• Aucun résultat trouvé

DEPENDENCE OF DIFFUSION-INDUCED GRAIN BOUNDARY MIGRATION ON GRAIN BOUNDARY STRUCTURE

N/A
N/A
Protected

Academic year: 2021

Partager "DEPENDENCE OF DIFFUSION-INDUCED GRAIN BOUNDARY MIGRATION ON GRAIN BOUNDARY STRUCTURE"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00228075

https://hal.archives-ouvertes.fr/jpa-00228075

Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DEPENDENCE OF DIFFUSION-INDUCED GRAIN BOUNDARY MIGRATION ON GRAIN BOUNDARY

STRUCTURE

A. King, F.-S. Chen, R.-J. Jahn

To cite this version:

A. King, F.-S. Chen, R.-J. Jahn. DEPENDENCE OF DIFFUSION-INDUCED GRAIN BOUNDARY

MIGRATION ON GRAIN BOUNDARY STRUCTURE. Journal de Physique Colloques, 1988, 49

(C5), pp.C5-617-C5-622. �10.1051/jphyscol:1988578�. �jpa-00228075�

(2)

DEPENDENCE OF DIFFUSION-INDUCED GRAIN BOUNDARY MIGRATION ON GRAIN BOUNDARY STRUCTURE

A.H. KING, F.-S. CHEN and R.-J. JAHN

Department o f Materials Science and Engineering, S t a t e U n i v e r s i t y of New York a t Stony Brook, Stony Brook, NY 1 1 7 9 4 - 2 2 7 5 , U.S.A.

/ / /

Resume: D e nombreuses e t u d e s o n t ete e f f e c t & s u r l e c o m p o r t e m e n t d e s j o i n t s d e g r a i ? a u c o u r s d e l a d i f f u s i o n d u z i n c d a n s l e c u i v r e . P o u r l e s j o i n t s d e flexion symetriques il a p p a r a i t que l e s vitesses d e migration s o n t minimales lorsque l e s d e u x g r a i n s s o n t e n position d e coincidence. La p&ne'tration du solute' e s t m a x i m a l e pour c e s joints ainsi q u e l a c o n c e n t r a t i o n d e r r i s r e l e joint a u c o u r s d e s a migration. D e m s m e o n ob- s e r v e un d6veloppement prononc6 d e f a c e t t e s . Les observations effectue's p a r MET in- diquant q u e d e s m6canisms c o m p l e x e s i n t e r v i e n m e n t d u r a n t DIGM: e n p a r t i c u l i e r l e joint e m e t d e s dislocations e t laisse d e r r i k r e lui u n e s u r s a t u r a t i o n s i g n i f i c a t i v e ,en l a c u n ~ s a u c o u r s d e s a m i g r a t i o n . T o u s c e s r 6 s u l t a t s soulignent I'importance d e s d e f a u t s p r e s e n t s d a n s l e joint s u r l a migration elle-mgme.

Abstract: An e x t e n s i v e s e r i e s of e x p e r i m e n t s on t h e behavior of grain boundaries during t h e diffusion o f z i n c i n t o c o p p e r h a s b e e n performed. In s y m m e t r i c a l t i l t bicrystals, i t is found t h a t t h e migration v e l o c i t i e s a r e minimised f o r coincidence-related boundaries, and t h a t t h e s e b o u n d a r i e s a l s o exhibit t h e g r e a t e s t d e p t h p e n e t r a t i o n of solute, t h e highest c o n c e n t r a t i o n o f s o l u t e behind t h e moving boundary a n d t h e m o s t p r o n o u n c e d f a c e t i n g . T r a n s m i s s i o n e l e c t r o n m i c r o s c o p e investigations i n d i c a t e t h a t t h e r e a r e complex d e f e c t p r o c e s s e s o c c u r r i n g during DIGM: notably, i t is f o u n d t h a t s i g n i f i c a n t v a c a n c y s u p e r - s a t u r a t i o n s e x i s t in t h e m a t e r i a l behind t h e moving boundary a n d t h a t dislocations a r e e j e c t e d by t h e boundary. These results a l l s u g g e s t t h e i m p o r t a n c e o f g r a i n b o u n d a r y d e f e c t s in t h e DIGM prpcess itself.

