, th e com p osition is very

n on -sp ecific. Th e stan d ard states th at TPOs m u st con tain m ore th an 95% by m ass of TPO p olym er. Th e p olym er itself is n ot d efin ed w ith in th e stan d ard , w h ich states on ly th at th e sh eet sh all con tain th e “ap p rop riate” p olym ers. Becau se of th is loose d efin ition , th ere is an en d less list of ch em icals th at w ou ld fall u n d er th is stan d ard (e.g., p olyeth ylen e, p olyp rop ylen e, an d isobu tylen e, as w ell as th eir d erivatives). Ideally, manufacturers would specify the exact p olym er in term s of m arketin g an d labellin g.

Th ere are a few p u blish ed p ap ers th at attem p t to exp lain th e d ifferen t typ es of TPOs [1-4]. On e p oin t is clear, h ow ever: u n like p lasticized th erm op lastic m em bran es, TPOs d o n ot con tain p lasticizers (sm all m olecu les ad d ed d u rin g com p ou n d in g to in crease th e flexibility of th e p rod u ct). Th erefore, th e p roblem of p lasticizer loss associated w ith som e p lasticized m em bran es is elim in ated .

Confusion in t he M a rk e t Pla c e

TPO roofin g m em bran es h ave been in ser-vice in Eu rop e for ap p roxim ately ten years. Th e first ap p earan ce of a “TPO-typ e” roof-in g p rod u ct roof-in th e Un ited States w as arou n d 1987. As yet, little is kn ow n abou t th eir d u rability.

Th e con fu sion associated w ith TPOs com es from both th e ch em ical term in ology an d th e p rod u ct m arketin g. Th e latter h as p rom oted m ain ly th e EPDM-like ch aracter-istics of TPOs, i.e., it bein g like ru bber w ith th e ad d ed ben efits of w eld ed seam s (w h ich EPDMs d o n ot h ave). Also p rom oted h as been th e ch em ical resistan ce attribu ted to th e olefin com p on en t of th e p olym ers. Un fortu n ately, som e con fu sion h as occu rred , esp ecially regard in g th e u se of th e term th erm op lastic (TP). It is im p ortan t to rem em ber th at TPOs are th erm op lastic (i.e., TPs) bu t on ly som e TPs are TPOs.

Be ne fit s of T POs

In gen eral, TPO m em bran es are bein g m arketed as a p rod u ct th at com bin es th e p rop erties of EPDM an d PVC, w ith ou t th e associated d raw backs th at th e latter tw o m aterials h ave. In oth er w ord s, th ey are su p p osed to be as UV-resistan t an d as h eat-resistan t as EPDM, an d as h eat-w eld able as PVC.

Th e follow in g ben efits an d ch aracteris-tics h ave been rep orted for TPOs [1-3]: • en viron m en tally frien d ly an d recyclable • seam s can be h eat w eld ed

Text Box A

T he rm opla st ic s (T P) vs. T he rm ose t s (T S)

A p olym er is a lon g-ch ain m olecu le con sistin g of m an y (p oly) sm all rep eatin g u n its (m er) (~103– 106) join ed en d to en d . Th ese m olecu les are tan gled in a ran d om m an n er an alogou s to cooked sp agh etti.

Polym ers can be classified in to th erm op lastics (TPs) an d th erm osets (TSs) d ep en d in g on th eir m ech an ical beh aviou r on h eatin g an d coolin g. TPs com p rise lon g-ch ain m ole-cu les h eld togeth er by w eak bon d s (Figu re a). Wh en h eat is ap p lied , th e m olecu les “slid e p ast” on e an oth er an d th e p olym er soften s. On coolin g, th e m olecu les can n ot slid e p ast each oth er easily an d th e p olym er h ard en s. TS lon g-ch ain m olecu les, h ow ever, are lin ked togeth er by sm all m olecu les via stron g ch em ical bon d s, a p rocess som etim es referred to as vu lcan ization (Figu re b). Th is th reed im en -sion al n etw ork is so rigid th at th e m olecu les can n ot m ove very m u ch even w h en th e p olym er is h eated . Th u s, TSs d o n ot soften w h en h eated .

Becau se of th ese d ifferen ces, TP an d TS m em bran es are bon d ed d ifferen tly w h en ap p lied . TPs can be bon d ed u sin g h eat w eld in g: th e h ot air m elts th e p olym er at th e seam an d th e tw o strip s of m em bran e becom e fu sed . TS m em bran es are u su ally bon d ed u sin g ad h esives or tap es.

