• Aucun résultat trouvé

Polymer/clay nanocomposites 2 3

N/A
N/A
Protected

Academic year: 2022

Partager "Polymer/clay nanocomposites 2 3"

Copied!
4
0
0

Texte intégral

(1)

Table of content

INTRODUCTION AND AIMS OF THE THESIS 1

General introduction 1

1. Polymer nanocomposites 1

2. Polymer/clay nanocomposites 2

3. Potential impact of polymer/clay nanocomposites 4

4. Supercritical carbon dioxide 5

5. Solubility in supercritical carbon dioxide 6

Scope and aim of the thesis 7

Thesis outline 9

References 10

LITERATURE REVIEW 13

Part A: Patenting activity in manufacturing organoclays for nanocomposite

applications 13

1. Introduction 13

2. Organoclays for in situ intercalative polymerization method 15

3. Organoclays for intercalation in solution 19

4. Organoclays for melt intercalation method 20

5. Polymer/organoclay masterbatches 23

6. Current and future developments 24

Part B: Organoclays with thermally stable oniums 25

1. Introduction 25

2. Organoclays with imidazolium salts 27

3. Organoclays with phosphonium salts 30

4. Current and future developments 32

References 34

CHAPTER 1:CLAY ORGANOMODIFICATION IN scCO2 39

Introduction 39

Experimental section 41

1. Materials 41

2. Modification of pristine clays 41

3. Characterization 41

(2)

Table of content

Results and discussion 42

1. Ionic exchange with various ammonium, imidazolium and phosphonium salts 42

2. Ionic exchange at higher temperature 45

3. Ionic exchange with addition of a co-solvent 45

4. Determination of yield of exchange 46

5. Correlation of interlayer distance with organic content 49

6. Optimization of conditions 50

6.1. Influence of quantity of surfactant 50

6.2. Reproducibility of ionic exchange 51

6.3. Influence of clay content 51

6.4. Influence of the presence of water 53

7. Clay organomodification in pilot reactor 54

Conclusions 55

References 56

CHAPTER 2:ORGANOCLAY DISPERSION IN POLYAMIDE-6 AND IMPLICATION

OF ONIUM STABILITY ON FIRE PROPERTIES 59

Introduction 59

Experimental section 60

1. Materials 60

2. Modification of pristine clays 61

3. Preparation of PA-6/clay nanocomposites 61

4. Characterization 61

Results and discussion 64

1. Preparation of organoclays in supercritical carbon dioxide 64

2. Thermogravimetric analysis of the organoclays 66

3. Preparation of nanocomposites with PA-6 69

3.1. TEM analysis 69

3.2. X-ray diffraction 70

3.3. Rheology 70

3.4. Solid-state NMR 71

3.5. Thermogravimetric analysis 72

3.6. Cone calorimetry 73

(3)

Table of content

Conclusions 75

References 76

CHAPTER 3:EFFECT OF CLAY MODIFICATION ON STRUCTURE AND TENSILE PROPERTIES OF POLYAMIDE-6 NANOCOMPOSITES 79

Introduction 79

Experimental section 80

1. Materials 80

2. Preparation of the nanocomposites 81

3. Characterization 81

Results and discussion 83

1. Clay characteristics 83

1.1. X-ray diffraction and gallery structure 84

1.2. Surface energy and particle size 85

2. Composite structure 86

2.1. X-ray diffraction 86

2.2. TEM analysis 88

2.3. SEM analysis 89

2.4. Rheology 90

2.5. Crystallization 91

3. Tensile properties 91

3.1. Tensile modulus 92

3.2. Yield stress 92

3.3. Estimation of extent of reinforcement and exfoliation 93

Conclusions 96

References 98

CHAPTER 4:ORGANOCLAY DISPERSION IN POLY(m-XYLYLENE ADIPAMIDE)

AND BARRIER PROPERTIES 101

Introduction 101

Experimental section 102

1. Materials 102

2. Preparation of PA mXD-6/clay nanocomposites 103

(4)

Table of content

3. Characterization 103

Results and discussion 104

1. Structure and morphology of nanocomposites 105

2. Barrier properties 107

3. Non-isothermal crystallization analysis 108

4. Thermal characterization of PA mXD-6 nanocomposites 110

Conclusions 111

References 112

CHAPTER 5:FUNCTIONAL ORGANOCLAYS AND ROUTES FOR THE IN SITU

PREPARATION OF POLYMER NANOCOMPOSITES IN SCCO2 113

Introduction 113

Experimental section 115

1. Materials 115

2. Organomodifiers synthesis 115

3. Modification of clay 115

4. Polymerization 116

5. Characterization 116

Results and discussion 117

1. Preparation of functional organoclays in scCO2 117

2. Polymerization in scCO2 121

2.1. Free radical polymerization with methacrylate-bearing clays 121 2.2. Free radical polymerization with PDMS-clay 123 2.3. Atom transfer radical polymerization with initiator-modified clay 126

Conclusions 131

References 132

CONCLUSIONS AND OUTLOOK 135

Conclusions 135

Outlook 137

References 140

LIST OF ABBREVIATIONS 141

Références

Documents relatifs

Our results show that models calibrated solely with flowering or budburst dates do not accurately predict the dormancy break date. Providing dormancy break date for the

Let Pa + p = 0 denote a set of n simultaneous linear equations which represent a finite difference approximation on n points to a linear ordinary differential

،ميلسلا ويجوتلا و ةباقرلا نم فامرلحا و نيدلاولا فطع نم لفطلا فامرح لذإ يدؤي ؽلبطلا فأ امك ايناودع و طبلز لفطلا لعلغ يذلا رملأا لقول ثحابلا ىري ؽايسلا اذى في

We highlight the use of CRISPR/Cas-based gene editing to fix desirable allelic variants, generate novel alleles, break deleterious genetic linkages, support pre-breeding and

( 2 ) - ك ،ةباتكلاب ّلاإ وتابثإ زكجي لا ؼرصتلا فاك فإف ؾلذ يف امب ؽرطلا ةفاكب وتابثلإ قيقحتلا ىلإ ػكعدلا ةلاحإ ـصخلا بمط ؾلذ عم ُي ؼرصتلا ّفأب اينم

Combined effect of temperature and light intensity on growth and extracellular polymeric substance production by the cyanobacterium Arthrospira platensis. Response of

Ce virus est transmis par des moucherons hématophages du genre Culicoides (Diptera : Ceratopogonidae) aux ruminants sauvages et domestiques. En Europe, la FCO a

As in previous analyses [3, 4, 5] an unbinned maximum likelihood procedure is employed to find the best fits, using probability density functions obtained from the binned