• Aucun résultat trouvé

On the Interactions Between Adsorbed Molecules in Connection with the Theory of Adsorption on Heterogeneous Surfaces

N/A
N/A
Protected

Academic year: 2021

Partager "On the Interactions Between Adsorbed Molecules in Connection with the Theory of Adsorption on Heterogeneous Surfaces"

Copied!
38
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Translation (National Research Council of Canada), 1950-03-25

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331472

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at On the Interactions Between Adsorbed Molecules in Connection with the Theory of Adsorption on Heterogeneous Surfaces

Volkenshtein, F. F.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=9d606f7d-dc3d-401e-b827-3cf4b4322774 https://publications-cnrc.canada.ca/fra/voir/objet/?id=9d606f7d-dc3d-401e-b827-3cf4b4322774

(2)

NATIONAL RSSEARCH COUNCIL OF CANADA DIVISION OF INFORM.ATION SERVICES

T e c h n i c a l T r a n s l a t i o n No, TT-120

ON TKE INTERACTIONS BETVIEEN ADSORBED MOLECULES I N CONNECTION lVITH THE THEORY OF ADSORPTION ON HETEROGENEOUS SURFACES

( K Voprocy o V z a l m o d e i s t v i i Adsorbirovannykh blolekul v Svyaei s T e o r i e i A d s o r p t s i i Na Neodnorodnykh ~ o v e r k h n a s t y a k h ) by F, F, Volkenshtein 25 March, 1950 T h i s r e p o r t may n o t be p u b l i s h e d i n whale o r i n p a r t w i t h o u t t h e w r i t t e n c o n s e n t of t h e N a t i o n a l Research Council.

(3)

NATIONAL RESEARCH LABORATORIES Ottawa, Canada

TECHNICAL TRANSLATION NO 4

TT-

120

Divi sion of Information Servioes

On the Interaction between Adsorbed Molecules in Connection with the

Theory of Adsorption on Heterogeneous Surfaces

By: F. F o Volkenshtein

References: Zhurnal Fizicheskoi Khimii

CJ,

of Phys. Chem.)

Vol, 21, No. 2, 1947, pp, 163-178 Translated by: Esther Rabkin

(4)

Zhurnal F i z i c h e s k o i l i h i m i i , Vol. 21, No, -2, 1947

ON THE INTERACTIONS BET!!FIEEN ADSORBED MOLECULES I N CONNECTION

WITH THE THEORY OF. ADSORPTION ON !ETEROGENEOUS SURFACES

by

F. F. Volkenshteln T r a n s l a t e d by Esther Rabkin

1, Formulation of t h e problem

The elementary theory of molecular a d s o r p t i o n developed by Langmuir

"

' i s based on two assumptionsr-

1. The surf ace of t h e adsorbent i s considered uniform from t h e energy p o i n t of view; t h a t i s , t h e h e a t of adsorption Q i s assumed uniform throughout t h e s u r f a c e of t h e adsorbent: Q = constant.

2, The adsorbed molecules do n o t i n t e r a c t between them- s e l v e s .

The f a c t t h a t t h e experimental a d s o r p t i o n i s o - therms i n most c a s e s do n o t agree w i t h t h e t h e o r e t i c a l Langmuir isotherms n e c e s s i t a t e s a r e - a n a l y s i s of t h e .

o r i g i n a l assumptions i n t h e Langmuir theory. F i r s t , t h e development of t h e theory i s p o s s i b l e i n two d i r e c t i o n s : -

1. I t i s p o s s i b l e t o d i s r e g a r d t h e f i r s t simplifying assumption of Langmuir and r e t a i n t h e second.

(5)

r e t a i n t h e f i r s t .

For t h e f i r s t t h e r e a r e a t p r e s e n t e number of'

(2)

t h e o r e t i c a l works In t h e s e t h e i n t e r a c t i o n s between t h e adsorbed molecules a r e ignored, but t h e h e t e r o g e n e i t y of t h e s u r f a c e i s taken i n t o account. This h e t e r o g e n e i t y

i s g e n e r a l l y c h a r a c t e r i s e d b y a d i s t r i b u t i o n f u n c t i o n

p

(Q) :-

where dS i s the s e c t i o n of the s u r f a c e f o r which the h e a t of adsorption i s found i n the i n t e r v a l from Q t o Q 3. dQ,

Depending on t h e form assumed f o r t h e f u n c t i o n

P ( Q )

we o b t a i n a d e f i n i t e form f o r t h e isotherm 0 ( p )

.

The s o l u t i o n of t h e r e v e r s e problem i s of

i n t e r e s t , t h a t i s , t o f i n d such a s u f f i c i e n t l y simple mathe- m a t i c a l method by means of which we could f i n d from t h e

experimentally obtained isotherm 0 = 8 ( p ) the corres- ponding d i s t r i b u t i o n f u n c t i o n

P

=

P

(G.\,

t h a t f s, we could determine t h e heterogeneity of t h : s u r f a c e . This problem has

(3)

r e c e n t l y been solved by C,Z, Roginskl

,

who found simple .approximate formulae which permit t o f i n d t h e f u n c t i o n

p

=

P

( Q ) from a given e m p i r i c a l f u n c t i o n 8 = 0 ( p ) ,

and t h e r e v e r s e ,

We w i l l adopt the Roginskf method only f o r s u f f i c - i e n t l y wide d i s t r i b u t i o n s , f o r which Q

max

-

%in

9

9''

(6)

-

3

-

i n s i d e which P f 0, while o u t s i d e of t h i s

interval'.^=

0 4 )

For the second assumption t h e r e a l s o e x i s ; a number

( 5 )

of c a l c u l a t i o n s

.

I n t h e s e c a l c u l a t i o n s t h e s u r f a c e l a assumed t o be homogeneous, but t h e molecules adsorbed on t h e surface a r e considered t o be i n t e r a c t i n g . Depending on t h e law of i n t e r a c t i o n , t h a t i s , on t h e f orm of the h n c t i o n

CfJ = ( r ) , c o n s i s t i n g of t h e i n t e r a c t i o n energy between

two molecules a s a f u n c t i o n of t h e d i s t a n c e between them (assuming t h a t the i n t e r a c t i o n f orcev a r e c e n t r a l f o r c e s ) , we o b t a i n one o r other form f o r t h e isotherm 8

=

8 ( p ) .

