• Aucun résultat trouvé

Strength of C3A paste containing gypsum and CaCI2

N/A
N/A
Protected

Academic year: 2021

Partager "Strength of C3A paste containing gypsum and CaCI2"

Copied!
16
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Cement and Concrete Research, 6, July 4, pp. 461-474, 1976-07-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1016/0008-8846(76)90075-2

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Strength of C3A paste containing gypsum and CaCI2

Traetteberg, A.; Sereda, P. J.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=e179f2ff-aaed-4287-9405-f72de2eca27a https://publications-cnrc.canada.ca/fra/voir/objet/?id=e179f2ff-aaed-4287-9405-f72de2eca27a

(2)

no.

681

c.

2

I

I

NATIONAL RESEARCH COUNCIL OF CANADA

I

OONSElL NATIONAL DE RECHERCHES

DU

CANADA

I

I

STRENGTH OF C3A PASTE CONTAINING

I

GYPSUM AND CaC12

by

A. Traetteberg and P. J. Sereda '

0

Reprinted from

CEMEM AND CONCRETE RESEARCH

Vol. 6, No. 4, July 1976

14 p. -

BUILDING

RESEARCH

-

LIBRARY

-

AUG

10

1976

NATMHAL REKARCH C W C I L DBR Paper No. 681

Division of Building Research

6009

:

(3)

CEMENT

and CONCRETE

RESEARCH.

Vol

.

6, pp.

461

-474, 1976.

Pergamon

Press, Inc. Printed

in

the

United

States.

1

STRENGTH OF C ~ A PASTE CONTAINING GYPSUM AND CaC12

A N A ~ ~ ~ E D

I

Aud Traetteberg

Cement and Concrete Research Institute The Norwegian Institute of Technology

7234 Trondheim, Norway P. J. Sereda

Head, Building Materials Section Division of Building Research

National Research Council of Canada, Ottawa, Canada

(Communicated

by

F.

D. Tamas)

(Received March

25,

1976)

ABSTRACT

A study has been made of the strength of 3Ca0.AR203 and 3Ca0.AR203 + gypsum pastes as well as of the influence of the admixture CaCR2 on these pastes. The methods employed were microhardness indentation and cone penetration. With 16 per cent CaCR2 added to the 3Ca0.AR203 paste a significant gain in strength was obtained after 3 months, while an 8 per cent CaCR2 addition to the 3Ca0.AR203 + gypsum system gave the highest strength at the same age. Morphological changes in the pastes were found to be related to changes in hardness. From a comparison of the two methods it was concluded that cone penetration measurements are useful up to a certain hardness level.

On a fait une gtude de la rgsistance des p8tes de 3Ca0.AL203 et de 3Ca0.AR203 plus gypse ainsi que de l'effet de l'addition de CaCR2 2

ces mcmes p8tes. On a utilisg les mgthodes de la microduretg par indentation et de la pgngtration d'un c8ne. Lorsqu'on ajoute 16 pour cent de CaCR2 2 la pBte de 3CaO.AR2O3, la rgsistance augmente

considgrablement en trois mois, tandis que l'addition de 8 pour cent de CaCR2 au systsme 3Ca0.AR203 plus gypse produit la rgsistance la plus 6levGe pour cette msme pgriode. Les changements morphologiques de la pBte sont ligs 2 des changements de duretg. Une comparaison des deux mgthodes indique que les mesures de la pgngtration d'un c8ne sont utiles jusqu's un certain degr6 de duretg.

Presented at the VIth International Congress on the Chemistry of Cement, Moscow, September 1974.

461

(4)

Vol. 6 ,

No.

4

A .

Traetteberg,

P. J .

Sereda

I n t r o d u c t i o n

Information about s t r e n g t h developing d u r i n g h y d r a t i o n of t h e p u r e cement components seems t o be l i m i t e d . An a t t e m p t t o i d e n t i f y morphology and m i c r o s t r u c t u r e w i t h s t r e n g t h was t h e o b j e c t of t h i s examination. I n v e s t i g a - t i o n s c a r r i e d o u t by S o l o v ' e v a and Segalova (1) and Segalova, S o l o v ' e v a and Rebinder ( 2 ) i n c l u d e examination of p l a s t i c s t r e n g t h developing i n s u s p e n s i o n s of C3A* and f i n e l y ground q u a r t z sand (C3A/quartz = 5/95) u s i n g a w / s r a t i o i n t h e range 0 . 3 t o 0 . 7 . A c o n i c a l p l a s t o m e t e r was u s e d . The p ' l a s t i c s t r e n g t h was found t o d e c r e a s e w i t h an i n c r e a s e i n t e m p e r a t u r e . T h i s s t r e n g t h d e c r e a s e was r e l a t e d t o a d e c r e a s e i n t h e p a r t i c l e s i z e of t h e hydroaluminates. The formation o f t h e c u b i c C3AH6 caused a breakdown of t h e c r y s t a l l i z a t i o n s t r u c t u r e and t h u s a d e c r e a s e i n s t r e n g t h . The s t r e n g t h o f t h e h y d r a t i o n p r o d u c t s was found t o d e c r e a s e w i t h i n c r e a s i n g s p e c i f i c s u r f a c e a r e a of C3A.