1. Introduction.

D i f f u s i o n i n d u c e d g r a i n b o u n d a r y m i g r a t i o n ( D I C M ) i s n o w a w e l l r e c o g n i z e d phenomenon in which t h e sideways migration of grain boundaries a c c o m o p a n i e s t h e diffu- sion of s o l u t e a l o n g t h e m . T h e r e h a v e b e e n s e v e r a l models proposed t o explain DICM.

S m l t h a n d King (1) a n d a l s o Balluffi a n d Cahn (2) proposed t h e f i r s t mechanism in whlch a n e t v a c a n c y p r o d u c t i o n d u e t o unbalanced fluxes of s o l u t e a n d s o l v e n t along a grain boundary c a n d r i v e t h e c l i m b of dislocations which a r e a s s o c i a t e d w i t h g r a i n b o u n d a r y steps. However, t h e g e n e r a l i t y of t h i s model w a s questioned by Hiilert (31, who a s s e r t e d t h a t t h e observed u n i f o r m i t y o f DIGM w a s inconsistent w i t h a s t r u c t u r e - d e p e n d e n t model.

In a n e w m o d e l , h e p r o p o s e d t h a t t h e d r i v i n g f o r c e f o r DIGM might b e t h e c h e m i c a l p o t e n t i a l g r a d i e n t c a u s e d by c o h e r e n t l y s t r a i n e d l a y e r s l y ~ n g o n d i f f e r e n t s i d e s of a boundary. Although t h i s model has d e m o n s t r a t e d i t s validity in liquid f i l m migration in at l e a s t t w o s y s t e m s (4,5) i t h a s n o t been c o n f i r m e d in d e t a i l for t h e solid s t a t e process of DIGM.

In t h i s paper w e s u m m a r i z e t h e r e s u l t s o f investigations i n t o t h e e f f e c t s of g r a i n boundary s t r u c t u r e o n DIGM, a n d conversely o f t h e e f f e c t s o f DIGM upon g r a i n boundary s t r u c t u r e .

2. Experimental.

A s e r i e s of s y m m e t r i c a l t i l t t y p e p u r e copper bicrystals w i t h a r a n g e of misorienta- t i o n s a b o u t t h e a x i s [001] w e r e grown by t h e Bridgman t e c h n i q u e . T h e m i s o r i e n t a t i o n w e r e r e c h e c k e d a f t e r g r o w t h by m e a n s of t h e L a u e technique. Individual DIGM s p e c i m e n s w e r e c u t f r o m t h e bulk bicrystals in t h e f o r m of s l i c e s a p p r o x i m a t e l y 2 m m thick, with t h e i r planes e i t h e r perpendicular of parallel t o t h e t i l t axis. Each s p e c i m e n w a s rnechani-

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1988578

(3)

C5-618 JOURNAL D E PHYSIQUE

caliy polished by silicon carbide grinding paper as well a s chemically etched in a mixture of equal parts of phosphoric, acetic, and nitric acids for 10 minutes before being encapsu- lated under vacuum with 10 grams of fine brass chips (70% Cu, 30% Zn). The specimens w e r e annealed a t temperatures in t h e DIGM range in order t o investigate t h e e f f e c t s of misorientation upon DIGM. Transmission electron microscopy specimens were prepared by thinning polycrystalline copper, and then annealing under conditions identical t o those used for t h e "bulk" bicrystal experiments. TEM specimens w e r e also prepared from t h e bulk bicrystals by thinning them a f t e r t h e annealing treatment.

3. Results

Migration r a t e variation with misorientat$on.

The mean migration distance was obtained by measuring t h e a r e a of t h e alloyed zone on t h e specimen surface and dividing by t h e original boundary length. The mean migra- tion distance a s a function of misorientation for four annealing t i m e s a r e shown in Fig. I.

No DIGM was observed t o occur for low-angle grain boundaries (<15O), and t h e r e a r e sig- nificant and reproducible variations in t h e migration r a t e among t h e high angle boundaries.

Relatively low migration r a t e s a r e observed for misorientation close t o high coincidence boundaries :jpecifically 5 , 17, 25. These observations d o not change a s t h e boundary r o t a t e 900' t o give another symmetrical t i l t boundary structure.

