• Aucun résultat trouvé

Long-Term Life of Ni/Cu Bellows: Effect of Diffusion on Thermomechanical Properties

N/A
N/A
Protected

Academic year: 2021

Partager "Long-Term Life of Ni/Cu Bellows: Effect of Diffusion on Thermomechanical Properties"

Copied!
20
0
0

Texte intégral

(1)

HAL Id: hal-00002921

https://hal.archives-ouvertes.fr/hal-00002921

Submitted on 21 Sep 2004

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Long-Term Life of Ni/Cu Bellows: Effect of Diffusion on

Thermomechanical Properties

Olivier Arnould, François Hild

To cite this version:

(2)

E ect of Di usion on Thermomechanical Properties

OlivierArnould ?

and Francois Hild

LMT-Cachan, ENSde Cachan / CNRS-UMR8535 /UniversityParis6 61,av. duPresident Wilson,F-94235 Cachan,France.

Ph. +33(0)1 47 4022 25 Fax +33(0)1 4740 22 40

Keywords: ageing, di usion, grain growth, mechanical behaviour, mechanical loading, couplings,homogenisation.

Abstract. The aim of this paper is to discussdi erent couplingsbetween di usion, re-crystallisation/graingrowth,strain/stress,heattransferandthermo-mechanicalbehaviour of metallicmaterials.The understanding ofthese di erent physicalphenomenais needed topredictthelong-termlifeofmechanicalpartsincomponents.Someresultsarepresented and furtherstudiesaresuggestedto improvetheevaluationof the(inter)di usionand re-crystallisationparameters in ne-grainedelectroplatedNi/Cu materials.To illustratethe coupling between elasticity and di usion, classical results in homogenisation consistent withthemaindi usionregime areusedto predictthechangeinelasticmoduliwithtime.

1 Introduction

This paper is a more detailed presentation of a study on ageing that has been introduced in Ref.[1]. It deals with a high precisionpressure sensor that uses bellows to convert a pressure di erenceinto a displacement (Fig.1a). The high precision and airtightness of bellows require to make them as a Ni/Cu/Ni layered material (overall thickness  100m) obtained by an electrodepositionprocess onanaluminiummandrelthat isdissolved in apotassiumhydroxide bath.Nickeldeposits (Fig.1b) have a ne columnarstructure withsubmicrometreto microme-tre grains joined in colonies delimited by crevices surrounding them and inducing porosities [2]. Alone, nickel cannot provide the required airtightness but possesses the needed sti ness. Conversely,copperdeposits asacontinuousmultilayerthatisabletoprevent(helium)di usion throughthe thickness.Consequently,acopperlayer(thickness 3m)isinserted between two layers ofnickel.Thiscon gurationallowsfortheminimisationofthe`softening'e ectofcopper onthe mechanicalbehaviour of bellows since bendingis the predominantloading pattern.

Suchcomponentsareexpectedtostayinserviceformanydecades,thus, theageingmode(s) ofthematerialhavetobeknown. Thestudyofthe mainenergies availableinthiscon guration (fromwhichthedrivingforcesarederived)allowsonetolisttheageingmodesthatmayhappen. Numerousageingmodesare possibleandmustbeinvestigatedbut themostimportantones for this con guration seem to be caused, rst, by the chemical gradient that gives rise to Ni/Cu di usion and, second, by the unstable microstructure that leads to recrystallisation (or more likely grain growth).

Consequently, the thermo-mechanical behaviour of bellows will change with time and the determination of the di usion coeÆcients in this case enables one to predict sti ness (i.e., elasticity) changes induced by di usion whereas grain growth can cause some change in the plastic behaviour for example. The paper rst focuses on a presentation of the couplings that

?

(3)

Nickel

Nickel

Nickel

Nickel

CopperCopper

Position of the aluminium mandrel

during the electrodeposition process

20 m

(a)

(b)

5mm

Fig.1.a)Generalview ofelectroplatedbellows.b) Electronmicrographofacross-sectionobtainedin anSEMafterchemicaletching[2 ].Notethemultilayeredmaterialandthe necolumnarmicrostructure ofthenickellayers.

canbeexpectedbetweenmechanicalpropertiesandloadings,heattransfer,(inter)di usionand graingrowth, and some ways of modellingthe di erentinteractions.Then, practicalstudiesof di usionand a rst estimateof the associatedcoeÆcients are performed formoderate temper-atures. This leads us to suggest some further improvements in the di usion curves treatment sincegraingrowth andthe di usionkinetics canchange.Finally,homogenisationtechniques in elasticity allowus to evaluate the change of the thermo-mechanical properties of the e ective materialwith time.

2 Thermo-mechanical, di usion and recrystallisation couplings

The di erent couplings of interestare presented in Fig.2. The linear behaviourof materials is nowwellknown, thus the thermo-elasticcouplings can bestudiedwith aclassical formulation, which is based on the expression of thermodynamic potentialsand the derived state laws [3]. For example, the second order thermal expansion tensor, , has been evaluated at a submil-limetre scale by digital image correlation [4, 5]. A CCD camera is used with a long-distance microscope. Images are taken at each temperature step and the intercorrelation between the considered image and the initial one (at room temperature) allows one to determine the in-planedisplacement eld.TheisotropyofthecoeÆcientofthermalexpansionandtheassociated valuesare determined.In the presentcase, thesecoeÆcients have been obtainedonthe surface of the bellows. The behaviouris essentially isotropicand corresponds mainlytothe electrode-positednickelcontribution(Fig.3).The average value ofthe coeÆcient ishigher thanfor bulk nickel and seems to be closer to bulk copper when the temperature T increases. This could be explained by the copper layer that is inside the nickel layers. However, the copper layer shouldnot`impose' itsdeformationasitsthickness istoosmallcompared tothatofnickel(see Fig.1b). Furthermore, the Young's modulus of copper is less than that of nickel. Therefore, this change in the thermal expansion coeÆcient may be due to the particular microstructure of the nickelelectrodeposits.