A lowering o f t h e w / s r a t i o caused more i n t e r n a l s t r e s s e s i n t h e hardened s t r u c t u r e .

The s t r u c t u r e formation of C3A suspension and t h e e f f e c t of gypsum and CaCR2 on t h e h y d r a t i o n s t r u c t u r e of C3A has been s t u d i e d by Andreeva and Segalova ( 3 ) . The a d d i t i o n o f gypsum r e s u l t e d i n an i n c r e a s e i n t h e s t r e n g t h of t h e s t r u c t u r e formed, w h i l e t h e a d d i t i o n of CaCR2 t o t h e C3A + gypsum system caused expansion g e n e r a t i n g i n n e r s t r e s s e s and hence a reduced s t r e n g t h of t h e s t r u c t u r e .

The c o n i c a l p l a s t o m e t e r t h a t t h e y used h a s been found convenient f o r s t r e n g t h measurements o f p l a s t i c - v i s c o u s d i s p e r s e systems. I t has been

e v a l u a t e d t h e o r e t i c a l l y i n a p a p e r by Gorazdovskii and Rebinder ( 4 ) .

The t e c h n i q u e of microhardness i n d e n t a t i o n s has been found u s e f u l a s a t o o l f o r s t r e n g t h measurements w i t h t h e added advantage t h a t , because t h e samples a r e n o t broken, a s m a l l e r p i e c e i s r e q u i r e d and t h e same specimen can be used f o r s e v e r a l examinations. In e a r l i e r r e p o r t s from t h e D i v i s i o n of Building Research ( 5 , 6 , 7 ) , t h e r e s u l t s o b t a i n e d by t h i s method on gypsum and cement systems have been r e l a t e d t o o t h e r p h y s i c a l p r o p e r t i e s such a s modulus of e l a s t i c i t y , p o r o s i t y , and f r a c t u r e s t r e n g t h . The s i g n i f i c a n c e of micro- h a r d n e s s o f porous i n o r g a n i c m a t e r i a l s was d i s c u s s e d i n a r e c e n t paper by Sereda (8) and i t was concluded t h a t a r e l a t i o n e x i s t s between microhardness and f l e x u r a l s t r e n g t h f o r cement p a s t e .

I n an e a r l i e r r e p o r t (9) t h e phase r e l a t i o n s , m i c r o s t r u c t u r e and h y d r a t i o n mechanisms i n t h e systems C 3 A and C 3 A + gypsum, w i t h and without CaCR2 added, were s t u d i e d and d i s c u s s e d . The aim of t h e p r e s e n t work i s t o r e l a t e m i c r o s t r u c t u r e w i t h mechanical s t r e n g t h a s measured by t h e two methods, microhardness i n d e n t a t i o n and cone p e n e t r a t i o n , and t o compare t h e two methods

o f measuring s t r e n g t h p r o p e r t i e s .

Exverimental Work

The c h a r a c t e r i s t i c s of t h e C3A ( s u p p l i e d by T e t r a t e c h I n t e r n a t i o n a l , San Diego) a r e t h e f o l l o w i n g : 61.6 p e r c e n t CaO, 37.8 p e r c e n t AR203, 0 . 5 p e r c e n t MgO, and 0.1 p e r c e n t Na20. The C3A had a s u r f a c e a z e a o f 0.58 m2/g. The gypsum and calcium c h l o r i d e , CaCR2.6H20, were b o t h F i s h e r c e r t i f i e d r e a g e n t s . The water used was decarbonated and d e - i o n i z e d . S i x d i f f e r e n t

*

Standard cement nomenclature i s u s e d : C = CaO, A = AL203, H = H20 and w/s = w a t e r : s o l i d r a t i o by weight. G = gypsum

(5)

1,

Vol.

6,

No. 4

C3A

PASTE, STRENGTH, GYPSUM,

CaC12

p a s t e s w i t h a w a t e r / s o l i d r a t i o of 1 . 0 were p r e p a r e d : C 3 A , C3A + 8 p e r c e n t CaCL2, C3A + 16 p e r c e n t CaCR2, C3A + 25 p e r c e n t gypsum, C3A + 25 p e r c e n t gypsum + 8 p e r c e n t CaC9.2, and C 3 A + 25 p e r c e n t gypsum + 16 p e r c e n t CaCR2. The w / s r a t i o of 1 . 0 was s e l e c t e d i n an a t t e m p t t o s i m u l a t e t h e c o n d i t i o n s f o r C3A i n t h e e a r l y h y d r a t i o n p e r i o d of cement p a s t e .

The p a s t e h y d r a t i o n s were performed i n s p e c i a l l y designed p l e x i g l a s s c y l i n d e r s w i t h a d i a m e t e r o f 2.5 cm and h e i g h t of 1 . 3 cm. While c u r i n g under vapour-sealed c o n d i t i o n s , t h e m i x t u r e s were r o t a t e d u n t i l t h e samples had completely s e t t o p r e v e n t s e g r e g a t i o n (10). The same p a s t e was t e s t e d r e p e a t e d l y f o r microhardness a t d i f f e r e n t i n t e r v a l s d u r i n g t h e e n t i r e hydra- t i o n t i m e . The s p e c i a l shape was chosen t o g i v e a s u f f i c i e n t l y l a r g e s u r f a c e a r e a t o permit microhardness and cone p e n e t r a t i o n t e s t s on t h e same sample. From a p r e v i o u s i n v e s t i g a t i o n (9) i t was found t h a t t h e shape of t h e sample can i n f l u e n c e t h e thermal behaviour of t h e p a s t e . To make u s e of d a t a o b t a i n e d p r e v i o u s l y it was ensured t h a t t h e experimental c o n d i t i o n s i n t h e p r e s e n t c a s e d i d n o t change t h e sequences and r a t e s of formation of t h e

d i f f e r e n t h y d r a t i o n p r o d u c t s . T h i s was v e r i f i e d by monitoring t h e t e m p e r a t u r e e f f e c t i n t h e C3A p a s t e .