The forms of t h e migrating boundaries w e r e o b s e r v e d t o t a k e f e w d i s t i n c t t y p e s depending upon t h e misorientation, a s reported elsewhere (6). Notably, faceting of t h e migrating inl.erface was observed only for boundaries within t w o degrees of a coincidence misorientation.

Penetration depth variation with misorientation

In order t o d e t e r m i n e whether or n o t t h e low migration r a t e s of coincidence-related boundaries w e r e associated with low grain boundary diffusivity, t h e specimens were sec- t i o n e d in o r d e r t o m e a s u r e t h e p e n e t r a t i o n depth, which was measured a s t h e largest depth a t which DIGM was observable. The penetration depth showed uniform values for cases where t h e migration was uniform on t h e specimen surface, while t h e results may b e less reliable if a specimen was sectioned near t o a region where DIGM changed directions.

C a r e was therefore taken t o choose t h e cross section in order t o prevent this t y p e of e r - ror. The measured penetration depths a r e normalized by t h e surface migration distance, and plotted versus misorientation in Fit.2. It c a n b e seen t h a t t h e slow-moving bound- a r i e s e x h i b i t l a r g e p e n e t r a t i o n d e p t h s , a n d a r e therefore not associated with low dif- fusivity.

Chemical analysis

The zinc contents of our s?ecimens were determined by means of energy dispersive x-ray spectrometry in a scanning electron microscope, in order t o determine t h e surface and cross-section distributions of solute behind t h e moving boundaries. Our results show fluctuations in t h e solute concentration behind t h e migrating boundaries a s seen in Fig.3, consistent with other works (7). The a v e r a g e z i n c c o n c e n t r a t i o n b e h i n d a n i n d i v i d u a l boundary was d e t e r mined by c a l c u l a t i n g t h e a r e a below t h e concentration profile a n d dividing by t h e a v e r a g e width of t h e alloyed z o n e . T h e m e a n z i n c c o n c e n t r a t i o n vs.

misorientation i s plotted in Fig.4.

It i s noteworthy t h a t t h e slow-moving coincidence boundaries deposited higher solute concentrations than t h e faster "general" boundaries did. The solute concentration distribu- t i o n a l o n g f a c e t s ( a s i l l u s t r a t e d in Fig.3) is also somewhat interesting, since i t is dis- tinctly non-uniform in spite of t h e sharply defined planarity o f t h e facet.

Transmission Electron Microscopy

The TEM results a r e not a s systematic a s t h e results on bulk bicrystals, b u t they d o s e r v e t o illustrate several very important points. A common occurrence i s t h e obser- vation of point d e f e c t clusters in t h e material which is alloyed by DIGM, a s shhown in Fig.5 and Fig.6. In Fig. 5, t h e clusters a r e in t h e form of unresolved c e n t e r s of dilata- tion and some resolvable dislocation loops; and in Fig.6 t h e c l u s t e r s t a k e t h e f o r m o f stacking fau1.t tetrahedra, a s previously reported (8). The difference presumably arises be- cause of differences in t h e r a t e s of migration of t h e g r a i n b o u n d a r i e s i n v o l v e d i n t h e DIGEA, a n d t h e c o n s e q u e n t v a r i a t i o n s in t h e z i n c c o n c e n t r a t i o n l e f t behind them, a s demonstrated above. In copper-zinc, t h e stacking fault e n e r s y i s strongly dependent upon t h e zinc concentration and this will a f f e c t t h e form of t h e clusters. The observation of

(4)

d i s t a n c e , a s m e a s u r e d o n t h e s p e c i m e n s u r f a c e , w i t h m i s o r i e n t a t i o n f o r v a r i o u s annealing times.

F i 2 . 2 . T h e r a t i o o f p e n e t r a t i o n d e p t h t o m i g r a - t i o n d i s t a n c e as a function o f misorientation.

Fig.3. T h e s o l u t e d i s t r i b u - t i o n g e n e r a t e d by D I G M u s i n g a C 5 b i c r y s t a l specimen. T h e t o p d i a g r a m i n d i c a t e s t h e o u t l i n e o f t h e a l l o y e d z o n e a n d t h e t w o c u r v e s below a r e c o n c e n t r a - t i o n profiles along t h e lines A C a n d BC, a s d e t e r m i n e d by E D X a n a l y s i s o n t h e s p e c i m e n surface.

t h e s e c l u s t e r s is t a k e n a s s t r o n g e v i d e n c e of t h e emission of point d e f e c t s by t h e moving g r a i n boundaries.