(4)

"Classical" coupling

Heat Transfer

Kirkendall

effect

E

ij

(C,

f

)

α

(

C, f,

T

)

h(

C

,

f

,

d

)

Diffusion

Change in composition

C

and in porosity f

Recrystallisation/Grain Growth

Change in grain size

d,

texture and dislocation density

Mechanical

behaviour and loading

Strain

plasticity

Thermal activation

(Arrhenius law)

DIGM

DIR

(Fig. 3)

Moving grain

boundary

Change in diffusion

regime

Thermal activation

(Arrhenius law)

Temperature gradient

Gorsky effect

(Stress gradient)

Stress

σ

y

(

C

,

f

,

d

)

~

Fig.2. Overall view of the assumed thermo-mechanical, di usion and recrystallisation couplings. DIGM standsfor`Di usion-InducedGrain Migration',DIR for`Di usion-InducedRecrystallisation', is the thermalexpansion second order tensor, h theheat conductivity tensor, E

ij

the components of thesti ness tensorand ~

y

theyieldstress and its possibleanisotropy.The presentstudyis mainly focused onthe determinationof thechangeof E

ij

withthe concentration C.

tensor h, depend onthe local (i.e.,microscopic)concentrationin nickel andcopperC(x). This canbeobtained byhomogenisationtechniques withthesame approachfor allthesecoeÆcients asthosepresented inSection4 forthesti ness. Therefore,the change ofthesematerial param-eters with time depends on the concentration pro le that will be determined by the di usion coeÆcients.Itisimportanttonote herethatthe (average)grain size,d,andtexturecan havea non negligiblein uenceonthe previousparameters.First, thehomogenisationtechniques used hereinassumethattherepresentativepatternissmallcomparedwiththestructure lengthscale (i.e., layers thicknesses) and loading gradients. If these conditions are not ful lled, boundary e ects have to be accounted for and other models must be used. Lastly, the global pattern (i.e., statisticaldistribution) can a ect the macroscopic behaviour, especiallyfor the thermal conductivity (see Section4).

Thee ect of temperatureondi usionandgrain growthismodelledby anArrheniuslawas athermally-activatedprocess.Moreover,atemperaturegradientcana ect theatomicdi usion uxasit willbedescribed below. The e ect of di usion onthe mechanicalloadingarises from the di erence between the di erent di using species in the product V

i M i , where V i stands for the molar (or atomic) volume of the species i, and M

i

its mobility (linked tothe intrinsic di usion coeÆcient D

i

(5)

Isotropic thermal expansion

coefficient

α

(

m/m.

C)

Temperature

θ

( C)

7

12

17

22

40

60

80

100

120

Image correlation measurements

Linear interpolation:

α

(

θ

) = 0.038

θ

+ 13

Bulk nickel [6]:

α

(

θ

) = 0.0092

θ

+ 13.2

Bulk copper [6]:

α

(

θ

) = 0.0087

θ

+ 16.3

Fig.3. Image correlation measurements of the (nearly) isotropic thermal expansion coeÆcient of electroplated Ni/Cu multilayers (reference temperature: 20

Æ

C). Comparisons with bulk nickel and copper coeÆcients. The scatter (i.e., the error bars) is mainly due to the accuracy in displacement measurement combined with the fact that, the lower the temperature, the lower the dilatational displacements.

whereas the other one will expand. The corresponding stress-free strain can be expressed by [7,8,9] _ " SF = 1 3 div  V A J 0 A +V B J 0 B  1; (1) whereJ 0 i

isthe uxofthespeciesiinthelatticeframe(J i =J 0 i +v K (x )C i ,withJ i

the uxinthe laboratoryframeandv

K

thevelocityofthelatticeframerelativetothelaboratoryframeusually measuredbyKirkendallmarkers).ThestraininEq.(1)inducesstressesthatcanbevisualisedby thebendingofthin-sheetdi usioncouples[10,11,9]evenforaNi/Cucouple[12].Ifthestresses relaxfasterthanthedi usioncharacteristictimeandcompletely,theconvectivetransport(i.e., plastic ow) that occurs leads tothe `classical' Kirkendall e ect (i.e., the displacement of the Kirkendall plane is proportional to the square root of time [13, 14, 15, 16]) and the classical Darken modelis valid[17, 7].In the opposite case, the stress developpingslows down di usion (seeEq.(3))anditsrelaxationcanmainlycontroldi usion.Thiscasecorrespondstothe Nernst-Planck limit(with approximatelyno marker displacement [8]). Di usion kinetics in these two extreme casesare completelydi erentand allthe possiblecases inthe transitionregimecanbe obtained by varying the layerthicknesses in compositionallymodulated multilayereddi usion couples [8, 18]. Moreover, the Kirkendalle ect implies adi usion of vacancies in the direction opposite to the net ux of atoms that can lead to pore formation (in the side containing the species with the higher product V

i M

i

) by the so-called Frenkel e ect [14, 19, 20] in the bulk as well as on the grain boundary [21, 22]. Since copper is the species in which this porosity could appear, it can lead to the loss of bellows airtightness. Furthermore, the development of stresses can lead to crack initiation and propagation in the nickel or copper layers. Finally, grainboundary di usioncan accelerate creep in materials[23].

(6)

Distance ( m)

W

eight fraction

in Cu (%)

0

10

20

30

0

10

20

30

-10

-20

-30

Initial copper

layer

EDS measurements

Numerical predictions

Interdiffusion affected area

20 m

}

Fig.4. Measuredand predictedweight fractionincopperof abellows afterheat treatment at 780 Æ

C for 15min. Note the (strong) grain growth and its interaction with di usion revealed by chemical etching[2 ] (SEMmicrograph).

relatedto the di usion coeÆcient by

D p =D p=0 exp  pV R T  ; (2)

where p is the pressure (i.e., p = trace ()=3 with  the stress tensor), V the activation volumethatcorresponds,whenselfdi usionisconcerned,tothechangeinvolumeofthecrystal associatedwithdefectformationandatomicjump(i.e.,migration).Inthecaseofinterdi usion, the activation volume contains additional terms corresponding to the presence of impurities [27]. Finally, R is the gaz constant and T the absolute temperature. The previous equation only depends on the hydrostatic part of the stress tensor but it is not excluded that other componentsof the tensor (i.e.,shear stresses) can a ect di usion by a similarthermodynamic e ect [28]. The e ect of pressure on grain boundary di usion has also been studied [29, 30]. Equation(2) shows thatanincreasingpressure slows down di usionif V ispositive(whichis generally the case [27]). The other aspect concerns a stress gradient that has been introduced by Larche and Cahn [31, 32,33] and Stephenson [7]. This a ects the ux of species i and can be summarised by the following modi cation in the Fick's law for a one dimensional binary di usioncase undera pressure gradientonly [10, 8]

J 0 i = D i @C i @x D i C i V A V B R T @p @x ; (3)

(7)

signif-nomenondescribed by Eq.(3)has beenrecognised earlierfordi usionof hydrogen insteeland has been referred to as the Gorsky e ect [34, 35]. The Gorsky experiment is based on a steel bar in which a uniform hydrogen concentration is initialy present. Bending this bar leads to an enrichment of hydrogen in the tensile part of the specimen and the opposite e ect in the compressive part. An other example is the formation of impurity clouds around edge disloca-tions, e.g., the Cottrelatmosphere [36]. Inthis case, the impuritiesare attracted (orrepulsed) by the dislocations via the stress eld created by the dislocations. Similare ects are observed for water transport in Agar gel [37, 38] where a modi cation in the dependence of apparent di usion coeÆcientswiththe concentrationisdescribed.Furthermore,inthesecases,the di u-sion species are mainlyinterstitialatoms but the previous remarksapply forvacancydi usion mechanisms. This study has been extended to the case of grain boundary di usion [29, 39]. Furthermore,the previous equation is expressed for apressure gradient, itsgeneral expression contains any component of the stress gradienttensor since the modi cation in the ux is due to agradientintheelasticenergy density r(:"

e

)=2,where " e

istheelastic straintensor(see e.g., Eqs. (40) and (48) in Ref.[7]). Moreover, stresses can modify or completely prevent the Frenkele ect ofporeformation[19, 12].Notethatthe`external'stresscanarisefromathermal expansioncoeÆcientmismatch(e.g.,