Schematic molecular configurations of (a) a thermoplastic and (b) a thermoset

(4)

3 • available in m an y colou rs

• resistan t to h eat an d UV d egrad ation • resistan t to m an y ch em icals

• good cold -tem p eratu re flexibility • n o extern al p lasticizers ad d ed .

Pe rform a nc e of T POs

TPO m em bran es are ligh ter in w eigh t an d easier to h an d le th an th e oth er th erm op lastic m em bran es. Bu t, w h ile flexible, th ey h ave a rath er rigid feel: th ey ten d to h old th eir sh ap e, an d d o n ot relax qu ickly. Con tractors ap p ear to be ad ju stin g slow ly to th em an d som e say th ey are n ot “con tractor-frien d ly.” Th eir com m en ts abou t TPOs in clu d e th e follow in g:

• Hot-air-w eld ed seam s are easy an d clean ; • Costs are low er th an for oth er h

ot-air-w eld ed m em bran es;

• Mechanically fastened systems (as opposed to loose laid or fu lly ad h ered system s) w ork w ell in recover ap p lication s w ith ou t ad d in g extra load ;

• Non -rein forced flash in g m em bran es are easy to form for d etailin g;

• Noticeable ch an ges in colou r an d textu re occu r over tim e;

• Mem bran es resp on d d ram atically (exp an sion an d con traction ) to tem p era-tu re ch an ges;

• Cold w eld s (i.e., w eld s at tem p eratu res th at are n ot h ot en ou gh ) occu r fre-qu en tly; th e start an d stop p osition s of th e robotic w eld er are esp ecially critical, as are th e p osition s of t-seam s;

• Narrow w eld in g w in d ow exists betw een cold w eld s an d scorch / bu rn -th rou gh (i.e., w eld s at tem p eratu res th at are too h ot); • Failu re of su bstrate bon d in g ad h esive is

com m on (i.e., n ot stickin g to m em bran e);

• Mem bran es som etim es require solvent wipe (to clean or p rim e) before w eld in g; • Re-w eld in g m em bran es (in

rep air) is p roblem atic after exp osu re to su n ;

• Black m em bran es are m ore d ifficu lt to w eld th an w h ite on es.

Curre nt Re se a rc h Re sult s

IRC, in collaboration w ith Ben ch m ark In c., a U.S. roofin g con su ltin g firm , in itiated a five-year p roject in 1997 to stu d y th e lon g-term p erfor-m an ce of TPO erfor-m eerfor-m bran es. Th u s far it h as been fou n d th at th e m em bran es rein forced w ith con tin u ou s p olyester fibre scrim h ad sign ifican tly h igh er ten sile breakin g stren gth (see Text Box B) th an th ose rein forced w ith ran d om sh ort glass fibre m at. With th e p olyester scrim (con tin u ou s fibre bu n d les arran ged in a grid ), th e fibres bore th e m ajority of th e ap p lied stress u n til failu re, resu ltin g in h igh breakin g stren gth . In th e case of th e glass fibre m at rein forcem en t (ch op p ed fibre stran d s p acked ran d om ly in to a m at), th e fibre stran d s flow ed an d align ed th em selves w ith th e p olym er in th e d irection of th e ap p lied stress, resu ltin g in sign ifican tly low er breakin g stren gth — i.e., th e stran d s m oved w ith th e m em bran e rath er th an stretch in g an d even tu ally sn ap p in g as is th e case w ith th e p olyester.

The breaking strength of the polyester scrim m em bran es w as govern ed by th e n u m ber of fibre tow s (bu n d les) across th e w id th of th e sp ecim en . Th e stren gth of th e fibre tow s w as th e sam e for all sam p les, in d ep en d en t of th e su rface coatin g. Th erefore th e tigh ter th e w eave of th e rein forcem en t, th e h igh er th e breakin g stren gth of th e m em bran e.