In addition t o t h e e f f e c t s o f t h e moving boundary upon t h e c r y s t a l m a t r i x , s o m e i m p o r t a n t e f f e c t s of DIGM upon t h e moving boundary h a v e been observed. In Fig.5, a f a c e t e d b o u n d a r y i s s e e n w i t h i n a n a l l o y e d region of t h e m a t e r i a l , a n d t h i s would b e presumed t o b e a r e l a t i v e l y immobile boundary. I t is strongly f a c e t e d , a s l o w mobility boundaries a r e commonly observed t o b e in t h e bulk bicrystal studies. In t h i s c a s e , o n e s e t of f a c e t s shows a very c l e a n s t r u c t u r e , w i t h very f e w dislocations, e i t h e r intrinsic o r extrinsic. T h e o t h e r s e t of f a c e t s , however, is s o densely populated w i t h e x t r i n s i c d e f e c t s t h a t i t i s impossible t o resolve t h e m a s individuals. I t would a p p e a r t h a t t h e diffusion

(5)

C5-620 JOURNAL DE PHYSIQUE

Fig.4. T h e v a r i a t i o n o f m e a n s o l u t e c o n c e n t r a t i o n behind t h e moving b o u n d a r y w i t h i n i t i a l b o u n d a r y misorientation.

Misorientation, degrees

process drives d e f e c t s a w a y f r o m o n e s e t of f a c e t s a n d f o r c e s t h e m t o c o l l e c t i n t h e o t h e r , o r t h a t t h e e x t r i n s i c d e f e c t s only f o r m o n o n e set of f a c e t s . Figure 7 is a n i m a g e of a DIGM i n t e r f a c e which is e m i t t i n g dislocations into t h e m a t r i x a h e a d of it. This dis- l o c a t i o n emission i s a p p a r e n t l y a c h i e v e d b y t h e r e a c t i o n of grain boundary dislocations t o f o r m t h e m a t r i x d e f e c t s , in a m a n n e r essentially opposite t o t h a t of dislocation absorption by a g r a i n b o u n d a r y . This w o u l d a p p e a r t o b e f a c i l i t a t e d by t h e e x i s t e n c e of ir- r e g u l a r i t i e s in t h e distribution o f dislocations in t h e boundary plane.

Fig.5. T r a n s m i s s i o n e l e c t r o n microscope i m a g e of a f a c e t e d , low mobility boundary in a n a l - loyed region of a copper s a m p l e e x p o s e d t o z i n c v a p o r . N o t e t h e e x i s t e n c e of p o i n t d e f e c t c l u s t e r s i n t h e m a t r i x , in t h e f o r m o f u n r e s o l v e d c e n t e r s o f dilatation. Also n o t e t h a t o n e o f t h e f a c e t s i s relatively f r e e of d e f e c t s , while t h e o t h e r o n e i s a p p a r e n t l y densely populated w i t h t h e m .

(6)

showing s t a c k i n g f a u l t t e t r a h e d r a in a n a l - l o y e d r e g i o n o f a c o p p e r s p e c i m e n e x - posed to z i n c vapor.

Fig.7. Transmission e l e c t r o n micrograph i l l u s t r a t i n g t h e e m i s s i o n of dislocations a h e a d of a moving boundary. N o t e t h e c u r v a t u r e of t h e boundary plane, a n d t h e f a c t t h a t t h e d i s l o c a t i o n s w i t h i n t h e b o u n d a r y i t s e l f show c h a n g e s of s p a c i n g a n d o r i e n t a t i o n a t t h e point of emission.

4. Discussion

T h e r e s u l t s in t h i s p a p e r a l l sug- g e s t t h e i m p o r t a n c e of t h e d e t a i l e d d e f e c t processes o c c u r r i n g d u r i n g DIG M.

