• Aucun résultat trouvé

Experimental identification of thermo-mechanical cohesive zone models for complex loading

N/A
N/A
Protected

Academic year: 2021

Partager "Experimental identification of thermo-mechanical cohesive zone models for complex loading"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01273991

https://hal.archives-ouvertes.fr/hal-01273991

Submitted on 15 Feb 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Experimental identification of thermo-mechanical cohesive zone models for complex loading

Tarik Madani, Yann Monerie, Stéphane Pagano, Céline Pelissou, Bertrand Wattrisse

To cite this version:

Tarik Madani, Yann Monerie, Stéphane Pagano, Céline Pelissou, Bertrand Wattrisse. Experimental identification of thermo-mechanical cohesive zone models for complex loading. Workshop MIST 2015 : Friction, Fracture, Failure , Oct 2015, Montpellier, France. �hal-01273991�

(2)

T.MADANI

1,2

Y. MONERIE

2,3

S. PAGANO

2,3

C. PELISSOU

1,2

B. WATTRISSE

2,3

1 Institut de Radioprotection et de Sûreté Nucléaire, B.P. 3, 13115 Saint-Paul-lez-Durance Cedex, France

2 Laboratoire de Micromécanique et Intégrité des Structures, IRSN-CNRS-Université de Montpellier, France

3 Laboratoire de Mécanique et Génie Civil, Université de Montpellier, CC 048, 34095 Montpellier Cedex, France

Workshop MIST 12-15 octobre 2015 à Montpellier IRSN/PSN-RES/SEMIA/LPTM

Motivation

Objectives:

Identification of cohesive zone models for heterogeneous materials

Methodology:

Inverse method

Measurements:

Thermomechanical imaging techniques

Constitutive Equation Gap Method (CEGM)

Determine the mechanical properties of a material by minimizing the

energy difference between the

"measured" 𝑈𝑚 and a “computed"

𝑈𝑐 displacement fields.

𝑼𝒄 → 𝜺𝒄 → 𝝈𝒄 and

𝒑 = {𝑬, 𝒗, 𝑮, 𝝈𝟎, 𝒌}

𝑚𝑖𝑛 𝐸 𝑈

𝑐

, 𝐵(𝑝)

𝑬 𝑼𝒄, 𝑩(𝒑) =

𝟏

𝟐𝑻 𝑩(𝒑): 𝜺 𝑼𝒄 − 𝑩(𝒑): 𝜺 𝑼𝒎 : 𝑩(𝒑)−𝟏: 𝑩(𝒑): 𝜺 𝑼𝒄 − 𝑩(𝒑): 𝜺 𝑼𝒎 𝒅𝑽𝒅𝒕

𝒕 𝟎

Finite element analysis

{𝑈

𝑚

, 𝑅

𝑖

}

Full-field measurements

{𝑈

𝑚

, 𝑅

𝑖

}

R2

R1

Displacement field

Methodology

𝑆 𝑒𝑓𝑓

cohesive zone

𝜎

𝑖𝑛𝑐

𝜎

Step 2: summarize the « volume » damage as a « surface » damage.

Damageable elasto-plasticity

structural”

𝑅𝑐

[𝑢]

“+”

bulk

“=”

𝜀 𝜀

𝐵

Isochoric elasto-

plasticity Step 1: identify the stress field from the strain field.

Damage

𝐹 𝐹

𝑙 𝑐 𝜀

𝐹 𝐹

𝑙 𝑐 𝜀 𝐵

𝑙 𝑐 𝜀

𝑆 𝑖𝑛𝑐

𝛿

𝑩 𝒑 independent of loading, Explicit estimate of the elastic parameters (cubic):