I t i s of i n t e r e s t t o f i n d a s u f f i c i e n t l y convenient method, which would permit t o determine t h e form of t h e f u n c t i o n

=

9

( r ) f ~ o m t h e experimentally obtained isotherm

8 = Q ( p )

,

and conversely, by a given law of i n t e r a c t i o n

9

=

u;

( r ) , t h e corresponding isotherm 8 = Q ( p ) . To

f ind these formulae comprises t h e problem of t h i s paper. Since one and t h e same isotherm 0 = 8 ( p ) may be obtained a s a r e s u l t of a d e f i n i t e s e l e c t i o n of t h e d i s t r i b u t i o n f u n c t i o n

p

= f (Q: ( b y ignoring t h e i n t e r - a c t i o n of t h e molecules), and t h e same a s a r e s u l t of a d e f i n i t e s e l e c t i o n of t h e i n t e r a c t i o n law =

qD

( r ) (by ignoring t h e h e t e r o g e n e i t y of t h e s u r f a c e ) , then from t h e experimental isotherms alone i t i s n o t p o a s i b l e t o decide d e f i n i t e l y which one of t h e two assumptions i n t h e Langmufr t h e o r y should be disregarded and which one should be r e t a i n e d ,

(7)

I n connection w i t h t h i s , i t i s of i n t e r e s t t o f i n d such formulae which would connect t h e f u n c t i o n CfJ ( r ) w i t h t h e corresponding f u n c t i o n P (Q), and t h i s would p e r m i t t o determine t h e e q u i v a l e n t law of i n t e r a c t i o n ( f ~ o m t h o iso-

therm p o i n t of view) f o r t h e d i s t r i b u t i o n a c c o r d i n g t o t h e h e a t of a d s o r p t i o n , o r t h e converse, To f i n d t h e s e formulae i s a l s o a problem of t h i s paper.

The problems p r e s e n t e d h e r e belong t o t h e phenom- e n o l o g i c a l t h e o r y of a d s o r p t i o n . I n t h e p h y s i c a l t h e o r y of a d s o r p t i o n , which h a s n o t y e t been c o n s t r u c t e d , t h e f u n c t i o n s

P

( Q ) and

cf.

( r ) must, of c o u r s e , be f i x e d by t h e p h y s i c a l model i t s e l f , and cannot b e s e l e c t e d on t h e b a s i s of t h e form

of t h e experimental isotherms,

2. O r i g i n a l assumptions

1% w i l l assume a p l a n e s u r f a c e f o r t h e a d s o r b e n t . We w i l l assume t h a t a l l t h e adsorbed molecules, which we w i l l assume t o be i d e n t i c a l , a r e uniformly d i s t r i b u t e d on t h i s s u r f a c e . It must be noted, t h a t i n t h e p r e s e n c e of r e p u l s i o n f o r c e s between the adsorbed molecules such a uniform d i s t r i - b u t i o n c o r r e s p o n d s t o a minimum of energy, t h a t i s , i t appears

t o b e a more f a v o u r a b l e d i s t r i b u t i o n from t h e e n e r g y p o i n t of view. I n t h e c a s e of t h e a t t r a c t i o n f o r c e s a uniform d i s t r i b u t i o n corresponds t o an e x c i t e d s t a t e : t h e molecules i n t h i s c a s e p o s s e s s a tendency t o c o n t r a c t ,

(8)

We w i l l denote by

.&

t h e d i s t a n c e between t h e s u r f a c e of t h e adsorbent and t h e a d s o r p t i o n l a y e r , and by r t h e s h o r t e s t d i s t a n c e between two neighbouring adsorbed molecules ( F i g s . 1 & 2 ) , Tle must n o t e t h a t tho magnitude of

,k

i s i n t h e o r d e r of t h e diameter of t h e molecules. Let u s assume t h a t :

8

-

i s t h e degree of f i l l i n g - i n of t h e s u r f a c e . 2

M

-

i s t h e number of adsorbed molecules ( p e r 1 cm ) ,

No

-

i s t h e l a r g e s t n b e r of molecules which can be

adsorbed by 1 capof the adsorbent s u r f a c e .

q

-

i s t h e q u a n t i t y of t h e adsorb d substance

8

( p e r 1 cm ),

q*

-

i s t h e l a r g e s t q u a n t i t y whi h c o u l d be adsorbed on 1 cm

8

.

r

-

i s t h e s h o r t e s t d i s t a n c e between two adsorbed molocules,

r

-

i s t h e minimum d i s t a n c e t o which two adsorbed 0

molecules may approach.

Between t h e s e v a l u e s t h e f o l l o w i n g obvious r e l a t i o n - s h i p s e x i s t : -

-

The parameter r o may be named t h e " e f f e c t i v e diametertt of t h e moleculeo

We w i l l f u r t h e r assume t h a t t h e i n t e r a c t i o n f o r c e a between t h e adsorbed molecule and a molecule of t h e adsorbent, a s w e l l a s between two adsorbed molecules, a r e c e n t r a l f o r c e s . Thus, we exclude from t h e a n a l y s i s t h e c a s e s i n which i n t e r - a c t i o n i s dependent on t h e mutual o r i e n t a t i o n of t h e molecules,

(9)

a s w e l l a s the c a s e i n which t h e I n t e r a c t i o n f o r c a s a r e of a chemical n a t u r e , t h a t Is, p o s s e s s t h e p r o p e r t y t o be s a t u r a t e d .

Each adsorbed molecule l o c a t e d on t h e s u r f a c e of t h e a d s o r b e n t i n t e r a c t s , s t r i c t l y speaklng, w i t h a l l t h e mole- c u l e s i n t h e l a t t i c e of t h e a d s o r b e n t , a n d w i t h a l l t h e o t h e r adsorbed molecules. I t s energy

@

i s t h u s composed of two p a r t s : -

where

(4)

i s t h e energy of i n t e r a c t i o n w i t h the l a t t i c e

0

of t h e a d s o r b e n t ,

@

t r )

i s t h e energy of i n t e r a c t i o n w i t h t h e o t h e r adsorbed m o l e c i ~ l e s .