I

The s t r e n g t h of t h e m a t e r i a l s was examined a f t e r h y d r a t i n g f o r

1

d i f f e r e n t p e r i o d s up t o 6 months.

I

i

Microhardness

A L e i t z Miniload Hardness T e s t e r was used. The t e s t method employed t h e Vickers pyramid i n d e n t e r . The h a r d n e s s was found by t h e formula

where P = load i n grams

I

d = mean v a l u e of t h e i n d e n t a t i o n d i a g o n a l . Cone P e n e t r a t i o n

In t h i s method a cone i s p r e s s e d i n t o t h e p a s t e w i t h d i f f e r e n t p r e s s u r e s and t h e d e p t h of p e n e t r a t i o n i s measured. T h i s method h a s been found p a r t i c u l a r l y u s e f u l f o r s t r e n g t h i n v e s t i g a t i o n s o f cement p a s t e i n t h e e a r l y s e t t i n g p e r i o d . The s i g n i f i c a n c e of t h i s method on d i f f e r e n t k i n d s of m a t e r i a l s h a s been i n v e s t i g a t e d by Sereda (11).

I

I t i s an open q u e s t i o n whether t h e a p p l i e d l o a d p e r u n i t a r e a should be c a l c u l a t e d with an a r e a corresponding t o t h e b a s e of t h e p a r t of t h e cone t h a t h a s p e n e t r a t e d i n t o t h e m a t e r i a l o r t h e c i r c u m f e r e n t i a l a r e a of t h i s p a r t . The c h o i c e between t h e two a r e a s might be c o n s i d e r e d t o be dependent on t h e f r i c t i o n between t h e m a t e r i a l and t h e cone d u r i n g i n d e n t a t i o n . This l e a d s t o two p o s s i b l e formulae f o r c a l c u l a t i n g t h e h a r d n e s s of t h e m a t e r i a l :

H = l o a d (kg) and H = load (kg) r e s p e c t i v e l y 1.05

.

h2 C 2 . 1 h2

f o r a 60 O cone, where h = depth of p e n e t r a t i o n .

The l o a d , which was produced by a i r p r e s s u r e i n a p i s t o n - c y l i n d e r arrangement, was s u p p l i e d i n s t e p s of 3 l b and t h e p e n e t r a t i o n d e p t h was measured a t each l e v e l a f t e r r e a c h i n g t h e e q u i l i b r i u m v a l u e . The p l o t of

(6)

Vol. 6, No.

4

A.

Traetteberg,

P.

J .

Sereda

load v e r s u s t h e d e p t h of p e n e t r a t i o n squared g e n e r a l l y g i v e s two s t r a i g h t l i n e s with t h e s l o p e g r e a t e r f o r t h e l i n e a t low p e n e t r a t i o n . The f i n a l s l o p e of t h e p l o t r e p r e s e n t i n g t h e d e e p e r p e n e t r a t i o n s i n c l u d e s t h e major number o f measurements and i s b e l i e v e d t o r e p r e s e n t t h e h a r d n e s s of t h e t h r e e -

dimensional s t r u c t u r e .

S u r f a c e a r e a was o b t a i n e d by means o f a Numinco-Orr s u r f a c e a r e a - pore volume a n a l y z e r withNg a s t h e a d s o r b a t e .

Scannine E l e c t r o n M i c r o s c o ~ v

The morphology of p a s t e s was s t u d i e d by means of a Cambridge S t e r e o s c a n Mark 2A.

R e s u l t s and D i s c u s s i o n Microhardness

The i n d e n t a t i o n w i t h t h e Vickers i n d e n t e r was made on f i v e s p o t s on t h e s u r f a c e o f t h e p a s t e sample and t h e t e n d i a g o n a l s measured were averaged t o g i v e a h a r d n e s s v a l u e t h a t was assumed t o be r e p r e s e n t a t i v e f o r t h e sample i n v o l v e d . The v a r i a t i o n i n t h e measured v a l u e s was sometimes l a r g e and sometimes i n s i g n i f i c a n t , depending on t h e s u r f a c e f e a t u r e s of t h e p a r t i c u l a r sample. A t y p i c a l s e t o f measurements i s given i n Table I . No a p p r e c i a b l e d r y i n g took p l a c e w h i l e measuring.