Elastic identification

1

𝐸(𝑖) = 1 2

𝜀𝑤 𝑚𝑥𝑥 − 𝜀𝑚𝑦𝑦 2𝑑𝑉𝑑𝑡

𝑡 𝑖

𝜎𝑤 𝑐𝑥𝑥 − 𝜎𝑐𝑦𝑦 2𝑑𝑉

𝑡 𝑖 𝑑𝑡 + 𝜀𝑤 𝑚𝑥𝑥 + 𝜀𝑚𝑦𝑦 ²𝑑𝑉𝑑𝑡

𝑡 𝑖

𝜎𝑤 𝑐𝑥𝑥 + 𝜎𝑐𝑦𝑦 ²𝑑𝑉

𝑖 𝑑𝑡

𝑡

𝑣(𝑖) = 𝐸 𝑖 2

𝜀𝑤 𝑚𝑥𝑥 − 𝜀𝑚𝑦𝑦 2𝑑𝑉𝑑𝑡

𝑡 𝑖

𝜎𝑤 𝑐𝑥𝑥 − 𝜎𝑐𝑦𝑦 2𝑑𝑉

𝑡 𝑖 𝑑𝑡 𝜀𝑤 𝑚𝑥𝑥 + 𝜀𝑚𝑦𝑦 ²𝑑𝑉𝑑𝑡

𝑡 𝑖

𝜎𝑤 𝑐𝑥𝑥 + 𝜎𝑐𝑦𝑦 ²𝑑𝑉

𝑖 𝑑𝑡

𝑡

𝐺(𝑖) = 1 2

𝜎𝑤 𝑐𝑥𝑦 2𝑑𝑉𝑑𝑡

𝑡 𝑖

𝜀𝑤 𝑚𝑥𝑦 2𝑑𝑉

𝑖 𝑑𝑡

𝑡

𝐾 = 𝑎 ∆𝜀𝑝 𝑏 + ∆𝜀𝑝 𝑤𝑖𝑡ℎ 𝑎 = 1

2𝑘 𝑎𝑛𝑑 𝑏 = 𝜎0 𝑘

Plastic identification

𝑩(𝒑) depends on the Von Mises stress 𝝈𝒏𝒆𝒒:

𝐵 𝑝 =

𝐸(1 + 2𝐾𝐸)

3𝐾²𝐸² − 2𝐾𝐸 𝜈 − 2 + 1 − 𝜈²

𝐸(𝜈 + 𝐾𝐸)

3𝐾²𝐸² − 2𝐾𝐸 𝜈 − 2 + 1 − 𝜈² 0 𝐸(𝜈 + 𝐾𝐸)

3𝐾²𝐸² − 2𝐾𝐸 𝜈 − 2 + 1 − 𝜈²

𝐸(1 + 2𝐾𝐸)

3𝐾²𝐸² − 2𝐾𝐸 𝜈 − 2 + 1 − 𝜈² 0

0 0 𝐺

1 + 6𝐾𝐺 𝐾 = ∆𝛾

3 + 2 ∗ ∆𝛾

∆𝛾 = 3 2𝑘

3 2

𝛼

𝜎0 − 1 𝛼² = 𝜎 − 𝑋 𝑇𝑃 𝜎 − 𝑋

Resolution of the non-linear system obtained by the stationarity condition with respect to « 𝑎 » and « 𝑏 »,

Computation of 𝐾 𝑎𝑛𝑑 𝛼,

Determination of 𝜎0 𝑎𝑛𝑑 𝑘 by a linear fit of the data

3

2 𝛼 = 𝑓(2 3

2 𝐾α)  𝑘 is the slope of the curve and 𝜎0 is the intersection of the curve with the y axis.

Rewrite 𝑲

𝜎

𝑦𝑦𝑐

𝜎

𝑦𝑦𝑚

299 𝑀𝑃𝑎 507 𝑀𝑃𝑎

299 𝑀𝑃𝑎 507 𝑀𝑃𝑎

𝜎

𝑦𝑦𝑐

𝜎

𝑦𝑦𝑚

341 𝑀𝑃𝑎 421 𝑀𝑃𝑎

341 𝑀𝑃𝑎 421 𝑀𝑃𝑎

Results: Polycrystalline structure

Distribution of transversal stress fields, mesh doesn’t match the material heterogeneity:

Distribution of transversal stress fields, mesh

perfectly consistent with the material heterogeneity:

Experimental identification of thermo-mechanical

cohesive zone models for complex loading

Conclusions :

Identification of heterogeneous fields (stress, …) for elasto-plastic behavior: linear and non-linear hardening.

Application of this method to real full-field measurements.

Prospect :

Extend the constitutive equation gap method to softening behaviors.

Identification of Cohesive Zone Models.

Introduction of a calorimetric gap in the identification functional.

Références

Documents relatifs

Mais revenons aux kits d'éclairage. L'expérimentation met en évidence un certain nombre de problèmes dont la nature est inextricablement sociale et technique: en situation, le kit

From the simulation results presented in Section 4 , Model A is able to predict the plastic strain induced along a thermal loading path in both normally consolidated

It has been shown using a simple model of heat actuator that the quasi-static structural enrichment of the thermal modes can significantly improves the fidelity of the reduced

Dans ce contexte, il n'est pas étonnant que le projet de Mario Botta pour la Banque de l'Etat de Fribourg ne suscite pas unique¬.. ment des

Contrary to what happens in the solar wind, in the magne- tosheath the mean spectrum follows ∼f −1 below the spectral break and ∼f −2.6 above it, without the

This study described the aerosol optical thicknesses encoun- tered during the great European heat wave of August 2003 by comparing data derived from the POLDER-2 satellite sensor,

Unité de recherche INRIA Rocquencourt Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex France Unité de recherche INRIA Lorraine : LORIA, Technopôle de

Mais pour moi, le vrai problème que traite la bioé- thique, ce ne sont pas ou pas seulement les divergences sur les essences (de la vie, la mort, etc.), ce sont les relations