The term r$

(f

), s t r i c t l y speaking, i s dependent

0

on t h e p o s i t i o n of our adsorbed molecule i n r e l a t i o n t o t h e c o r n e r s of t h e l a t t i c e , t h a t i s , dependent on i t s co- o r d i n a t e s y, z ( F i g , 2), b e i n g a p e r i o d i c f u n c t i o n of t h e s e c o o r d i n a t e s . However, we w i l l n e g l e c t t h i s r e l a t i o n s h i p , t h a t i s , we w i l l n e g l e c t t h e " h e t e r o g e n e i t y " of t h e s u r f a c e , c o n d i t i o n e d by t h e c r y s t a l l i n e s t r u c t u r e of t h e adsorbent i t s e l f , c o n s i d e r i n g

@

(1)

t o be uniform f o r a l l t h e p o i n t s 0 on t h e s u r f a c e .

(10)

moreover,

where g and g2 a r e whole numbers. Here

g

( r ) i s t h s

1

i n t e r a c t i o n e n e r g y be tween two adsorbed molecules found a t a d i s t a n c e r from each o t h e r , By f i n d i n g a s o l u t i o n f o r t h i s f u n c t i o n we by t h e same means would f i n d a ~ o l u t i o n f o r t h e "law of i n t e r a c t i ~ n ' ~ ,

It i s e v i d e n t t h a t t h e a b s o l u t e magnitude of t h e energy

-

c o n s i s t s of t h e h e a t of a d s o r p t i o n Q, r e l a t i n g t o one molecule :

I n f a c t , Q a x p r e s s e s t h e e n e r g y whiclz must be used

up i n o r d e r t o remove one adsorbed molecule beyond t h e

l i m i t s of t h e a d s o r p t i o n l a y e r i n t o i n . f i n i t y , i f we o n l y

n e g l e c t (which we w i l l do from now o n ) t h e deformation of t h e l a t t i c e ~ i n d t h e r e d i s t r i b u t i c m of molecules a l o n g t h e s u r f ace of t h e a d s o r b e n t , which r e s u l t s from t h e desorp1;ion of each i n d i v i d u a l molecule.

Thus we seq t h a t t h e s u r f a c e , u n i f o r m l y covered w i t h adsorbed molecules i n t ; e r u c t i n g betwoen each o t h e r , can be r e g a r d e d a s a homogeneous s u r f a c e , b u t f o r which t h e

magnitmude of t h e h e a t of a d s o r p t i o n h a s changed. To t h e h e a t of a d s o r p t i o n Q0 =

-

@,,

c o r r e s p o n d i n g t o a f r e e s u r f a c e , we add t h e term

O Q

=

-

c o r r e s p o n d i n g t o t h e degree of

(11)

f i l l i n g - i n , which may be e i t h e r p o s i t i v e o r n e g a t i v e ,

depending whether t h e i n t e r a c t i o n f o r c e s between t h e adsorbed molecules a r e f o r c e s of a t t r a c t i o n o r r e p u l s i o n .

3. On the p o s s i b l e o r i g i n of t h e a c t i v a t i o n b a r r i e r

We w i l l assume t h a t one of t h e adsorbed molecules h a s escaped t h e a d s o r p t i o n l a y e r and h a s reached a d i s t a n c e

x from t h e s u r f a c e of t h e a d s o r b e n t , a s shown by a d o t t e d l i n e on F i g , 1. We w i l l a l s o assume t h a t t h e o t h e r adsorbed molecules remain i n t h e i r p o s i t i o n s , I n t h i s c a s e t h e energy

of our molecule may be e x p r e s s e d i n t h e f o l l o w i n g form:-

where @ A X ) i s t h e i n t e r a c t i o n energy of our molecule w i t h t h e l a t t i c e of t h e a d s o r b e n t ,

A+

( r , x) i s t h e i n t e r a c t i o n energy of our molecule w i t h t h e remaining molecules of t h e a d s o r p t i o n l a y e r . It i s e v i d e n t t h a t : A t x

= A

t h e e x p r e s s i o n ( 6 ) i s transformed i n t o (4) and t h e e x p r e s s i o n ( 5 ) i n t o ( 2 ) . Two t y p e s of r e l a t i o n s h i p s p o s s i b l e between

@

0

(12)

the absence of a d s o r p t i o n , Curve 2 e x p r e s s e s t h e c a s e sf a d s o r p t i o n , Adsorption i s d e t e c t e d by t h e p r e s e n c e of a minimum on t h e curve. The v a l u e x =

k

determines t h e

p o s i t i o n of t h i s minimum. The d e p t h of t h e minimum expres- s e s t h e h e a t of a d s o r p t i o n Qo f o r a homogeneous f r e e s u r f a m ,

Two t y p e s of r e l a t i o n s h i p p o s s i b l e between and x a r e shown i n F i g o 4, If t h e f o r c e s a c t i n g between t h e adsorbed molecules a r e r e p u l s i o n f a r c e s , t h e n we o b t a i n concave curves of Type 1; i n t h e c a s e s of a t t r a c t i v e f o r c e s we have convsx c u r v e s of Type 2, F a m i l i e s of c u r v e s cor- responding t o v a r i o u s v a l u e s of t h e parameter r a r e shown

i n t h e f i g u r e s ,

The maximum on t h e c u r v e s of Type 1 and t h e minimum on t h e c u r v e s of Type 2 a p p e a r s a t x

=A.

The h e i g h t of t h e maxi- mum o r t h e depth of t h e minimum i n c r e a s e a s r d e c r e a s e s ,

t h a t i s , a s t h e f i l l i n g - i n Q i n c r e a s e s .