Cu >

Ni

).Itis importanttonotethat, accordingtothe Curie'sprinciple, uxes originate ingradientsof the intensivethermodynamic variables [8, 28] (e.g.,auniformstress cannotgiverisetoadi usion uxbut itcanslowdown oracceleratethe process) and similar additionalNernst-term in the Fick's law can be used to modelthe e ect of atemperaturegradient ondi usion [28]. In this case, Eq.(3)can berewritten as

J 0 i = D i @C i @x D i C i Q  R T 2 @T @x ; (4) whereQ 

isathermodynamicfactor. Butthethermalconditionsduring experimentsorforthe realcomponentare generally suchthat thecharacteristic timefortemperaturehomogenisation is much smaller than di usion characteristic time. The e ect of a temperature gradient is thereforeneglected here.

In the present case, since the material grain size is bound to evolve, grain growth or re-crystallisationmay occur.This willbeparticularlytrue during anannealing treatmentfor the study of di usion (see Figs.1 and 4). The e ect of a moving grain boundary on the di usion analysis has been treated fordi usion ona single grain boundary [40, 41] and ina polycrystal containing a fraction of moving grain boundaries [42]. It can lead one to underestimate the grain boundary di usion coeÆcient since the penetration depth in a moving grain boundary is smaller by a factor (V t=

p Dt)

1=2

, where V is the (constant) grain boundary velocity, t the di usiontimeandDthe averagelatticedi usion.Inthiscase,newdi usionregimescanappear dependingonthe velocity,V,thegrainboundarydi usioncoeÆcientD

b

,thelatticeoneDand the grain size d[40, 43]. Lastly,the dislocationdensityin uences the apparentlatticedi usion since dislocations(andsubgrainboundaries)representdi usionshort-circuitpathsand,iftheir density is signi cant,a new grain boundary di usion regime, say D, appears [44]. Conversely, di usion can modify or in uencethe grainsize and distribution by the di usion-inducedgrain boundarymigration(DIGM)[24,42,22]anddi usion-inducedrecrystallisation(DIR)[45].Itis interesting tonoticeinFig.4that graingrowth inthe interdi usiona ectedarea seems slower than inpure nickel.

(8)

y size d by, say,the empiricalHall-Petchrelationship [47]

 y = i + k y p d ; (5)

that applies for nickel used in the present case [2] where  i

is an `internal' stress which is relatedtothe shear stress threshold fordislocation glide (approximatelyequalto 40MPa)and k

y

 0:48MPa

p

m. For very ne-grained materials, the yield stress can be governed by other mechanismsthandislocationsglideandleadtoareverseHall-Petche ect[48].This`mesoscopic' yield stress associated with the material `texture', the porosity and the concentration curve are needed to determine the macroscopic yield stress of a cross section of the multilayered material.Porosity reduces the macroscopicyield stress[49]. The di usion of copper couldlead toasigni cantmodi cationinthemacroscopicplasticbehavioursinceitsdi usiononthegrain boundaries couldlead to abrittle (intergranular) fracturemechanisminstead of ductilefailure asit has been observed experimentally [50].

This overview of the main couplings of interest in the present study of ageing shows the complexityoftheproblemanditisnot possibletotreat(numericallyorexperimentally)allthe e ectssimultaneouslyandonlytherelevante ectsmustbeconsidered.However,itisimportant to keep all of them in mind when interpreting experimental results. The next section focuses on the determination of di usion parameters for the electroplated multilayered material that willallowfor the evaluation of the change of the elastic moduliwith time.

3 Determination of di usion coeÆcients

Bellows are usually utilised at an average temperature close to room temperature. For this rangeof temperature, grain boundarydi usion is predominant overvolume di usion asit can beseen inFig.5.However, the microstructureissmall(Fig.1b) comparedtospatialresolution of concentration measurements (electron microprobe is used for measuring di usion curves, i.e., the characteristic length varies between many hundredths of one micrometer and one micrometer) so that the di usion curves seem homogeneous in the direction parallel to the interface.Theinvestigationsare,forthemoment,limitedtothedeterminationofglobaldi usion coeÆcients including grain boundary di usion, (weak) lattice di usion and grain boundary motiondue to grain growth (see Fig.4).

(9)

0.5

1

1.5

2

2.5

3

3.5

12.7

60.3

127

227

393.7

727

Temperature (10

3

/T(K))

Temperature (

θ

( C))

Diffusion coefficient

D

(

m

2

.s

-1

)

10

-10

10

-8

10

-6

10

-4

10

-2

1

Grain boundary diffusion Ni in Cu

1727

10

2

(Grain boundary velocity: 0.07nm.s

-1

)

(C regime, no migration)

Bulk diffusion Ni in Cu

Bulk diffusion Cu in Ni

Grain boundary diffusion Cu in Ni

~Temperature threshold for grain

boundary migration [23, 60]?

~Transition

temperature between

grain boundary and

bulk predominance [14]

*

?

GB

GB

GB

*

θ

m

(Cu)

θ

m

(Ni)

Lattice diffusion

Yukawa et al. [51], Mackliet et al.

[52], Ikushima [53] and Almazouzi

et al. [54] (and inner references): Ni

in Cu (single crystal)

Ref. [22] in Kolobov et al. [23]:

Cu in Ni (bulk)

Cu -

>100%

Ni -

>100%

Masson [14]: Interdiffusion in

coarse-grained couples

Cu -

>100%

Ni -

>100%

Thomas et al. [55]: Interdiffusion in

coarse-grained couples

Austin et al. [21]: Interdiffusion (bulk)

Cu -

>100%

Ni -

>100%

Hasaka et al. [56]: Cu in

poly-crystalline Ni

Melt-spun ribbons (

<

d

Ni

>

=10 m,

columnar grains)

Pre-annealed blocks (15 m<

d

Ni

< 100 m)

Benhenda [57]: electroplated Ni on

bulk Cu, studies in Ni grain boundaries,

columnar grains (

<

d

Ni

>

= 30 nm) joined

in submicrometre colonies

Tronsdal et al. [58]: Inter-diffusion

between electroplated foils, Cu ~ 60.6%,

observed B

2

’ regime, 30 m< d

Ni

<50 m

after annealing

*

Present study: Boltzmann-Matano/Hall

(lattice) estimate

Cu -

>100%

Ni ~50%

Average value (bellows)