The difference in weave style had an effect on h ow a m em bran e failed as w ell. On e sam p le w as rein forced w ith an u n coated p olyester scrim w h ere th e in tersectin g tow s w ere h eld togeth er by fin e, con tin u ou s p olyester fibres. Wh en th e m em bran e w as p u lled in th e m ach in e d irection (p arallel to th e len gth of th e roll of th e m em bran e), th e fin e fibres stretch ed an d tigh tly h eld on to th e tow s in th e cross d irection (p erp en d icu -lar to th e m ach in e d irection ), creatin g h igh localized stresses at th e in tersection s. Text Box B Te nsile Te st ing A good roofin g m em -bran e h as to be stron g en ou gh to w ith stan d stresses, an d flexible en ou gh to accom m od ate d eck m ovem en t. Th ese p rop erties are rep re-sen ted by breakin g stren gth an d elon gation , w h ich can be m easu red by a ten sile testin g m ach in e, w h ich p u lls a rectan gu lar sp ecim en at a con stan t rate. Th e m ach in e p lots th e

reac-tion as a stress-elon gareac-tion cu rve. Th e m axim u m stress born e by th e sp ec-im en is called th e breakin g stren gth w h ile th e elon gation at w h ich th e m axim u m stress is ach ieved is called th e elon gation at break.

Typical tensile stress-elongation curves for a polyester-reinforced TPO membrane at -40°C and at 23°C

(5)

How ever, w h en th e m em bran e w as stressed in th e cross d irection , n o localized stress p oin ts w ere form ed , sin ce th e fin e fibres h eld th e tow s in th e m ach in e d irection by san d w ich in g in stead of p u llin g th em .

The breaking strength of the polyester scrim m em bran es in creased by 20–30% as th e test tem p eratu re d rop p ed to -40°C. How ever, th e m em bran e becam e brittle an d th e u ltim ate elon gation (a m easu re of th e m em bran e’s ability to accom m od ate d eck m ovem en t) red u ced m ore th an 15 tim es. Sin ce th e flexibility of th e p olym er govern s th at of th e m em bran e, it is recom m en d ed th at p olym ers w ith su p erior cold -tem p eratu re m ech an ical p rop erties (e.g., h igh er elon gation ) be u sed in m em bran es in ten d ed for cold tem p eratu re ap p lication s. Th e glass tran sition tem p era-tu re (Tg) is a good criterion for ch oosin g th e

righ t p olym er (see Text Box C).

Cold temperature flexibility was monitored u sin g Tg. It w as fou n d to be in th e ran ge of

-32°C to -37°C, com p arable to th at of oth er sin gle-p ly system s (arou n d -35°C). Th ere w as on e excep tion — a Tgof -54°C. Th at sam p le

also had the highest tensile elongation at -40°C. Th erm ogravim etry (w h ich m on itors th e w eigh t ch an ge of a su bject bein g h eated over a tem p eratu re ran ge) clearly sh ow s th at th ere are at least fou r d ifferen t typ es of TPOs based on w eigh t loss p attern s alon e. Th is sh ow s again th at th e term “TPO” is qu ite gen eric, en com p assin g m an y d ifferen t typ es of p olym ers.

Sum m a ry

Becau se of th e ch em ical term in ology in volved , th e n on -sp ecific ch em ical com p o-sition of th e p olym er an d th e m arketin g focu s of m an u factu rers, th ere is m u ch con -fu sion abou t TPO roofin g m em bran es.

If th e ASTM task grou p d evelop in g th e TPO stan d ard in sists on u sin g th e term “olefin ” in th e stan d ard ’s n am e, th en it sh ou ld con sid er u sin g th e n am e “Flexible or Th erm op lastic Polyolefin ” in th e title, as th is w ou ld be in lin e w ith th e term in ology used in Europe (i.e., flexible polyolefin, FPO). Fu rth erm ore, m an u factu rers sh ou ld con sid er clearly statin g w h eth er th eir p rod u ct is a p olyp rop ylen e- or p olyeth ylen e-based system , to m in im ize p ossible con fu sion .

Ac k now le dgm e nt

Th e au th ors w ish to th an k th e con tractors, bu ild in g ow n ers, an d Ben ch m ark staff w h o collected or provided samples for this project.

Re fe re nc e s

1. Beer, Han s-Ru d olp h . “Flexible Polyolefin Roofin g Mem bran es Prop erties an d Ecological Assessm en t,” Proceed in gs of Waterp roofin g Tech n ology an d th e En viron m en t, 9thIn tern ation al

Waterp roofin g Association Con gress, Am sterd am , 1995, p p . 81-89.