By a d d i n g t h e c u r v e s of Type 1 (from F i g , 3 )

w i t h t h e c u r v e s of Type 2 (from F i g , 4 ) ( t h e s e c u r v e s a r e once more shown i n F i g o 5 ) we can o b t a i n a curve which c r o s s e s t h e a b s c i s s a ( c u r v e 3 of F i g o 5 ) : e s t a b l i s h i n g R

p o t e n t i a l b a r r i e r b e f a r e t h e p o t e n t i a l d i p ,

Thus an a c t i v a t i o n b a r r i e r may appear a s a r e s u l t of t h e i n t e r a c t i o n s be tween two adsorbed molecules, i f t h e

(13)

i n t e r a c t i o n f o r c e s a r e f o r c e s ol"repulsion, Such i s t h e p o s s i b l e n a t u r e of t h e a c t i v a t i o n b a r r i e r , a r i s i n g on t;he s u r f a c e of t h e a d s o r b e n t , The h e i g h t of' t h e b a r r i e r , c o n s i s t i n g of t h e a c t i v a t i o n e n e r g y E, i n c r e a s e s a s t h e p a r a m e t e r r d e c r e a s e s , t h a t i s , a s t h e s u r f a c e b e g i n s t o f i l l i n , t h e depth of t h e p o t e n t i a l p i t e x p r e s s i n g t h e h e a t of a d s o r p t i o n Q

d e c r e a s e s . Thus w i t h a change i n t h e q u a n t i t y of adsorbed molecules b o t h E and Q change i n o p p o s i t e d i r e c t i o n s o

The c u r v e s c@ ( x ) f o r v a r i o u s B a r e shown i n F i g o 60 A t some v a l u e 8 = 8 t h e minimum of t h e c u r v e 0

@

( x ) i s t a n g e n t t o t h e a b s c i s s a . Thus B i s t h e r o o t 0 of t h e e q u a t i o n :

Q

+

a~

( Q ) = 0, 0 A t 8

4

8 t h e h e a t of a d s o r p t i o n i s p o s i t i v e ( Q > 0 ) g 0

a t 8

>

8 i t becomes n e g a t i v e

(Q

<o)

, The a d s o r p t i o n ,

0

however, c o n t i n u e s a l s o a t n e g a t i v e v a l u e s o f

Q,

and i t d i s c o n t i n u e s o n l y when 43 r e a c h e s t h e v a l u e 8 = 1, which c o r r e s p o n d s t o t h e d i s a p p e a r a n c e of' the minimum on t h e curve

($

(x). The d i s a p p e a r a n c e of t h e minimum a p p e a r s t o be a condition from which t h e paraametors N and r o a r e

0

determined, The v a l u e Q = 1 i s by no means proof t h a t t h e s u r f a c e i s completely f i l l e d i n , b u t i t may be a n a l y s e d a s such, i f we a s s i g n t o t h e molecules i n s t e a d of t h e i r t r u e d i a m e t e r a c e r t a i n e f f e c t i v e d i a m e t e r r

.

(14)

4. The d e t e r m i n a t i o n of isotherms corresponding t o a given

--

law of i n t e r a c t i o n

We w i l l assume t h a t t h e a d s o r p t i o n l a y e r i s i n e q u i l i b r i u m with t h e gaseous phase. W e w i l l d e s i g n a t e by n l t h e number of t h e adsorbed molecules, and by n2 t h e number of desorbed molecules p e r second from t h e s u r f ace of 1 cm 2 of t h e adsorbent,

It i s obvious t h e n t h a t 2

where = 1/4 f l r 2 which i s t h e " e f f e c t i v e a r e a U of 1

molecule, and m i s t h e mass of 1 molecule,

We w i l l consfder t h e c o e f f f c i e n t of r e f l e c t i o n

cc

a s being e q u a l t o u n i t y , T h i s means t h a t each gaseous molecule f a l l i n g on t h e s u r f a c e of t h e adsorbent i s t r a p p e d by i t .

We w i l l a s s m e t h a t t h e c o e f f i c i e n t 9

-

t'frequency of v i b r a t i o p s " of t h e adsorbed molecule

-

f s independent of

t h e degree of f i l l i n g - i n Q, I n o t h e r words, we w i l l n e g l e c t t h e e f f e c t of i n t e r a c t i o n on t h e magnitude of t h i s c o e f f i c i e n t .

Expressions ( 7 ) d i f f e r from the corresponding e x p r e s s i o n s i n t h e Langmuir t eory, f i r s t , by t h e presenae

-

(15)

A Q ~ Q )

presence of a f a c t o r e

--

.,

Both t h e s e f a c t o r s appear

a s a r e s u l t of t a k i n g t h e i n t e r a c t i o n i n t o account. They c h a r a c t e r i s e t h e t r a n s i t i o n from the p o t e n t i a l curve 2 t o t h e p o t e n t i a l curve 3 i n Fig. 5, It i s e x a c t l y these two t r a n s i t i o n s which determine the i n t e r a c t i o n s i n t h e frame of our model.

From the condition of equilfbrium

-

nl

-

"2 we o b t a i n where Qo a = kTy

-

m

From formula ( 8 ) we can determine t h e form of t h e isotherm by a given law of i n t e r a c t i o n

:+

( r )

.

I n f a c t , according t o ( 1 ) :

A Q

( Q ) =

-

Ir 0 0 0 ( 9 )

S u b s t i t u t i n g ( 9 ) i n t o (€I), we can r e - w r i t e formula ( 8 ) thus:

(16)

Solving t h i s e q u a t i o n with r e s p e c t t o 8 we o b t a i n t h e r e q u i r e d e q u a t i o n f o r t h e isotherm$

It must be noted, t h a t i r r e s p e c t i v e of t h e law of i n t e r a c t i o n , we always have:

"9

=

4Q

Q = 1, I . e .

r

=

r

0' moreover,

49,

can be e i t h e r p o s i t i v e o r n e g a t i v e :

>

0 f o r t h e c a s e of r e p u l s i o n f o r c e s , L 0 f o r t h e c a s e of a t t r a c t i o n f o r c e s . I n a d d i t i o n , t h e f u n c t i o n

641

( r )

may be c o n s i d e r e d a s a monotonous f u n c t i o n of

r ,

Thus, when 8 changes from

8 = 0 t o 8 = 1, t h e second term of t h e left-hand s e c t i o n of equation ( 1 0 ) monotonously changes from 0 t o

Ago,

while t h e f i r s t term monotonously changes from

+

00 t o

-

QC>

Thus, i n t h e r e g i o n of ''very weak", a s w e l l a s i n t h e

r e g i o n of "very strong'' f i l l i n g - i n ( t h a t i s , a t 8 = 0. and

O = 1 ) we may n e g l e c t t h e second' term i n comparison w i t h

t h e f i r s t .