Ni -

>100%

Grain-boundary estimate

Cu -

>100%

Ni -

>100%

GB

GB

Grain boundary

diffusion

Yukawa et al. [51]: Ni in Cu (bicrystal),

Misorientation angle: 45

Misorientation angle: 10

Kolobov et al. [23] with grain

boundary migration correction

Cu in sub-microcrystalline Ni

(polycrystals,

<

d

Ni

>

=300nm)

Cu in coarsed-grained Ni

(polycrystals,

<

d

Ni

>

=20 m, B

1

regime)

Grabovetskaya et al. [60], Cu in

ultrafine grained Ni,

<

d

Ni

>

~0.2 m,

grain boundary migration correction

(average velocity - 300 C: 0.07nm.s

-1

)

Johnson et al. [59]: Cu/Ni thin-film

couples obtained by vapor deposition,

<

d

Ni

>

=24nm,

<

d

Cu

>

=200nm,

Ni in Cu

Cu in Ni

Austin et al. [21]: Ni in Cu

(bicrystal), misorientation angle: 45 ,

average value of concentration

dep-endent coefficients at 0.93% in Ni.

Rabkin [61]: Ni in Cu (bicrystal),

misorientation angle: 45 , average

value of concentration dependent

coefficients at 0.93% in Ni.

Fig.5.Arrheniusplot forthechangeofglobaldi usioncoeÆcientswithtemperatureforNi/Cu cou-ples. All compositions are given in weight fraction, 

m

(10)

studies are performed by an EDS (i.e., Energy Dispersive Spectroscopy) method in an SEM. It enables one to identify and quantify the elemental chemical composition within a depth of aboutonemicrometer.Amassconcentrationresolutionofaboutonepercentcanbeobtainedin suitableconditions, i.e.,measurement artefacts,or e ects, must be considered. Softwares used toanalyse the resultsof anEDS microprobeusually correctstandard measurement e ects but they assume a homogeneousconcentration in the analysed area. However, in the present case, di usion occurs only over a few micrometers (see Fig.4) and the concentration is no longer constant in the analysed area. One measures an average of the real concentration and that can lead to overestimate the actual di usion coeÆcient [62]. It is called average e ect and is caused by the X-ray emissionvolume whosecharacteristiclength,l

X

,can be of the sameorder of magnitude as the penetration length of di usion, 2

p

Dt, where D is the (true) di usion coeÆcient. A simpli ed quantitative study of this phenomenon in the case of close atomic numberelements (such asnickel and copper), if nodependence ofthe di usion coeÆcientwith the composition isassumed, has shown that the apparent di usioncoeÆcient D



measured by anEDS probefollows the simple law

D  =D+ l 2 X 2t ; (6)

that shows the need of taking this e ect into account in the determination of the di usion coeÆcient [62]. A more detailed study of the speci c physical e ects occurring in this kind of measurements has been developped in Ref.[63] and a complete deconvolution procedure of concentration measurements withconcentration-dependent di usioncoeÆcients isproposed in Ref.[64].

Usually, theBoltzmann-Matano method[24] isappliedto evaluatethe di usioncoeÆcient, which isdependent onthe chemicalcomposition,fromthe deconvoluted concentration pro les for intermediate concentrations. An additionalmethod is necessary for the low and high con-centration parts of di usion curves since the previous one is less accurate in these extreme domains.The Hallmethodiswell-adaptedtothis kindof study [24].The di usion curves have beenobtainedonspeci cspecimen(i.e.,`semi-in nite'bilayereddi usioncouplesforwhichthe layer thicknesses are suÆcient toprevent the di using species to reach a free surface) and not on bellows. But three importantremarks (orimprovements)have tobe made:

{ this method applies for lattice and only for grain boundary di usion in the `A' regime [42] when dealing with the average di usion curve in the direction perpendicular to the di usion one.Inthis kindof grainboundarydi usion,the globalinterdi usioncoeÆcient followsamixingruleofthelatticeandgrainboundarydi usioncoeÆcientsviathevolume fractionof grainboundaries(i.e.,the so-calledHartequation[42]whosevalidityhas been recently studied for ne-grained materials [65]). The grain boundary di usion regime(s) has to be clearly speci ed in the present study and if other regimes of grain boundary di usionhappen,aspeci ctreatmentmaybedevelopedtotreatthedi usioncurve[27].It can bebasedonthedeterminationofinterdi usioncoeÆcientsongrainboundary[21,61] that is, for the moment, `limited' to the case of constant lattice di usion and for dilute solidsolutions.Grainboundarydi usionhasbeencon rmedby plottingaveragedi usion curves, onmany positionsalong the initialinterface, inthe (x

6=5

(11)

1

10

-1

10

-2

10

-3

10

-4

10

-5

10

-6

1

0

0.2

0.4

0.6

0.8

Weight fraction in Ni

Interdiffusion coefficient

D

(

m

2

.s

-1

)

~

Ref. [6] in Tronsdal et al. - 750 C - electroplated foils

Thomas et al. [55] - 1022 C - lattice diffusion

Masson [14] - 1030 C - lattice diffusion

Present study - 700 C - electroplated materials

Austin et al. [21] - 750 C - lattice diffusion

Tronsdal et al. [58] - 800 C - electroplated foils

Present study - 550 C - electroplated materials

Nearly constant coefficient [55,

14]

Fig.6. Change of the global interdi usion coeÆcient with the weight fraction in nickel for Ni/Cu couple. Scatter in the coeÆcient (depicted by the error bars) is due to the precision of the EDS measurements and (weak) variations of the di usion curves in the direction parallel to the initial interface.The straight linesdepictthemaintendencyof thedi erentresultsand thevaluesobtained inthepresentcaseforaverage di usioncurvesformanymeasurementsatdi erentpositionsalongthe initialinterface.

even if the Le Claire's analysis can be applied to polycrystals when the average grain boundarymisorientationangleis known [42, 27]). Furthermore,the initialand boundary conditions in concentration for the grain boundary di usion analysis is not well-de ned here even if itseemstobeclosetoaconstantconcentration.Inspite ofthese restrictions, the extracted values are surprisingly well correlated with other grain boundary results (since the next item has to be considered too),

{ strong grain growth occurs for ne-grained materials and this e ect must be accounted for sincethe apparentdi usion coeÆcientisless thanthe real onedue tograinboundary migration(seetheprevioussection).ThishasbeenperformedinRefs.[23,60]forthiskind of materialbut it appears that it exists nospeci c techniques when the grain boundary interactsduring the grain growth process,

{ theKirkendalle ectimpliesthatalocalvolumechangeoccursandtheBoltzmann-Matano methodcould lead towrong interdi usioncoeÆcients. This can beassessed by using the Sauer-Freiser method[66].