TABLE I

Measurements of Microhardness f o r P a s t e o f C3A + G + 8 p e r c e n t CaCR2 a f t e r 3 Days of Hydration ( l o a d 500g)

S e t o f Diagonals Microhardness (kg/mrn2)

Average d i a g o n a l : 160.5

Microhardness : 2 . 2 3 kg/mm2

I n connection with t h e formation of l a r g e amounts o f C3AH6

accompanied by c o n s i d e r a b l e s h r i n k a g e , t h e p a s t e of C3A became a t h i n s l u r r y d u r i n g t h e t e m p e r a t u r e e f f e c t a f t e r 5 t o 6 minutes' h y d r a t i o n . T h i s p a s t e was n o t h a r d enough f o r any s t r e n g t h t e s t s up t o one week, and t h e s u r f a c e of t h e specimen was t o o i r r e g u l a r f o r microhardness i n v e s t i g a t i o n .

(7)

V o l . 6, No. 4 465 C3A PASTE, STRENGTH, GYPSUM, CaC12

s t r u c t u r e , F i g u r e l a , o s t e n s i b l y w i t h v e r y weak bonding between t h e c r y s t a l s . The shape of t h e s e c r y s t a l s (rhombic dodekahedrons), however, i s such t h a t a q u i t e dense packing i s p o s s i b l e i f t h e h y d r a t i o n t a k e s p l a c e i n compacts where t h e d i f f e r e n t p a r t i c l e s a r e f o r c e d t o g e t h e r by an o u t e r p r e s s u r e . Under such c o n d i t i o n s t h e hydrogarnet phase y i e l d s s t r o n g e r i n t e r - p a r t i c l e bonding and, hence, a s t r o n g e r m a t e r i a l s t r u c t u r e (12). FIG. l a P a s t e of C3A h y d r a t e d 28 days. FIG. l b P a s t e of C 3 A + 8% CaCR2 h y d r a t e d 28 days. The a d d i t i o n of 8 p e r c e n t CaC!L7 t o t h e C3A p a s t e reduced t h e s e t t i n g t i m e s o t h a t a f t e r 2 hours t h e micro- hardness was measured a t i n t e r v a l s up t o 3 months. Table I1 g i v e s t h e o b t a i n e d v a l u e s which show a s l i g h t i n c r e a s e by h y d r a t i n g t o 30 days and a g r e a t i n c r e a s e a f t e r 3 months. The minor r e d u c t i o n i n s t r e n g t h observed

i n t h e p e r i o d between 3 and 30 days might be due t o a more a c t i v e

formation of t h e c u b i c C3AH6, an e f f e c t t h a t has been confirmed i n a p r e v i o u s work ( 9 ) . The micrograph, F i g u r e l b , shows a dominant p l a t y s t r u c t u r e t h a t i s expected t o r e s u l t i n improved i n t e r - p a r t i c l e bonding compared w i t h t h e c u b i c phase. An ageing e f f e c t might b e t h e r e a s o n f o r t h e s t r e n g t h d e v e l o ~ e d a f t e r 3 months. F I G . l c T h i s i s s i p p o r t e d b; t h e morphological P a s t e o f C3A + 16% CaCR2 h y d r a t e d change a s demonstrated i n F i g u r e 2b

and by t h e d e c r e a s e d s u r f a c e a r e a a t 28 days. t h i s s t a g e , Table I11 and Table I V .

(8)

Vol.

6 ,

No.

4

A. T r a e t t e b e r g , P. J. Sereda

TABLE I 1

Microhardness (kg/mm2) for Pastes of C3A With Addition of 25 Per Cent Gypsum and CaCt2

Hydrated for Different Periods

Hydration C3A + 8% C 3 A + 1 6 % C 3 A + C 3 A + G + C 3 A + G +

Time C3A CaCi2 CaCt2 gypsum 8% CaCk2 16% CaCk2

2 hours 0.46

-

-

0.98

-

4 hours 0.60 0.75 1.54

-

8 hours 0.98 1.28

-

2.42 1 day 1.00 1.77 0.58 2.60 2.84 2 days 1.08 2.26 0.94 3.14 3.16 3 days 1.77 2.39 1.11 2.26 3.05 7 days 1.38 3.52 1.32 2.63 2.91 10 days 1.37 3.32 1.45 2.67 3.10 14 days (15) 1.30 4.29 1.73 2.90 3.54 30 days 1.85 10.20 1.65 3.41 3.65 3 months 8.74 14.07 6.24 12.64 9.52 F I G . 2a P a s t e o f C3A h y d r a t e d 3 months. FIG. 2b P a s t e o f C3A + 8% CaCL2 h y d r a t e d 3 months.

(9)

V o l . 6, No. 4

C3A PASTE, STRENGTH, GYPSUM, CaC12 The paste of CqA + 16 Der

cent CaCR2 showed a simiiar trenh in strength development as the previous mixture. While higher values in microhardness were obtained in this series, the formation of C3AH6 was further retarded by this addition. This corresponds to the delay in the small decrease in strength that, in this case, occurred after about 10 days. The ageing effect seemed to take place at an earlier stage for this mixture. This might be suggested from the micrographs, Figures lb and c, that demonstrate a denser packing and a smaller crystal size of the hydro- alwninates in the C3A + 16 per cent CaCR2 paste. The increased addition of CaCR2 to paste of C3A improves the strength of the structure of the hydration products up to 1 month, an

effect which might be related to FIG. 2c

morphological features (Figure 2c). Paste of C3A + 16% CaCL2 hydrated

3 months.