1 - 8 b

T h i s gives:

In

' g = . I n

-

P

Me o b t a i n e d t h e Langmuir isotherm, In t h e r e g i o n of naverage" f i l l i n g - i n t

1

s o ,

i, e. 8 -;s

(17)

conversely, we nay n e g l e c t t h e f i r s t term i n oomp&ko$son with t h e second,

This gives:

It i s of i n t e r e s t t h a t t h e isotherm ( 1 0 ) i s transformed i n t o t h e Langmuir isotherm, not o n l y a t small f i l l i n g - i n , which i s n a t u r a l , b u t a l s o a t s u f f i c i e n t l y l a r g e f i l l i n g - i n , i n the r e g i o n near t o s a t u r a t i o n where t h e law of i n t e r a c t i o n again appears t o be obscure, The law of i n t e r a c t i o n i s

expressed only i n t h e middle s e c t i o n of t h e isotherm, The r e g i o n of "average1' f i l l i n g - i n , f o r which formula (11) holds,

i s determined by t h e conditionr

As an example, we w i l l determine t h e isotherm eor- responding t o the power l a w of i n t e r a c t i o n :

where

4: ),O f o r the case of t h e f o r c e s of r e p u l s i o n , and

L O f o r the case of t h e f o r c e s of a t t r a c t i o n , According t o (3):

(18)

S u b s t i t u t i n g ( 1 4 ) i n t o (11) we obtafn:

We must n o t e , t h a t i n s t e a d of t h e Isotherm ( 1 5 ) Temkin ( 2 ) obtained t h e Williams isotherm f o r t h e power law of i n t e r a c t i o n ( 1 3 ) ;

It can be shown ( s e e Appendix) t h a t f o r t h e c a s e of t h e power law of i n t e r a c t i o n t h e Williams isotherm can

be deduced a s a p a r t i c u l a r c a s e , from t h e g e n e r a l formula

( l o ) ,

A s a n o t h e r example, we w i l l determine t h e isotherms corresponding t o t h e e x p o n e n t i a l law of i n t e r a c t i o n :

Cp

Cr) = ot e

- P r

P

-

(16) where a g a i n & d. 0 f o r t h e c a s e of t h e f o r c e s of repulsion, OC

>

0 f o r the c a s e of the f o r c e s of a t t r a c t % : a n , If w e consider t h a t o n l y t h e d i r e c t l y neigh-

bouring molecules a r e i n t e r a c t i n g molecules, t h a t i s , i f we r e t a i n i n t h e sum (3) o n l y t h e terms f o r which

(19)

-

16

-

and n e g l e c t a l l t h e o t h e r s , we w i l l have: S u b s t i t u t i n g t h i s e x p r e s s i o n i n t o formula ( l l ) , we o b t a i n : P r o P 4 0 0 -

.T

= a & 6 r where

5, The d e t e r m i n a t i o n of t h e law of i n t e r a c t i o n from experimental 'isotherms

We have used formula (8) i n t h e p r e v i o u s s e c t i o n f o r t h e d e t e r m i n a t i o n of t h e i s o t h e r m s by a g i v e n law of i n t e r a c t i o n . It may a l s o be used f o r t h e s o l u t i o n of t h e r e v e r s e problem; f o r t h e d e t e r m i n a t i o n of t h e l a w of i n t e r - a c t i o n corresponding t o a given form of isotherm,

Let u s assume an e m p i r i c a l e q u a t i o n f o r t h e isotherm: Q = Q ( p ) S o l v i n g t h i s e q u a t i o n w i t h r e s p e c t t o ( p ) we w i l l have: P = p C Q ) * * o a ( U ) 4t 2 It should b e cl = ( p r o )

.

In t h e o r i g i n a l p u b l i c a t i o n , t h e form appearing above was given,

(20)

S u b s t i t u t i n g (18) i n t o ( 8 ) we f l n d s

I n t h e r e g i o n of " a v d ~ a g e f i l l i n g - i n " , t h a t i s , t h o s e v a l u e s of 9

,

f o r which

.,

we o b t a i n

T h i s i s t h e r e q u i r e d formula, by means of which we can accomplish t h e t r a n s i t i o n from t h e f u n c t i o n 8 ( p ) t o t h e f u n c t i o n ( P ) ~ A s a n example, we will a n a l y s e t h e F r e u n d l i c h isotherm: Thu s : S u b s t i t u t i n g t h i s e x p r e s s i o n i n t o (211, having p r e v i o u s l y r e p l a c e d i n i t B by (

2

l2

D We o b t a i n : r where

(21)

Such a law of i n t e r a c t i o n w i t h t h e assumption t h a t t h e s u r f a c e of t h e adsorbent i s homogeneous l e a d s t o t h e Freundlich isotherm; and t h a t t h e d e v i a t i o n of t h e Freundlich isotherm from t h e Langmuir isotherm i s

e n t i r e l y conditioned by t h e i n t e r a c t i o n of t h e molecules, We o b t a i n f o r c e s of r e p u l s i o n which d e c r e a s e with d i s t a n c e

according t o a l o g a r i t h m i c law, The r e l a t i o n s h i p between

A

and

r

f o r v a r i o u s n [ a c c o r d i n g t o formula (22)) i s s c h e m a t i c a l l y shown i n F i g , 7, PJe must once more n o t e , t h a t formula ( 2 2 ) i s o n l y t r u e when c o n d i t i o n ( 2 0 ) i s

f u l f i l l e d , t h a t i s , a t n o t very small and n o t v e r y l a r g e r ,

A s another example we wf 11 analyse t h e l o g a r i t h m i c i,sotherm From h e r e

AQ

p = B e , Assuming Q

=(2)2

and s u b k t i t n t i n g i n t o ( 2 1 ) we f i n d : where

We o b t a i n a square law of i n t e r a c t f o n , corresponding t o a r e p u l s i o n a t p

>

B ( s i n c e i n t h i s case A

>

O), and an at-

(22)

( 2 4 ) and ( 2 3 ) agree With t h e formulae of t h e p r e v i o u s s e c t i o n ,

6 , The d e t e r m i n a t i o n of t h e law of i n t e r a c t i o n b y a a i v e n d i s t r i b u t i o n f u n c t i o n , and t h e r e v e r s e

Let u s assume t h a t t h e s u r f a c e or' t h e a d s o r b e n t

f a he terogeneoua from t h e e n e r g y p o i n t of view. Vie w i l l c h a r a c t e r i s e t h i s h e t e r o g e n e i t y by a d i s t r i b u t i o n l'unction

p

CQ)

.