2. d e Palo, Roberto. “Flexible Polyp rop ylen e Alloys: A New Gen eration of Materials for Waterp roofin g Ap p lication s,”

Proceed in gs of Waterp roofin g Tech n ology an d th e En viron m en t, 9th In tern ation al

Waterp roofin g Association Con gress, Am sterd am , 1995, p p . 309-320. 3. Beer, Han s-Ru d olp h . “Lon gevity an d

Ecology of Polyolefin Roof Mem bran es,” Proceed in gs of th e Fou rth In tern ation al Sym p osiu m on Roofin g Tech n ology, Gaith ersbu rg, MD, 1997, p p . 14-21. 4. Foley, Rich ard K. an d William Ru bel.

“Polyolefin s: Th e New Roofin g Tech n ology,” In terface (Jou rn al of th e Roofin g Con su ltan ts In stitu te), October 1997, p p . 30-32.

Dr. R.M. Pa roliis Director of th e Bu ild in g En velop e an d S tru ctu re Program at th e N ation al Research Cou n cil’s In stitu te for Research in Con stru ction .

Dr. Ka re n Liuis a research er in th e sam e p rogram .

Mr. Te rra nce R. S im m onsis with T RS Con su ltin g, Iowa City, Iowa.

“Construction Te chnology Up d a te s” is a se rie s of te chnica l a rticle s conta ining p ra ctica l inform a tion d istille d from re ce nt construction re se a rch.

For more information, contact Institute for Research in Construction, National Research Council of Canada, Ottaw a K1A 0R6

Telephone: (613) 993-2607; Facsimile: (613) 952-7673; Internet: http://irc.nrc-cnrc.gc.ca

© 1999

Nation al Research Cou n cil of Can ad a Decem ber 1999

ISSN 1206-1220

Text Box C

Gla ss Tra nsit ion Te m pe ra t ure (Tg)

Wh en a p olym er is w arm , th e m olecu lar segm en ts are con -stan tly ch an gin g p lace by actively slid in g or ju m p in g, an d th e p olym er is flexible. Th is is th e am orp h ou s state. Wh en th e p olym er is cooled , m olecu lar m ovem en t starts to slow. If coolin g is con tin u ed , a tem p eratu re w ill be reach ed at w h ich m olecu lar m ovem en t stop s altogeth er. Th e p olym er loses its flexibility an d becom es brittle. Th is is th e glassy state. Th e tem p eratu re at w h ich th e tran sition from flexi-ble to brittle occu rs is called th e glass tran sition tem p era-tu re (Tg). Tg is a p rop erty of th e p olym er an d is an

im p ortan t con cep t in evalu atin g th e p erform an ce of p oly-m er-based roofin g oly-m eoly-m bran es. Th e ad d ition of p lasticizers (sm all p olym er m olecu les) d u rin g com p ou n d in g h elp s to low er th e Tgby in creasin g th e d istan ce betw een th e p

Figure

Figure 2. Reinforcement commonly used in roofing  membranes: (a) random short glass fibre mat;

Références

Documents relatifs

Les résultats obtenus concernant l’activité antifongique des extraits aqueux sont représentés dans (Tableau 06). Avec les extraits des feuilles, l’activité antifongique est

Ce travail est focalisé à l’évaluation de toxicité aigue du mélange binaire d’un insecticide (Dursban) et fongicide (Mancozebe)et d’un insecticide seul (Décis) sur des

Au total, 31 parcelles agricoles ( Fig. 1 ), situées chez 10 agriculteurs représentatifs de la typologie (en termes de pratique et de gestion) et dans une station expérimentale, ont

Et dans notre travail, on a élaboré également une base de données avec cartes numérisées pour faciliter la gestion de fonctionnement du réseau d’alimentation

On étudie numériquement la convection naturelle laminaire de l’air (Pr=0.71) dans une enceinte rectangulaire, pour deux cas : Le premier cas c’est pour la paroi inferieur soumis

In particular, they know that adjectives name properties of entities named by nouns; they know that adjectives imply a contrast (i.e. values on a dimension are

The transcriptional activation of SREBP targets encoding the key enzymes of fatty acid biosynthesis (FASN) and the pentose phosphate pathway (G6PD) leads to a rapamycin-

words, it is critical to resolve between signaling intermediates in their free active and inactive forms (A * and A) from when they are bound to other intermediates, including