As a rst approximation, with the Boltzmann-Matano/Hall method, the change of the in-terdi usioncoeÆcientwiththeconcentrationhasbeenobtainedat700

Æ

Cand550 Æ

(12)

shape of the curves is consistent with classical results, i.e., the dependence of the di usion coeÆcientwiththeelementalcompositionincreaseswiththecopperconcentration.Thisis gen-erally thecase,i.e.,adi usioncoeÆcientincreaseswiththe concentrationofthelowest melting temperature compound [14, 67]. But some results ongrain boundary concentration-dependent di usion coeÆcients should be mentionned where the opposite dependence is observed [61]. However, thepresentdi usion coeÆcientsaregreaterthanthose obtainedforlattice interdi u-sion (and less than those forgrain boundary interdi usion). This follows the previousremarks onthe possible improvementsin the determination of the di usion coeÆcient from concentra-tion pro les. In fact, the prevalent mechanism is grain boundary di usion and the e ect of a movinggrain boundary has to be included.

Since the (inter)di usion coeÆcients have been identi ed at two testing temperatures, the coeÆcientof thermalactivationof the Arrheniuslawis known, with anaveragevalueof about 110kJ:mol

1

fortemperaturesrangingfrom550 Æ

Cto700 Æ

C.Theresultsare showninFig.5 to-getherwithaverageestimates ofdi usioncoeÆcientsof bellowsobtainedby ttingthesolution of the Fick's law for a constant lattice di usion coeÆcient and bilayered material con gura-tions. Itisimportanttonotethat theresultsobtained by theBoltzmann-Matano/Hallmethod seem to be consistent with other studies on electroplated or ne-grained copper/nickel mate-rials [58, 57] by using similar approaches (i.e., no correction for grain boundary motion and determinationofanapparent`lattice'di usioncoeÆcientwiththe Boltzmann-Matanomethod or equivalent) even if the coeÆcient of thermal activation seems to be lower in other results than inthe present study.

(13)

Discretisation

Transverse

direction

x

Longitudinal

direction

y

Initial bilayered material

Nickel

Nickel

Copper

100

0

Weight fraction

in Ni (%)

x

Multilayered material

at time

t

Multilayered material with piecewise

constant chemical concentration

Ageing

(Diffusion)

Composite

Homogenisation

Effective elastic properties

Longitudinal

modulus

E

y

(t)

Transverse

modulus

E

x

(t)

Shear

modulus G

xy

(t)

Elastic modulus

x

Laminate composite

with isotropic layers

Three-phase self-consistent

homogenisation pattern

Core

Diffusing species

on grain boundaries

Equivalent homogeneous

medium

e

k

e

Fig.7.Homogenisationstepsto predicttheoverall(i.e.,macroscopic)elasticpropertiesduring chem-icaldi usionofNi/Cu bellows.

4 Changes of elastic moduli induced by di usion

The change of the e ective elastic properties (i.e., transverse E x

and longitudinal E y

Young's modulus, and in-planeshear modulus G

xy

where longitudinal means parallel to the interfaces between nickel and copper, see Fig.7) of the bilayered material with the di usion process is evaluated.Since the Poisson's ratios, , of the two materialsare very close, they are assumed to be equal. The determinationof the e ective coeÆcients, when the chemical composition is known, is illustrated in Fig.7. The di usion pro les are discretised into N layers of thickness e

k

toobtainamultilayeredmaterialinwhicheachlayerisassumed tohaveaconstantchemical compositionandtobeisotropic.Thee ectiveelasticmoduliofeachlayerisobtainedbyusinga homogenisationscheme consistent with the assumed principaldi usion mode: grain boundary di usionin a ne-grainedmaterial (see microradiogramsin Ref.[58]), i.e.,between the C

0 and B

0 2

regimesde nedinRef.[43].Therefore,intheinitialnickellayer,nickelgrainsaresurrounded by copper and the opposite situation is found in the copper layer (Fig.8a). The generalised three-phaseself-consistentscheme[68,69]isthemostsuitableone.Itconsistsindeterminingthe e ectiveequivalentmodulus ofasphericalisotropicinclusionsurroundedbya secondisotropic phase, this whole pattern being embedded in an in nite medium whose elastic moduliis the expected mesoscopic one, i.e., the equivalent homogeneous medium (see Fig.7). The e ective isotropicelasticmodulus forthek

th

(14)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

2

4

6

8

10

12

14

Distance ( m)

Weight fraction or relative modulus (%)

Effective modulus

Nickel Modulus

Weight fraction in Ni

Initial nickel

layer

Initial interface

Initial copper

heart

Nickel grain

Copper on the

grain boundary

Nickel on the

grain boundary

Copper grain

Composite

Homogenisation

(a)

183

185

187

189

191

193

195

0

1.3

2.6

3.9

4.2

5.5

6.8

7.1

Time (h)

Common limit of the modulus ~ 189 GPa

Initial longitudinal value ~ 194 GPa

Initial transverse value ~ 183 GPa

Longitudinal modulus E

y

Transverse modulus E

x

Effective modulus (GPa)

θ

= 700 C

0

250

20

(Estimated) Time (years)

θ

= 20 C

(Measured diffusion)

(b)

Fig.8.Firsthomogenisationstep(Self-consistent scheme ofapiecewiseconstant chemical concentra-tion)for one half of thebilayered material, with a thickercopperlayer than inFig.1b, for 37minof di usion at 700

Æ

C. E ective elastic modulusvs. time for di usion at 700 Æ

C and an estimate of the equivalenttime for20

Æ C. modulusK k K k =K gb + C 0 g k (K g K gb ) 1+(1 C 0 g k )(K g K gb )=(K gb +4G gb =3) ; (7) whereC 0

stands forthe volume fraction determinedby the weightfraction C and the densities ofthedi erentmaterial,

g

isthequantityofthematerialoftheconsideredgrain(innercoreof the homogenisationpattern, Fig.7)and 

gb

for the materialonthe grainboundary(concentric shellof the homogenisationpattern, Fig.7).The shear modulusG

k

isthe positivesecond root of asecond order equation

G k G gb ! 2 + G k G gb ! + =0; (8)

where , and dependonG g ,G gb ,C 0 g k

andPoisson'sratio [69]. TheYoung'smodulusand the Poisson's ratio are then deduced

E k = 9K k G k 3K k +G k ; (9)  k = 3K k 2G k 6K k +2G k : (10)

(15)

The two results are needed (see Fig.8a) since it is assumed that copper di uses on the grain boundaries of nickel grains inthe layers containing nickelinitiallyand conversely inthe initial copper layer. When this rst step is completed, a composite-like material is obtained with N isotropic elastic layers of e ective Young's modulus E

k

and Poisson's ratio  k

(Fig.8a). A homogenisation scheme applied to isotropic laminated composite materials [70] is used to evaluatethe overall transversely isotropicelastic properties (Fig.7)

E x = X k e k e 1 E k ! 1 ; (11) E y = X k e k e E k ; (12) G xy = X k e k e 2(1+ k ) E k ! 1 : (13)