If t h e molecules a r e consl.dered t o be i n t e r a c t i n g and t h e d i s t r i b u t i o n surf i c i e n t l y wide ( b y comparison w i t h

kT), t h e n t h e i s o t h e r m @ ( p ) may be e a s i l y c a l c u l a t e d by

t h e given d i s t r i b u t i o n f u n c t i o n p ( Q ) w i t h t h e a i d of t h e Roginskf formula (3)

where

The r e v e r s e problem, c o n s i s t i n g i n f i n d i n g t h e d i s t r i b u t i o n f u n c t i o n PC&) by a given i s o t h e r m ( p ) , may be solved w i t h a i d of t h e formula:

(23)

I t must be n o t e d t h a t one and t h e saEe i s o t h e r m can b e o b t a i n e d , on one hand, a s a r e s u l t of c o n s f d e r i n g t h e h e t e r o g e n e i t y and i g n o r i n g t h e i n t e r a c t i o n , and on t h e o t h e r hand, a 3 a r e s u l t of c o n s i d e r i n g t h e I n t e r a c t i o n and i g n o r i . n g t h e h e t e r o g e n e i t y , Thus, f o r each d i s t r i b u t i o n f u n c t i o n

p

CQ)

t h e r e e x i s t s some, e q u i v a l e n t .from t h e p o i n t of view of t h e i s o t h e r m , law of i n t e r a c t i o n

(P

(r)

,

and t h e r e v e r s e . TJe w i l l e s t a b l i s h a c ~ n n e c t i o n between t h e f i ~ n c t i o n P ( & )

and tf ( r )

.

We w i l l f i n d f o r m u l a e which would parmi t t o

accomplish t h e t r a n s i t i o n from a given d i s t r i b u t i o n P ( Q )

t o t h e corresponding law of i n t e r a c t i o n

(P(r),

and t h e r e v e r s e t r a n s i t i o n

-

from a g i v e n law of i n t e r a c t i o n @(r)

t o t h e c o r r e s p o n d i n g d i s t r i b u t i o n f u n c t i o n P ( Q ) .

We w i l l a t t e m p t f i r s t a s o l u t i o n of t h e d i r e c t problem: t h e d e t e r m i n a t i o n of t h e law o f i n t e r a c t i o n

y ( r )

by a given d i s t r i b u t i o n

,&(Q).

For t h i s we w i l l u s e

formula ( 2 5 ) .

On t h e b a s i s of (1) and ( 1 1 ) we have:

(24)

S u b s t i t u t i n g ( 2 8 ) i n t o ( 2 5 ) , we f i n d : .

2 Qmax

(+)

=

S

P ( Q ) dQo

.

. * ( 2 9 )

Q O

-n9

The right-hand p a r t of equation ( 2 9 ) r e p r e s e n t s some f u n c t l o n of A

a.

Solving equation ( 2 9 ) with r e s p e c t t o

A:$,

we o b t a i n

AC#l

a s a f u n c t i o n of r, t h a t i s , t h e law of i n t e r a c t i o n which i n t e r e s t s u s :

A s an example, we w i l l determine t h e law of i n t e r a c t i o n corresponding t o a uniform d i s t r i b u t i o n : P l a c i n g ( 3 0 ) under the i n t e g r a l s i g n of (29), i n t e g r a t i n g and s u b s t i t u t i n g the l i m i t s , w e o b t a i n : from which: where t

nip

= oc,

+ q ,

r \ e w i l l now t u r n our a t t e n t i o n t o t h e s o l u t i o n of t h e r e v e r s e problem: t h e d e t e r m i n a t i o n . of t h e d i s t r i b u t i o n

(25)

function

P ( Q )

by a given law of interaction

(P(r).

For this we w i l l use forqula ( 2 7 ) which we will re-write

thus:

Substituting (28) into this expression:

where the f'u~ction r

=

r

( ) can be considered as a

known function, so long a s the law of interaction is known, that is, the function

As an example, we will determine the distribution

corresponding to the power law of interaction (13); w e have:

(26)

I n t h i s c a s e (32) gives: 2

c

2 -2 2 r o i

p ( e )

=

; a m i s -

I ! / 3 ( 4 : ~ ) ~ / / 3

-

J

n:p=

Q~

-

e

o r where

I n t h e t a b l e shown below, we have compiled t h e v a r i o u s laws of d i s t r i b u t i o n , t h e corresponding laws of

i n t e r a c t i o n c a l c u l a t e d b y formula (29), and t h e corresponding i s o t h e r m s c a l c u l a t e d by formula ( 2 5 ) o r ( 1 1 ) .