TABLE I 1 1

Characteristics of Pastes of C3A and C3A + Gypsum With and Without CaC!L2 Hydrated for 30 Days

Paste Phases Present Surface Micro- Cone

Area hardness Penetration

(m2/g) (kg/mm2) (kg/mm2)

C3&, minor amounts 4.2

-

0.28

of C2AH8 and C4AH13

C3A + 8% CaCE2 C3&, C 2 M 8 and 8.2 1.85 0.96

(SS) C4AH13

-

C3A.CaCE2.H10

C3A + 16% CaCi2 C 3 w 6 , C 2 M 8 and 9.9 10.20 7.53

(SS) C4M13 -, C3A.CaCE2.H10

C3A + gypsum (ss) C3A.CaS04.H13

-

11.0 1.65 1.00

I C 4 M 1 3, C 2 M 8 and traces of C 3 M 6 C3A + G + 8% (SS) C3A.CaS04.H13 - 13.3 3.41 3.60 CaC!L2 C3A.CaCL2.Hl0

-

I C 4 M 1 3 and C2Aii8 C3A + G + 16% (ss) C3A.CaS04.H13

-

12.6 3.65 5.31 CaC!L2 C3A.CaCL2.H10

-

C 4 m l 3 and C 2 M 8

I

(ss) = solid solution

(10)

V o l .

6 ,

No. 4

A.

Traetteberg,

P. J .

Sereda

TABLE I V

C h a r a c t e r i s t i c s o f P a s t e s of C 3 A and C3A + Gypsum With and Without CaCR2 Hydrated f o r 3 Months P a s t e S u r f a c e Micro- Cone

Area hardness P e n e t r a t i o n (m2/g) (kg/mm2 (kg/mm2)

C 3 A + 25% gypsum 3.7 6.24 4.94

The microhardness of t h e C 3 A + 25 p e r c e n t gypsum p a s t e appeared t o be c l o s e t o t h a t f o r t h e C3A + 8 p e r c e n t CaCR2 system. Traces of C3AH6 have been d e t e c t e d a t l a t e s t a g e s i n t h e h y d r a t i o n of t h e C3A + gypsum p a s t e ( 9 ) , and t h i s e f f e c t might a l s o be t h e reason f o r t h e s l i g h t d e c r e a s e i n micro- hardness around 30 days. The m i c r o s t r u c t u r e of t h e s e two m i x t u r e s i s a l s o q u i t e s i m i l a r , both a t 30 days (compare F i g u r e s l b and 3a) and a t 3 months

( F i g u r e s 2b and 4 a ) . The i n c r e a s e i n s t r e n g t h w i t h t h e a d d i t i o n of gypsum t o C3A i s i n agreement with t h e r e s u l t of Andreeva and Segalova ( 3 ) .

FIG. 3a P a s t e of C 3 A + 2 5 % gypsum h y d r a t e d 28 days. FIG. 3b P a s t e of C3A + g + 8% CaCR2 h y d r a t e d 28 days.

(11)

V o l . 6, No. 4 469 C3A PASTE, STRENGTH, GYPSUM, CaC12

FIG. 3c P a s t e o f C 3 A + G + 16% CaCE2 h y d r a t e d 28 days. FIG. 4a P a s t e o f C3A + 25% gypsum h y d r a t e d 3 months. F I G . 4b P a s t e of C3A + G + 8% CaCR2 h y d r a t e d 3 months. FIG. 4c P a s t e of C3A + G + 16% CaCE2 h y d r a t e d 3 months.

The C 3 A + gypsum + 8 p e r c e n t CaCR2 mixture s e t w i t h i n t h e f i r s t 10 minutes of h y d r a t i o n . The hardness i n c r e a s e d s t e a d i l y up t o 2 days, when a small d e c r e a s e took p l a c e . The e f f e c t i n t h i s c a s e cannot be e x p l a i n e d by C3AH6 formation which i s prevented w i t h t h e a d d i t i o n of CaCR2 t o t h e C3A +

gypsum p a s t e ( 9 ) . The reason f o r t h e small r e d u c t i o n i n s t r e n g t h i s n o t known, but it might be due t o some r e o r g a n i z i n g of t h e bonding between t h e c r y s t a l l i t e s . The ageing e f f e c t a f t e r 3 months i s e s p e c i a l l y e v i d e n t i n t h i s c a s e . The i n c r e a s e d s t r e n g t h i n t h i s p a s t e might a r i s e from an improved

(12)

Vol.

6 ,

No.

4

A.

Traetteberg,

P. J .

Sereda

bonding o r b e t t e r packing o f t h e s m a l l e r c r y s t a l s , a s i s i l l u s t r a t e d i n t h e micrographs, F i g u r e s 3b and 4b and p o s s i b l y due t o some carbonation. T h i s improved s t r e n g t h w i t h t h e a d d i t i o n of CaCL2 i s i n c o n t r a d i c t i o n w i t h t h e r e s u l t o f Andreeva and Segalova ( 3 ) . The r e a s o n f o r t h e d i f f e r e n t r e s u l t might a r i s e from t h e i r u s e o f s u s p e n s i o n s o f C3A and q u a r t z compared w i t h a p u r e p a s t e h y d r a t i o n of C3A i n o u r work.