The nal result is shown in Fig.8b for E y

and E x

. The magnitude of variation of the moduli depends on the relative thickness of the copper and nickel layers. The maximum magnitude of variation is obtained in a relatively short time duration, i.e., an ageing mode induced by di usion could be signi cant even for low time durations or temperatures. For example, a rough approximation based on an equivalence on the average rate of di usion for a 20 year agedmaterialgivesanideaof the correspondingtimedurationatroomtemperature. Sincethe sti ness of bellows is proportional to the longitudinal modulus (for relatively low de ections), di usion could have a non-negligible e ect on the overall behaviour of the component if the copper layeris too thick. The same treatment can beapplied tothe thermalconductivity and coeÆcient of thermalexpansionwith the same self-consistent schemes [71, 72]. It isimportant tonote that the previous results are all based onthe assumption that each materialgrain can be modelled by a homogeneous spherical inclusion surrounded by a homogeneous shell. This assumption is only valid for small grain sizes compared to the layer thickness. This will no longerbethe caseformaterialswithstrongrecrystallisationrates.Moreover, therealgrainand grain boundary morphologiescan play an importantrole inthe e ective properties [73, 74].

5 Conclusions

(16)

AER company and Dr. N. Schmitt. They alsowish to thank Dr D.J. Fisher for invitingthem towrite this paper.

References

[1] Arnould, O., Duval, J. and Hild, F., \On the Identi cation of the Di usion Ageing Mode of Ni/CuAssemblies",in:Limoge,Y.andBocquet,J.L.Eds.,InternationalConferenceonDi usion inMaterials- DIMAT2000, Paris, France,Defect andDi usionForum,Vol.194{199, pp. 1445{ 1450, ScitecPublications,Switzerland,2001.

[2] Banovic,S.W.,Barmak,K.and Marder,A.R.,\Microstructuralcharacterizationandhardnessof electrodepositednickelcoatings froma sulphamatebath", Journal of Materials Science,Vol. 33, pp.639{645, 1998.

[3] Marquis,D.,\PhenomenologieetThermodynamique:couplageentrethermoelasticite,plasticite, vieillissementetendommagement", Thesed'



Etat, UniversityofParisVI,1989 (in French). [4] Chevalier,L., Calloch,S.,Hild,F. andMarco, Y.,\Digitalimagecorrelation usedtoanalyze the

multiaxial behavior of rubber-like materials", European Journal of Mechanics - A/Solids, Vol. 20(2), pp.169{187, 2001.

[5] Hild, F.,Perie, N.and Coret, M.,\Mesure de champsde deplacements2D parintercorrelations d'images: CORRELI

2D

", Internal report230, LMT-Cachan,1999 (inFrench). [6] Kaye, G.W.C. and Laby, T.H., Tables of physical and chemical constants, 16

th

edition, Essex, England,1995.

[7] Stephenson,G.B.,\Deformationduringinterdi usion",ActaMetallurgica,Vol.36(10), pp.2663{ 2683, 1988.

[8] Beke, D.L., \Why Di usion and Stresses?", in: Beke, D.L. and Szabo, I.A. Eds., Proceedings of the1

st

International Workshop on Di usion and Stresses, Balatonfured,Hungary,Defectand Di usionForum,Vol. 129{130, pp.9{30, ScitecPublications, Switzerland,1996.

[9] Szabo,S.,Opposits,G.andBeke,D.L.,\Di usionandStressesinMultiphaseSolids",in:Limoge, Y. and Bocquet, J.L. Eds., International Conference on Di usion in Materials - DIMAT 2000, Paris, France, Defect and Di usion Forum, Vol. 194{199, pp. 1431{1436, Scitec Publications, Switzerland,2001.

[10] Daruka,I.,Szabo,S.,Beke,D.L., Cserhati,C.S.,Kodentsov, A.andVanLoo,F.J.J., \Di usion-inducedbendingofthinsheetcouples:theoryandexperimentsinTi-Zrsystem",ActaMaterialia, Vol. 44(12),pp.4981{4993, 1996.

[11] Szabo,S.,Daruka,I.andBeke,D.L.,\Non-LocalE ectofStress",in:Beke,D.L.andSzabo,I.A. Eds.,Proceedingsofthe1

st

InternationalWorkshoponDi usionandStresses,Balatonfured, Hun-gary, Defect and Di usion Forum, Vol. 129{130, pp. 127{134, Scitec Publications, Switzerland, 1996.

[12] Opposits,G.,Szabo,S.,Beke,D.L.,Guba,Z.andSzabo,I.A.,\Di usion-inducedbendingofthin sheet di usioncouples",ScriptaMaterialia, Vol. 39(7), pp.977{983, 1998.

(17)

di usionCu-Ni en metaux massifsetsur celles desmelanges de poudresCu-Ni au cours de leur frittage",Ph.D. Thesis,Universityof ParisSud- Orsay, 1966 (inFrench).

[15] Schlipf,J.,\OntheplasticdeformationassociatedwiththeKirkendalle ect",ActaMetallurgica, Vol. 21,pp.435{440, 1973.

[16] VanDal,M.J.H.,Pleumeekers,M.C.L.P.,Kodentsov,A.A.andvanLoo,F.J.J.,\Intrinsicdi usion and Kirkendalle ect inNi-Pdand Fe-Pd solid solutions",Acta Materialia, Vol. 48(2), pp. 385{ 396,2000.

[17] Larche,F.C. and Cahn,J.W.,\Thee ect ofself-stress ondi usioninsolids",Acta Metallurgica, Vol. 30,pp.1835{1845, 1982.

[18] Greer,A.L., \StressE ects ontheInterdi usioninAmorphousMultilayers",in: Beke, D.L.and Szabo,I.A.Eds.,Proceedings ofthe1

st

International Workshopon Di usionand Stresses, Bala-tonfured,Hungary,Defectand Di usion Forum,Vol. 129{130, pp.163{180, ScitecPublications, Switzerland,1996.

[19] Paritskaya, L.N. and Bogdanov, V.V., \Stress sensitive e ect in di usion zone", in: Beke, D.L. and Szabo, I.A. Eds., Proceedings of the 1

st

International Workshop on Di usion and Stresses, Balatonfured,Hungary,DefectandDi usionForum,Vol.129{130,pp.79{94,ScitecPublications, Switzerland,1996.

[20] Hoglund,L.and 

Agren,J., \AnalysisoftheKirkendalle ect, markermigration andpore forma-tion",Acta Materialia, Vol. 49,pp. 1311{1317, 2001.

[21] Austin,A.E. and Richard, N.A., \Grain-Boundary Di usion", Journal of Applied Physics, Vol. 32(8), pp.1462{1471, 1961.

[22] Rabkin, E., Klinger, L., Izyumova, T. and Semenov, V.N., \Di usion-induced grain boundary porosityinNiAl", Scripta Materialia, Vol. 42(11), pp.1031{1037, 2000.