The p h y s i c a l sense of t h e laws of i n t e r a c t i o n n o t e d i n t h e second column of t h e t a b l e remains, of oourse,

j u s t a s obscure a s t h e p h y s i c a l s e n s e f o r t h e d i s t r i b u t i o n f u n c t i o n s n o t e d i n t h e f i r s t column, which a r e g e n e r a l l y used a s o p e r a t o r s i n t h e t h e o r y of heterogeneous a u r f a c e a . The problem of t h e p r e s e n t work i s t o l i m i t o u r s e l v e s o n l y

t o t h e e s t a b l i s h m e n t of a f o r m a l connection between t h e f u n c t i o n s p

( Q )

and

7

( r ) , The q u e s t i o n r e g a r d i n g t h e

p h y s i c a l o r i g t n of t h e d i s t r i b u t i o n f u n c t i o n s and t h e laws nf

i n t e r a c t i o n i s a problem i n t h e p h y s i c a l t h e o r y of a d s o r p t i o n , t h e s o l u t i o n of vhich would p e r m i t t h e choice f o r onch

c o n c r e t e c a s e between two .of t h e a l t e r n a t i v e hypotheses (heterogeneous s u r f a c e s i n t h e absence of i n t e r a c t i o n , o r

(27)

homogeneous surf ace8 i n the presence of i n t e r a c t i o n ) , which remain e q u a l l y important i n t h e frame of pheno- menological theory.

We must note t h a t , assuming a c o e f f i c i e n t H s u f f i c i e n t l y l a r g e ( t h a t i s ,

f l

s u f f i c i e n t l y small), i n the hyperbolic d i s t r i b u t i o n ( t h e t h i r d l i n e of t h e Table), we can write f o r the corresponding law of i n t e r a c t i o n $

where 3

Assuming a c o e f f i c i e n t

H

s u f f i c i e n t l y l a r g e ( t h a t is,oC2

s u f f i c i e n t l y small) i n the exponential law of d i s t r i b u t i o n ( f o u r t h l i n e of the Table), we can w r i t e f o r t h e law of i n t e r a c t i o n corre spondlng t o t h i s d i s t r i b u t i o n s

where

It

i s

evident (and t h i s i s q u i t e an i n t e r e s t i n g case) t h a t a uniform, an hyperbolic and an exponential d i s t r i b u t i o n a l l l e a d ( a t s u f f i c i e n t l y l a r g e H) t o exactly the same square law of i n t e r a c t i o n .

(28)

7. The c o n n e c t i o n between t h e d i f f e r e n t i a l h e a t of a d s o r p t i o n , a s a f u n c t i o n of f i l l i n g - i n , and t h e l a w of i n t e r a c t i o n We w i l l r e t u r n t o t h e o r i g i n a l e q u a t i o n ( 2 ) which we w i l l w r i t e t h u s : m e r e Q =

-

-

t h e d i f f e r e n t i a l h e a t of a d s o r p t i o n f o r homogeneous s u r f a c e s b y t a k i n g i n t o account t h e i n t e r a c t i o n s ( r e l a t i v e t o 1 molecule) ;

&=

q0 -

t h e d i f f e r e n t i a l h e a t f o r a homogeneous f r e e s u r f a c e , t h a t i s , i n t h e absence of i n t e r a c t i o n s ( a l s o r e l a t i v e t o 1 mol.ecule)g

f i ~

=

a

$'

-

t h e change i n t h e d i f f e r e n t i a l h e a t brought about by t a k i n g i n t o account t h e i n t e r a c t i o n s , The p r e s e n c e of t h e term

A Q

i n e x p r e s s i o n (34) i n d i c a t e s t h a t Q i s dependent on t h e d e g r e e of f i l l i n g - i n The form of t h i s r e l a t i o n s h i p i s determined by t h e form of t h e f u n c t i o n ( r ) t h a t i s , by t h e law of i n t e r - a c t i o n between the adsorbed m o l e c u l e s o I n f a c t , on t h e b a s i s of (10) we can r e - w r i t e ( 3 4 ) a s f o l l o w s :

Thus, f o r example, i n t h e c a s e of t h e power l a w of i n t e r - a c t i o n ( 1 3 ) , we have, a c c o r d i n g t o ( 1 4 ) :

(29)

Here belong t h e van Cer Waalsq i h t o r a c t i o n

(a

>

0 . P = 61,

t h e Coulombic i n t e r a c t i o n ( O C

L

0,

P

=

l ) , t h e c a s e f o r d i p o l e s o r i e n t e d i n p a r a l l e l (cl:

>

0 , .

,5

= 3 ) , and o t h e r s .

The c u r v e s Q = Q ( 8 ) f o r v a r i o u s ac and

/3

a r e s c h e m a t i c a l l y shown i n F i g , 8 , A t cT; = 0, which c o r r e s p o n d s t o t h e absence of i n t e r a c t i o n , we have a h o r i z o n t a l straight l i n e Q Q

.

A t GC

<

0, t h a t i s , i n t h e c a s e of a t t r a c t i o n ,

0 0

t h e curve Q = Q [ 8 ) i s l o c a t e d above t h e s t r a i g h t l i n e

Qo Qo; a t OG

7

0, t h a t i s , i n the c a s e of r e p u l s i o n , t h e curve i s l o c a t e d below t h e s t r a i g h t l i n e Q, Qo. I n f a c t ,

when t h e a d s o r p t i o n molecules a t t r a c t each o t h e r , t h e b r e a k i n g away of each adsorbed molecule i s hindered by t h e presence of neighbours, and t h e r e f o r e , t h e d i f f e r e n t i a l h e a t must i n c r e a s e d u r i n g t h e f i l l i n g - i n of t h e s u r f a c e ; i f , however, between t h e molecules t h e r e a r e f o r c e s of r e p u l s i o n , then t h e d i f f e r e n t i a l h e a t must d e c r e a s e a s t h e s u r f a c e i s f i l l e d , s i n c e t h e p r e s e n c e of neighbours a t the adsorbed molecule

w i l l , i n t h i s c a s e , h e l p i t t o break away from t h e a d s o r p t i o n l a y e r , The c r o s s i n g with t h e a b s c i s s a of the curve & = & ( 8 )

I n F i g . 8 (which i s p o s s i b l e a t q;

>

0 ) corresponds i n F i g , 6 t o a displacement of t h e minimum of t h e curve

9

=

.$

(X)

from t h e r e g i o n of t h e n e g a t i v e i n t o t h e r e g i o n of t h e p o s i t i v e

9,

The p r e s e n c e of an i n f l e x i o n on the curve Q =

Q

( 8 )

,

observed sometimes i n experiments, i s i n t h e frame of the a c c e p t e d model, an i n d i c a t i o n of t h e change i n