An i n c r e a s e d a d d i t i o n o f CaCI2 does n o t seem t o g i v e any s i g n i f i c a n t improvement t o t h e h a r d n e s s o f t h e p a s t e . The s l i g h t d e c r e a s e i n s t r e n g t h a f t e r 2 days i s a l s o d e t e c t e d h e r e . F i g u r e s 3b and 3c a l s o demonstrate a s i m i l a r morphology. The microhardness a f t e r 3 months i s lower t h a n w i t h t h e

8 p e r c e n t a d d i t i o n and t h e micrograph, F i g u r e 4 c , i n d i c a t e s a d e n s e r packing o f t h e s t r u c t u r e b u t more c r a c k s and p o r e s t h a n i n t h e p r e v i o u s c a s e . The lower s t r e n g t h might be due t o some s t r e s s developed w i t h t h e a d d i t i o n a l amount o f CaCI2.

I t i s known t h a t carbon d i o x i d e may c a u s e s u r f a c e hardening of cement. A doubt t h e r e f o r e a r o s e t h a t t h e i n c r e a s e i n s t r e n g t h a t l a t e r h y d r a t i o n p e r i o d s may n o t o n l y be due t o an ageing e f f e c t b u t a l s o p a r t l y t o c a r b o n a t i o n o f t h e s u r f a c e . A 2-mm-thick p i e c e from t h e s u r f a c e of t h e samples was c u t o f f a f t e r 6 months1 h y d r a t i o n and analyzed f o r C02 c o n t e n t . Microhardness was measured on t h e o l d and new s u r f a c e s of t h e samples and t h e measurements a r e recorded i n Table V. The r e s u l t s r e v e a l t h a t some carbona- t i o n had t a k e n p l a c e . The e f f e c t does n o t seem t o have had a s i g n i f i c a n t e f f e c t on t h e microhardness, however, e x c e p t i n t h e c a s e s o f samples w i t h 8 p e r c e n t CaCL2 added t o t h e C3A and C3A + gypsum p a s t e s where a lower microhardness was o b t a i n e d on t h e i n n e r s u r f a c e . Experience h a s shown t h a t t h e e f f e c t of c a r b o n a t i o n i s f i r s t observed on t h e s u r f a c e and it i s

r e a s o n a b l e t o c o n s i d e r t h e v a l u e of microhardness f o r t h e new ( c u t ) s u r f a c e a s r e p r e s e n t i n g t h e b u l k p r o p e r t y .

TABLE V

Carbon Dioxide Content and Microhardness for Pastes of C3A With and Without Admixtures, Hydrated for 6 Months

Paste C02 content (%) Microhardness (kg/mm2) original surface cut surface*

C3A 0.95 C3A + 8% CaCQ2 2.24 C3A + 16% CaCQ2 4.24 C3A + 25% gypsum 3.42 C3A + G + 8% CaCL2 3.33 C3A + G + 16% CaCL2 2.21

(13)

Vol.

6,

No. 4

C3A PASTE, STRENGTH, GYPSUM, CaC1

Cone P e n e t r a t i o n

F i g u r e 5 shows a t y p i c a l r e s u l t o f t h e cone p e n e t r a t i o n measurement t h a t i n c l u d e s a number of l o a d v e r s u s d e p t h d e t e r m i n a t i o n s . High humidity was maintained d u r i n g measurement t o p r e v e n t d r y i n g . In a few c a s e s t h e r e were t h r e e d e t e r m i n a t i o n s c a r r i e d o u t t o e s t a b l i s h t h e r e l i a b i l i t y of t h e measurements. I t was found t h a t i n t h i s range of h a r d n e s s o n l y a s l i g h t s c a t t e r i n g i n t h e v a l u e s took p l a c e and one d e t e r m i n a t i o n was, t h e r e f o r e , c o n s i d e r e d s u f f i c i e n t t o g i v e a measure of t h e s t r e n g t h of t h e m a t e r i a l . The h a r d n e s s , c a l c u l a t e d p e r u n i t c i r c u m f e r e n t i a l a r e a of t h e cone, i s found t o be t h e most s u i t a b l e f o r t h e s e samples. A f t e r 7 days t h e 8 I I i n i t i a l l y weak s t r u c t u r e of t h e C 3 A p a s t e reached a 7 - h a r d n e s s s u f f i c i e n t l y l a r g e /* t o p e r m i t cone p e n e t r a t i o n measurements t o be done, 6

-

-

I I /*

Table VI. The micrograph of t h e 30 d a y s t s a m p l e , F i g u r e la,

i

shows a l o o s e morphology

3r

-

i

mainly of t h e c u b i c phase

rn C3AHs. The ageing e f f e c t

x

./

was v e r y pronounced i n t h i s s4-

-

u 0 p a s t e a s t h e h a r d n e s s A i n c r e a s e d t o 2 3 kg/mm2 a f t e r 3

-

3 monthst h y d r a t i o n . The micrograph, F i g u r e 2a dem- H A Y D N E S S = == 1 . 1 1 b g v m 2 ~ . l h ' o n s t r a t e s a d e n s e r s t r u c t u r e o f t h e c r y s t a l s and t h e d e c r e a s e d s u r f a c e a r e a o f I

/:

,

I

t h i s e v i d e n t l y c o a l e s c e n c e sample corresponds of (Table t h e i n d i v i d u a l IV) t o a

o p a r t i c l e s .