[23] Kolobov,Y.R.,Grabovetskaya,G.P.,Ratochka,I.V.,Kabanova,E.V.,Naidenkin,E.V.andLowe, T.C., \E ect of Grain-Boundary Di usion Fluxes of Copper on the Acceleration of Creep in SubmicrocrystallineNickel", Annales de Chimie Francaises, Vol. 21, pp.483{491, 1996.

[24] Philibert, J., Atom movements - di usion and mass transport in solids, Les 

Editions de la Physique,Les Ulis,France,1996.

[25] Mehrer,H.,\TheE ectofPressureonDi usion",in:Beke,D.L.andSzabo,I.A.Eds.,Proceedings of the1

st

International Workshop on Di usion and Stresses, Balatonfured,Hungary,Defectand Di usionForum,Vol. 129{130, pp.57{74, ScitecPublications, Switzerland,1996.

[26] Aziz,M.,\Thermodynamicsofdi usionunderpressureandstress:Relationtopointdefect mech-anism",Applied Physics Letters, Vol. 70(21), pp.2810{2812, 1997.

[27] Tokei, Z., \E et de la composition chimique et de l'ordre atomique sur la di usion volumique et intergranulaire dans le cuivre et les composes Fe

3

Al et FeCo", Ph.D. Thesis, University of Aix-Marseille,France,1997 (inFrench).

[28] Philibert,J.,\In uencedescontraintessurlesprocessusdedi usional'etatsolide",Proceedings ofColloque NationalMECAMAT, Aussois, France,pp. 46{49, 1999 (inFrench).

[29] Balandina,N., Bokstein,B.,Peteline,A.and Ostrovsky,A., \StressesE ecton GrainBoundary Di usioninThinFilms",in:Beke,D.L.andSzabo,I.A.Eds.,Proceedingsofthe1

st

(18)

\Pressureand OrientationDependence of Zn Di usionalong <001 >TiltGrain Boundaries in Al Bicrystals", in: Limoge,Y. and Bocquet, J.L. Eds.,International Conference on Di usion in Materials-DIMAT2000,Paris,France,DefectandDi usionForum,Vol.194{199,pp.1153{1160, ScitecPublications, Switzerland,2001.

[31] Larche,F.C.andCahn,J.W.,\Thermomechanicalequilibriumofmultiphasesolidsunderstress", Acta Metallurgica,Vol. 26,pp.1579{1589, 1978.

[32] Larche, F.C.and Cahn, J.W.,\The interactions of compositionand stress in crystallinesolids", Acta Metallurgica,Vol. 33(3), pp.331{357, 1985.

[33] Larche, F.C.and Voorhees,P.W., in:Beke,D.L.and Szabo,I.A. Eds.,Proceedingsof the1 st

In-ternationalWorkshop onDi usionandStresses,Balatonfured,Hungary,\Di usionandStresses: Basic Thermodynamics",Defect and Di usion Forum, Vol. 129{130, pp. 31{36, Scitec Publica-tions, Switzerland,1996.

[34] Gorsky,W.S.,\TheoriederElastichenNachwirkunginUngeordnetenMischkristallen(Elastische NarchwirkungZweiterArt)",PhysikalischeZeitschriftderSowjetunion,Vol.8,pp.457{471,1935. [35] Quan,G.F.,\ExperimentalStudy ofHydrogen Di usionBehaviors inStressFields", Corrosion,

Vol. 53(2), pp.99{102, 1997.

[36] Friedel, J., Dislocations, Chapter XVI: Formation and motion of impurity clouds, Vol. 3, 3 rd edition,PergamonPress, 1964.

[37] Mrani, I., Benet, J.-C. and Fras, G., \Transport of water in a biconstituant elastic medium", Applied Mechanics Reviews, Special Issue on Mechanics of Swelling, Vol. 48(10), pp. 717{721, 1995.

[38] Mrani,I.,Benet, J.-C.,Fras,G.andZrikem,Z.,\Twodimensionalsimulationofdehydrationofa highlydeformablegel: moisturecontent,stress and strain elds", DryingTechnology, Vol. 15(9), pp.2165{2193, 1997.

[39] Nazarov,A.A.,\Internalstresse ectongrain-boundarydi usioninsubmicrocrystallinemetals", Philosophical Magazine Letters, Vol.80(4), pp.221{227, 2000.

[40] Mishin,Y.andRazumovskii,I.M.,\A modelfordi usionalongamovinggrainboundary", Acta Metallurgica et Materialia, Vol. 40,pp.839{845, 1992.

[41] Koppers,M., Mishin, M. and Herzig, C., \Fast di usionof cobaltalong stationary and moving grainboundariesinniobium",Acta Metallurgica etMaterialia, Vol. 42(8), pp.2859{2868, 1993. [42] Mishin,Y., Herzig,C.,Bernardini,J.and Gust,W.,\Grain boundarydi usion:Fundamentalto

recent developments", International Materials Reviews, Vol. 42(4), pp. 155{178, 1997. See also Kaur, I.,Mishin,Y. and Gust, W., Fundamentals of Grain and Interphase Boundary Di usion, 3

rd

enlarged version,JohnWileyand SonsLtd, Chichester,1995.

[43] Mishin,Y. and Herzig, C., \Di usion in ne-grained materials: Theoretical aspects and experi-mental possibilities",NanoStructured Materials, Vol. 6,pp.859{862, 1995.

[44] Klinger, L. and Rabkin, E., \Beyond the Fisher model of grain boundary di usion: e ect of structuralinhomogeneityinthebulk",Acta Materialia, Vol.47(3), pp.725{734, 1999.

(19)

aries,Vol. 3,3 rd

edition, Pergamon Press,1964.

[47] Hall, E.O., \The deformation and ageing of mild steel: III Discussion of results", Proceedings of the Physical Society of London, Vol. B64, pp. 747{753, 1951 and Petch, N.J., \The cleavage strength ofpolycrystals", Journal of the Iron and Steel Institute, Vol. 174, p.25,1953.

[48] Schitz,J.,DiTolla,F.D.andJacobsen,K.W.,\Softeningofnanocrystallinemetalsatverysmall grainsizes",Nature,Vol. 391,pp.561{563, 1998.

[49] McClintock,F.A., \AcriterionforDuctileFracturebytheGrowth ofHoles",Journal ofApplied Mechanics,Vol.35,pp.363{371, 1968.SeealsoTvergaard,V.,\MaterialFailurebyVoidGrowth to Coalescence", Advances in Applied Mechanics Vol. 27,pp.83{151, 1990.

[50] Senechal, L., Privatecommunication, AER,2001.

[51] Yukawa, S. and Sinnott, M.J., \Grain Boundary Di usion of Nickel into Copper", Journal of Metals -Transactions AIME,Vol.203, pp.996{1002, 1955.

[52] Mackliet,C.A.,\Di usionofIron,CobaltandNickelinSingleCrystalsofPureCopper",Physical Review,Vol. 109(6), pp.1964{1970, 1958.