(30)

t h e law of i n t e r a c t i o n d u r i n g t h e t r a n s i t i o n f r m small r

t o l a r g e r ( f o r example, t h e change of t h e index

/9

i n the power law ( 13) )

,

The presence of a maximum or a minimum i n d i c a t e s t h e t r a n s i t i o n of t h e f o r c e s of a t t r a c t i o n i n t o f o r c e s of r e p u l s i o n , and conversely ( t h e change i n s i g n

f o r t h e c o e f f i c i e n t cC i n t h e power law of i n t e r a c t i o n ( 1 3 ) ) , I t must be noted t h a t formula (35) completely

a g r e e s with t h e formula f o r t h e d i f f e r e n t i a l h e a t of a d s o r p t i o n , deducible from t h e t h e o r y of heterogeneous s u r f a c e s . I n

the Roginski method t h e d i f f e r e n t i a l h e a t i s determined a s t h a t value of Q which corresponds t o t h e value 8 = 1/2 i n t h e Langmufr formula: '

1

GI =

Q

Therefore,

This i s t r u e f o r t h e r e g i o n of "average f i l l i n g - i n t ' . Our

formula (35) cofncides with t h e Roginskf formula (361, which

(31)

and, s u b s t i t u t i n g ( 1 1 ) i n t o ( 3 5 ) :

I n c o n c l u s i o n , I wish t o e x p r e s s my g r a t i t u d e t o a c o r r e spondent-member of t h e Academy of S c i e n c e s , U.S.S,R., C,Z, Roginski, f o r t h e i n t e r e s t h e h a s shown i n

t h i s work.

Sent

t o t h e E d i t o r

A p r i l 9 t h , 1946. Academy of Soienaes, I n s t i t u t e of P h y s i c a l Chemistry U.S.S,R,

Moscowo I n t h e c a s e of t h e power law of i n t e r a c t i o n ( 1 3 ) t h e g e n e r a l formula ( 1 0 ) on t h e b a s i s of ( 1 4 ) assumes t h e f ormt

In

t h e r e g i o n of s m a l l f i l l i n g - i n , t h a t i s a t g ., / 1 9 t h i s giveso

(32)

where If we a l s o consider t h a t : t h i s mean8: thus, i n s t e a d of ( b ) we w i l l have: P

o n

-5

= C 1 Q + c 2

( a >

where 2 1 c1 =

$

t i n b ) / QO

';

The isotherm (d) e x p r e s s e s t h e well-known

Yilliams isotherm, deduced a l s o b y Temkin (3)

,

who based i t on the same power law of i n t e r a c t i o n (13), b u t assumed

a d i f f e r e n t model. The Temkin formula d i f f e r s from

formula ( d ) o n l y i n t h e value of t h e a o e f f i c l e n t s cl and c2.

(33)

is transformed into the W i l l i m s isotherm may be

interpreted thus:

This is possible at sufficiently small pressures if the forces of interaction are sufficiently large, that is, if

c

is sufficiently small.

(34)
(35)
(36)

1, Langmuir, 3, Am. Chem, Soc., 40, 1361, (1918).

2. Taylor and Zhurnal Fizicheskoi Khimii,

(J,

Phys, Jonesg

Chem, )

5,

181 (1936)

.

Langmuf r

,

3, Am. Chem. Soc., 40, 1403 (1918).

Zeldowltsch, Acta physicochimica URSS,

h,

961, (1935). Temkin, Zhurnal Fizicheskoi JChimii,

(J.

Phys.

Chem.)

15,

296, (1941).

3 . Roginski, Doklady Akademii Nauk,

-

45, 61, 66, 194,

206, (1944);

~ 6 t a Physicochimica URSS,

-

20, 227, ( 1945), 4, Roginski and A c t a physicochimlca URSS, 21,

-

519, (1946).

Tode s,

5, Frumkin, Trudy Khimicheskogo Insti tu ta Im., Karpova,

NO,

4, p e 56, (1925) a

Langmuir

,

J. Am, Chem, Soc,, 54, 2798, (1932). Langmuir, .Physa Rev., 44, 423, (1933).

Langmuf r, Zhurnal Fizicheskoi Khimii, (J Phys.

Chem. )

,

g,

16lS (1935)

want3 3 Proc, Roy0 Soc., A,

-

161, 127, (1937).

van €3 9 Proc. Cambr, Phil, Soc,,

-

34, 238, (1938).

Chang, Proc. Cambr, Phil, Soc.,

-

34, 224, (1938). Roberts, Proc. R a Soc., A,

161,

141, (1937).

Roberts, Proc, Cambr, Phil. Soc. 34, 399, (1938). Koboze-r and Zhurnal Fizicheskoi Khlmll, (J. Phya.

Gol'dfel~d,

Chem,,)

10,

612, (1937), Temkin, loco cit.

(37)

-il I-- Fig. 1 . Fig. 2 . 0

-

adsorbent molecules 9

-

adsorbed m o l e c u l e s 0

-

adsorbent m o l e c u l e s 9

-

adsorbed m o l e c u ~ e s Prrc. 4 Pnc. 5

(38)

Références

Documents relatifs

For an undirected graph G(V&gt; E, f) the degree of node ip(i) indicates the number of edges incident with i.. NIEDEREICHHOLZ.. only one edge, whereas an isolated node is a node

By the way of the well-known Hopf-Cole transformation [3], an inhomogeneous Burgers equation may be transformed into a linear equation: the heat equation with a source term, which

In the light of MD simulations carried out on mammalian or bacterial membranes, which include a vast number of lipid species, simulating domain formation, sterol flip-flop (for

The paper is organised as follows: in Section 2, we give the basics of the behavioural theory of imprecise probabilities, and recall some facts about p-boxes and possibility

The paper is organised as follows: in Section 2, we give the basics of the behavioural theory of imprecise probabilities, and recall some facts about p-boxes and possibility mea-

Namely, if we set the occupation numbers ni equal to the average values which they have between the initial and final states of the transi- tion, and carry out

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

creased thickness is compared to a reference with varying thickness the sample may be mo- ved around to a position where the light has equal intensity within the spot as at