0.5 1.0 1 . 5

P E N E T R A T I O N D E P T H S Q U A R E D , m m 2 The h a r d n e s s v a l u e s

o b t a i n e d by cone p e n e t r a t i o n FIG. 5 i n t h e C3A + 8 p e r c e n t

Cone p e n e t r a t i o n measurements f o r CaCR2 p a s t e a s a f u n c t i o n o f p a s t e o f C 3 A + gypsum + 8% CaCa, h y d r a t i o n time show a s i m i l a r

h y d r a t e d f o r 3 d a y s . p a t t e r n a s t h o s e o b t a i n e d by microhardness measurements. The observed d e c r e a s e i n s t r e n g t h , c o n s i d e r e d t o be due t o more a c t i v e formation o f C3AH6, i s a l s o d e t e c t e d i n t h e p a s t e o f C 3 A + 16 p e r c e n t CaCR2, but was s l i g h t l y d e l a y e d i n t h i s c a s e . Both methods show a marked s t r e n g t h i n c r e a s e i n t h e 3 month samples, but t h e a b s o l u t e v a l u e s d i f f e r . I t i s b e l i e v e d t h a t a f t e r a c e r t a i n h a r d n e s s l e v e l t h e cone p e n e t r a t i o n method g i v e s v a l u e s t h a t a r e t o o h i g h .

For t h e C3A + gypsum system, cone p e n e t r a t i o n gave h a r d n e s s v a l u e s c l o s e t o t h o s e from t h e microhardness t e s t s . T h i s was a l s o t h e c a s e f o r t h e

samples w i t h t h e a d d i t i o n o f 8 F e r c e n t CaCR2 t o t h e system. However, t h e cone p e n e t r a t i o n method r e s u l t e d i n h i g h e r h a r d n e s s v a l u e s w i t h t h e 16 p e r c e n t a d d i t i o n of CaCR2.

(14)

Vol.

6,

No.

4

A.

Traetteberg,

P.

J.

Sereda

TABLE V I

H a r d n e s s Values ( k g / m m 2 ) Obtained by Cone P e n e t r a t i o n M e a s u r e m e n t s f o r P a s t e s of C j A With Addition of 25 P e r Cent Gypsum and C a C i z Hydrated

f o r Different P e r i o d s

Hydration C3A C3A

+

8% C3A

+

16% C3A

+

C , A + G + C 3 A + G +

T i m e C aC 12 CaC t a gypsum 8% CaCfi2 16% C a C 4

$ hour 1 h o u r 2 h o u r s 4 h o u r s 8 h o u r s 24 h o u r s 2 d a y s 3 d a y s 7 d a y s 10 d a y s 14 d a y s 30 d a y s 3 m o n t h s

Table I11 d e m o n s t r a t e s t h e composition of t h e p a s t e s a t 30 d a y s ' h y d r a t i o n a s o b t a i n e d i n a n o t h e r r e p o r t (9), t o g e t h e r w i t h c o r r e s p o n d i n g d a t a o f s u r f a c e a r e a and h a r d n e s s .

A comparison between t h e d a t a a t 30 days and 3 months (Tables I11

and I V ) c l e a r l y d e m o n s t r a t e s t h e a g e i n g e f f e c t f o r a l l samples, i . e . , an

i n c r e a s e i n s t r e n g t h accompanied by a d e c r e a s e i n s u r f a c e a r e a . The a g e i n g might be due p a r t l y t o t h e h i g h humidity c o n d i t i o n s o f s t o r a g e .

Conclusions

The i n v e s t i g a t i o n o f s t r e n g t h i n d i f f e r e n t C 3 A systems by means of microhardness and cone p e n e t r a t i o n has shown t h a t changes i n t h e s e p r o p e r t i e s can be i d e n t i f i e d w i t h morphological changes. The d e n s e r morphology f o r a l l s i x p a s t e s a f t e r 3 months' h y d r a t i o n i s b e l i e v e d t o be t h e r e s u l t of an ageing e f f e c t i n v o l v i n g c o a l e s c e n c e of t h e i n d i v i d u a l c r y s t a l s by i n c r e a s i n g t h e a r e a of c o n t a c t due t o d i s s o l u t i o n and

r e c r y s t a l l i z a t i o n . The reduced s u r f a c e a r e a o b t a i n e d f o r a l l t h e p a s t e s a t t h i s s t a g e and evidence from micrographs s u p p o r t t h i s assumption.

The i n f l u e n c e o f t h e admixture CaCR2 on t h e s t r e n g t h of C3A and C3A + gypsum p a s t e s i s s i g n i f i c a n t up t o 1 month h y d r a t i o n where an i n c r e a s e of CaCI2 means an i n c r e a s e i n s t r e n g t h . However, i t s i n f l u e n c e i n connection w i t h t h e ageing e f f e c t i s l e s s c l e a r . The 16 p e r c e n t a d d i t i o n t o t h e C3A

(15)

V o l . 6, No. 4 473 C3A PASTE, STRENGTH, GYPSUM, CaC12

paste gave the highest hardness value but it is of the same magnitude,as the

one for the C3A paste alone. For the C3A + gypsum system the 8 per cent

CaCR2 addition gave the hardest structure.