[53] Ikushima,A., \Di usion ofNickelinSingleCrystals ofCopper", Journal of the Physical Society of Japan, Vol. 14,pp.1636, 1959.

[54] Almazouzi, A., Macht, M.P., Naundorf, V. and Neumann, G., \Di usion of iron and nickel in single-crystallinecopper", Physical Review B,Vol. 54(2), pp.857{863, 1996.

[55] Thomas, D.E. and Birchenall, C.E., \Concentration Dependence of Di usion CoeÆcients in MetallicSolidSolution",Journal of Metals- TransactionsAIME, Vol. 194, pp.867{873, 1952. [56] Hasaka,M.,Morimura, T.,Uchiyama, Y., Kondo,S.I.,Watanabe, T.,Hisatsune,K. andFuruse,

T., \Di usion of Copper, Aluminiumand Boron inNickel", Scripta Metallurgica et Materialia, Vol. 29,pp.959{962, 1993.

[57] Benhenda,S., \Etude,parmicroscopieelectroniqueetpasspectrometrieAuger,desrev^etements protecteurs du cuivre (Au, Ni, Au/Ni etTiN)", Ph.D.Thesis, Universityof Aix-Marseille, 1987 (inFrench).

[58] Trnsdal, G.O. and Srum, H., \Interdi usion in Cu-Ni, Co-Ni, and Co-Cu", Physica Status Solidi, Vol. 4,pp.493{498, 1964.

[59] Johnson, B.C., Bauer, C.L. and Jordan, A.G., \Mechanism of interdi usion in copper/nickel thin- lmcouples",Journal of Applied Physics,Vol. 59(4), pp.1147{1155, 1986.

[60] Grabovetskaya, G.P., Ratochka, I.V., Kolobov, Y.R. and Puchkareva, L.N., \A Comparative Studyof Grain-BoundaryDi usionof CopperinUltra ne-Grained and Coarse-GrainedNickel", ThePhysics of Metalsand Metallography, Vol. 83(3), pp.310{313, 1997.

[61] Rabkin, E., \Grain Boundary Interdi usion in the Case of Concentration-Dependent Grain BoundaryDi usion CoeÆcient", Interface Science,Vol. 3,pp.219{226, 1996.

[62] Arnould, O. and Hild, F., \Measurement by EDX of Di usion Pro les of Ni/Cu Assemblies", Microscopy and Analysis, Vol. 66, pp. 13{15 (European edition), pp. 25{27 (Americas edition), 2000.

[63] Arnould, O. and Hild, F., \EPMA Measurements of Di usion Pro les at the Submicrometre Scale",Mikrochimica Acta,special issue,7

th

(20)

cationto BinaryDi usion",X-ray Spectrometry, submitted.

[65] Belova, I.V. and Murch, G.E., \Analysis of the Hart Equation in Fine-Grained Material", in: Limoge,Y.andBocquet, J.L.Eds.,InternationalConferenceon Di usioninMaterials-DIMAT 2000,Paris,France,DefectandDi usionForum,Vol.194{199,pp.1223{1226,ScitecPublications, Switzerland,2001.

[66] Sauer,V.F.and Freise, V.,\Di usion inBinaren GemischenmitVolumenanderung",Zeitschrift f urElektrochemie, Vol. 66(4), pp.353{363, 1962.

[67] Ugaste, 

U,\ConcentrationDependenceofDi usionCoeÆcientsinBinaryMetalSystems: Empir-icalRelationships",in:Limoge,Y.andBocquet,J.L.Eds.,InternationalConferenceonDi usion inMaterials - DIMAT2000, Paris, France, Defect and Di usion Forum, Vol. 194{199, pp. 157{ 162,Scitec Publications,Switzerland,2001.

[68] Christensen, R.M. and Lo, K.H., \Solution for e ective shear properties in three phase sphere andcylindricalmodels",Journal of Mechanicsand Physics of Solids,Vol.27,pp.315{330, 1979. Seealso Christensen,R.M. and Lo, K.H.,\Solution for e ective shear properties inthree phase sphereand cylindricalmodels(erratum)", Journal of Mechanics and Physics of Solids, Vol. 34, p.639, 1986.

[69] Herve,E.andZaoui,A.,\Modellingthee ectivebehaviorofnonlinearmatrix-inclusion compos-ites", European Journal of Mechanics- A/Solids,Vol. 9(6), pp.505{515, 1990.

[70] Rabinovich,A.L., \Onthe Calculationsof OrthotropicLaminatedPanelsUnder Tension,Shear andBending",TrudyMinisterstvoAviatsionnoiPromyshlennosti,No.675,1948.Seealso Lekhnit-skii,S.G., Theory of Elasticity of an Anisotropic Elastic Body,Mir Publishers,Moscow, 1981. [71] Miloh,T.andBenveniste,Y.,\Ageneralizedself-consistentmethodforthee ectiveconductivity

of composites with ellipsoidalinclusions and cracked bodies", Journal of Applied Physics, Vol. 63(3), pp.789{796, 1988.

[72] Siboni, G. and Benveniste, Y., \A micro-mechanics model for the e ective thermo-mechanical behaviorofmultiphasecomposite media",Mechanicsof Materials, Vol. 11, pp.107{122, 1991. [73] Pelissonnier-Grosjean, C., Jeulin, D., Pottier, L., Fournier, D. and Theorel, A., \Mesoscopic

modelingofthe intergranular structureof Y 2

O 3

doped aluminiumnitrideand applicationto the prediction of the e ective thermal conductivity", Key Engineering Materials, Vol. 132{136, pp. 623{626, 1997.

[74] Jeulin,D., \Probabilisticmodelsof structures", in: Frantzisknosis, G.N. Ed., PROBAMAT-21 st Century:Probabilityand Materials, KluwerAcademic Publishers,pp.233{257, 1998.

ThisarticlewasprocessedusingtheL A

Références

Documents relatifs

The preliminary re- sult on small angle boundaries showed that the main spectrum position was near that of solid solu- tion 'lgmsn and the line width was smaller than that

Abstract - An application of the molecular dynamics simulated annealing method for performing total energy calculations is made to the study of the micro- scopic structure of

More precisely, the absence of enhanced intergranular diffusion under these experimental conditions means that grain boundary diffusion coefficients of cobalt and nickel

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

A reversal i n the direction of migration would require change in the dominant set of grain boun- dary dislocations a t various positions of the same

The plastic compatibility requirement can be satisfied by the formation of fold if the possible slip systems to produce folds containing the triple junction exist in the

This final failure process can occur by cavity growth on adjacent grain boundaries inclined to the maximum tensile stress direction, by a mechanism. that mainly

H. THE EFFECT OF GRAIN BOUND- ARY PRECIPITATION ON THE SUPERPLASTICITY OF Al-Li ALLOYS.. In 2090 alloy, the elongation in superplastic deformation increases with decreasing the