I t h a s b e e n s h o w n t h a t t h e p r e v i o u s l y d e m o n s t r a t e d l o w m o b i l i t y o f c e r t a i n b o u n d a r i e s i s n o t simply r e l a t e d t o l o w diffusivity in t h o s e boundaries, s i n c e t h a t w o u l d y i e l d a c o n s t a n t r a t i o of d e p t h p e n e t r a t i o n t o migration d i s t a n c e , a n d a c o n s t a n t v a l u e of m e a n s o l u t e c o n c e n t r a - tion i n t h e alloyed zone, i r r e s p e c t i v e o f misorientation. We find, r a t h e r , t h a t t h e low mobility boundaries e x h i b i t relatively l a r g e p e n e t r a t i o n d e p t h s a n d d e p o s i t higher c o n c e n t r a t i o n s o f s o l u t e b e h i n d t h e m t h a n d o t h e m o r e "general" bound- a r i e s . I t i s t h e r e f o r e c l e a r t h a t t h e a m o u n t of m i g r a t i o n t h a t o c c u r s p e r m o l e of s o l u t e passing down t h e boundary varies w i t h t h e misorientation, a n d t h e r e - f o r e w i t h t h e boundary s t r u c t u r e .

T h e p e n e t r a t i o n d e p t h a n d t h e d e p o s i t e d s o l u t e c o n c e n t r a t i o n m a y b e s e e n a s d e p e n d i n g u p o n t h e c o r n p e t i n ; <

processes of diffusion a n d g r a i n boundary migration, since diffusion t r a n s p o r t s t h e s o l u t e d o w n t h e g r a i n b o u n d a r y , while migration t r a n s p o r t s t h e b o u n d a r y a w a y f r o m t h e s o l u t e , d e p o s i t i n g i t i n t h e rriatrix. F o r f a s t m o v i n g b o u n d a r i e s , t h e n , i t w o u l d b e e x p e c t e d t h a t t h e

(7)

C5-622 JOURNAL

DE

PHYSIQUE

p e n e t r a t i o n d e p t h s would b e shallow, a n d t h e s o l u t e c o n c e n t r a t i o n s would b e small, a s w e o b s e r v e . W e n o t e t h a t t h e s o l u t e c o n c e n t r a t i o n behind t h e moving boundary is n o t i n t h e r m o d y n a m i c equilibrium with t h e z i n c vapor p r e s s u r e o v e r t h e s p e c i m e n , b e c a u s e i t would t h e n t a k e a c o n s t a n t value i r r e s p e c t i v e of misorientation.

T h e variation of s o l u t e c o n c e n t r a t i o n along a well defined f a c e t , a s shown in Fig.3 a l s o provides e v i d e n c e o f t h e n a t u r e of t h e e f f e c t s o f grain boundary s t r u c t u r e o n DIGM response. F a c e t planes a r e generally believed t o b e t h e s l o w e s t moving planes if t h e y develop during a migration process, a n d t h e plane shown i n Fig.3 would a p p e a r t o f i t t h i s c h a r a c t e r i z a t i o n . However, t h e c o n c e n t r a t i o n of s o l u t e i s v e r y variable a l o n g t h i s plane a n d t h i s would a p p e a r t o i n d i c a t e a wide variation of driving f o r c e for migration, if i t is in a n y w a y r e l a t e d t o t h e s o l u t e c o n c e n t r a t i o n . It would t h u s a p p e a r t h a t if t h e v e l o c i t y o f migration r ~ o r m a l t o t h i s plane i s c o n s t a n t , t h e mobility of t h e boundary plane m u s t b e t h e controlling f a c t o r , r a t h e r t h a n t h e driving force. In t h e dislocation c l i m b mechanism, t h e mobility o f a boundary p l a n e depends upon t h e d e t a i l s o f t h e dislocations a n d t h e i r a s s o c i a t e d s t e p s within t h a t plane (1,2) s o t h e mobility c a n b e z e r o for c e r t a i n planes, a n d t h i s m a y well b e t h e c a s e here.

P o i n t d e f e c t c l u s t e r s observed in t h e alloyed z o n e s i n d i c a t e t h e p r e s e n c e o f s i g - n i f i c a n t super:;aturations of t h e m i n t h e moving boundaries, a s might b e e x p e c t e d if dis- location c l i m b i s involved in DIGM. The n a t u r e of t h e c l u s t e r s varies f r o m boundary t o boundary, being dislocation loops i n s o m e c a s e s a n d s t a c k i n g f a u l t t e t r a h e d r a i n others.