A comparison between the two testing methods, microhardness indentation and cone penetration, shows good agreement in some mixtures and only fair agreement in others. It might be concluded that cone penetration is a convenient method for softer materials, but has its limitation on materials with hardness above a certain level.

Acknowledgements

The authors would like to thank E.G. Quinn for his valuable

contribution in the experimental work and in discussions. The assistance of R.E. Myers and G.M. Polomark is also greatly appreciated.

One of the authors, Aud Traetteberg, would like to thank the Royal Norwegian Council for Scientific and Industrial Research for financial

I support and the National Research Council of Canada for the opportunity to

work in the Division of Building Research. This paper is a contribution from the Division of Building Research, National Research Council of Canada, and is published with the approval of the Director of the Division.

References

1. E.S. Solov'eva and E.E. Segalova. The relationship between the strength

of a crystallization structure and the degree of dispersion of the original binding agent in tricalcium aluminate suspensions. Kolloidnyi Zhurnal, Vol. 23, No. 2, p. 200-203, March-April 1961.

2. E.E. Segalova, E.S. Solov'eva and P.A. Rebinder. The influence of

temperature on the processes of crystallization structure-formation in tricalcium aluminate suspensions. Kolloidnyi Zhurnal, Vol. 23, NO. 2, p. 194-199, March-April 1961.

3. E.P. Andreeva and E.E. Segalova. Contribution to the investigation of

processes of crystallization structure formation in aqueous suspensions of tricalcium aluminate in the presence of electrolytes. Kolloidnyi Zhurnal, Vol. 23, No. 2, p. 129-133, March-April 1961.

4. T.Y.A. Gorazdovskii and P.A. Rebinder. Theory of a conical plastometer.

Kolloidnyi Zhurnal, Vol. 32, No. 4, p. 512-520, July-August 1970.

5.

I.

Soroka and P.J. Sereda. Interrelation of hardness, modulus of

elasticity and porosity in various gypsum systems. J. Amer. Ceram. SOC., 51, No. 6, p. 337-340, (1968).

-

6. D. Chandra, P.J. Sereda and E.G. Swenson. Hydration and strength of neat

Portland cement. Mag. of Concr. Res., Vol. 20, No. 64, p. 131-136, Sept. 1968.

7. I. Soroka and P.J. Sereda. The structure of cement-stone and the use

of compacts as structural models. Fifth Int. Symp. Chem. Cem. Tokyo, Part 111, Vol. 111, p. 67-73, (1968).

8. P.J. Sereda. Significance of microhardness of porous inorganic

(16)

Vol.

6,

No.

4

A . Traetteberg,

P . J .

Sereda

9 . A. T r a e t t e b e r g and P.E. Grattan-Bellew. Hydration mechanism of 3Ca0.AR203 and 3Ca0.AL203+ gypsum w i t h and w i t h o u t t h e admixture CaCt2. (Submitted f o r p u b l i c a t i o n i n J . Am. Cer. S o c . ) .

10. P . J . Sereda and E . G . Swenson. Apparatus f o r p r e p a r i n g p o r t l a n d cement p a s t e of h i g h water-cement r a t i o . M a t e r i a l s Research and S t a n d a r d s , Vol. 7 , No. 4 , p. 152, A p r i l 1967.

11. P . J . Sereda. S i g n i f i c a n c e o f cone p e n e t r a t i o n t e s t f o r s e t t i n g of cements. (To be p u b l i s h e d . )

12. V.S. Ramachandran and R.F. Feldman. Hydration c h a r a c t e r i s t i c s of monocalcium a l u m i n a t e a t a low w a t e r / s o l i d r a t i o . (Under p u b l i c a t i o n i n Cement and Concrete Research).

Figure

FIG.  3a  P a s t e   of  C 3 A   +  2 5 %   gypsum  h y d r a t e d   28  days.  FIG
FIG.  3c  P a s t e   o f   C 3 A +   G  +  16% CaCE2  h y d r a t e d   28  days.  FIG
Table  VI.  The  micrograph  of  t h e   30  d a y s t   s a m p l e , F i g u r e  la,

Références

Documents relatifs

To facilitate the development of a distributed parameter vibration control strategy for flexible structures, a theoretical model for spatially distributed sensors on

The aim of the research conducted at CSTB is the development of a real time air quality monitoring tool using an electronic nose based on conducting polymer sensors and

Effective Young’s modulus and Poisson’s ratio estimated by the self-consistent scheme with spherical pores and elongated solid particles 共with different aspect ratios r s 兲,

In this paper, we choose to describe the typical behavior described above by means of a viscoelastic-damage constitutive model where the framework of the continuum damage mechanics

Les attributs utilisés pour cette tâche sont les suivants : les n-grammes de mots, les n-grammes de caractères, le lexique d’émotions FEEL, la ponctuation, les émoticônes, les

Chloé Journo 1,2,3 , Amandine Bonnet 4,5,6 , Arnaud Favre-Bonvin 4,5,6 , Jocelyn Turpin 1,2,3 , Sébastien Chevalier 1,2,3 , Jennifer Vinera 1,2,3 , Emilie Côté 1,2,3 , Claudine

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. Access

Examples show that the sample size condi- tion is the best possible and that the result can fail if one of the prior densities converges to zero exponentially fast at the bound- ary..