This would a p p e a r t o result f r o m variations in s t a c k i n g f a u l t energy, which is strongly d e - p e n d e n t o n z i n c c o n c e n t r a t i o n in alpha-brass, a n d also upon t h e deposited s u p e r s a t u r a t i o n which will depend upon t h e g r a i n boundary velocity, m u c h a s t h e z i n c c o n t e n t itself does.

We n o t e t h a t t h e s e c l u s t e r s a r e only observed f o r c e r t a i n c a s e s , which would a p p e a r t o correspond t o boundary migration v e l o c i t i e s within a c e r t a i n r a n g e (7).

Finally, t h e e j e c t i o n of dislocations f r o m a grain boundary is t h e i n v e r s e process o f dislocation absorption, a n d i t is e x p e c t e d t o result in a n i n c r e a s e in t o t a l energy. E j e c - t i o n would only b e e x p e c t e d t o o c c u r if a higher e n e r g y configuration e x i s t e d within t h e grain boundary, a n d t h i s might result f r o m t h e c l u s t e r i n g of dislocations i n t h e i n t e r f a c e , caused by variations in t h e c l i m b velocity of t h e d e f e c t s . Our dislocation e j e c t i o n obser- vations a r e a s s o c i a t e d w i t h inhomogeneous dislocation distributions in t h e g r a i n boundaries.

5. Conc1usion:j

T h e d e t a i l s of t h e phenomena a s s o c i a t e d w i t h DIGM a r e s t r o n g l y d e p e n d e n t u p o n t h e s t r u c t u r e o f t h e m i g r a t i n g b o u n d a r y . M i g r a t i o n v e l o c i t y , p e n e t r a t i o n d e p t h a n d deposited s o l u t e c o n c e n t r a t i o n a r e a l l functions of boundary misorientation. O t h e r d e f e c t processes such a s point d e f e c t deposition a n d dislocation e j e c t i o n a l s o a p p e a r t o depend upoh t h e d e t a i l s of t h e grain boundary s t r u c t u r e .

Acknowledgment

This work w a s supported by t h e National S c i e n c e F o u n d a t i o n u n d e r g r a n t n u m b e r DMR 8601433.

R e f e r e n c e s

1. D.A. S m i t h a n d A.H. King: Philos. Mag. A, 44 (1981) 333.

2. K.W. Balluffi and J.W. Cahn: A c t a Met., ~ T 9 8 1 ) 493.

3. M. Hillert: S c r i p t a Met.,

11

(1983) 237.

4. Y.-J. Baik a n d D.N. Yoon: A c t a Met.,

2

(1986) 2039.

5. W.-H. Rhee, Y.-D. Song a n d D.N. Yoon: A c t a Met., 3 5 (1987) 57.

6. Fu-Sen C h e n a n d A.H. King: S c r i p t a Met.,

20

( 1 9 8 6 ) 1 4 0 1 .

7. T.J. P i c c o n e , D.B. B u t r y m o w i c z , D.E. N e w b u r y , J.R. M a n n i n g a n d J.W. Cahn:

S c r i p t a Met.,

16

(1982) 839.

8. R.J. J a h n a n d A.H. King: Philos. Mag. A,

54

(1986) L3.

Références

Documents relatifs

However, the D'6values deduced from oxidation experiments on unimplanted samples /18,20,21/ are consistent with the current anion grain boundary diffusion data We would

penetration along grain boundaries. The grain boundary diffusion coefficients deduced from the two plots differ by less than one order of magnitude. This expression is valid

Particularly, segregation effeccs which - - lay - - an important role in diffusion kine- tics can be used to describe a dynamic fractal dimension of grain boundaries at

The preliminary re- sult on small angle boundaries showed that the main spectrum position was near that of solid solu- tion 'lgmsn and the line width was smaller than that

— Measurements in this laboratory of cation diffusion in bicrystals, of silver injection in the grain boundary region, and of light-scattering and electron microscope observations

Very few bicrystals of this material have been successfully produced. One example is shown in Figure 2. This weak beam image shows a square dislocation array with a spacing of 3.7

Dislocation structures are observed in many high angle boundaries, and in most cases, the boundaries that exhibit such structure are close in misorientation to a coincidence

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des