• Aucun résultat trouvé

Development and assessment of non-linear and non-stationary seasonal rainfall forecast models for the Sirba watershed, West Africa

N/A
N/A
Protected

Academic year: 2021

Partager "Development and assessment of non-linear and non-stationary seasonal rainfall forecast models for the Sirba watershed, West Africa"

Copied!
20
0
0

Texte intégral

(1)

HAL Id: hal-02051943

https://hal.archives-ouvertes.fr/hal-02051943

Submitted on 7 Jun 2021

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0

International License

Development and assessment of non-linear and

non-stationary seasonal rainfall forecast models for the

Sirba watershed, West Africa

Abdouramane Gado Djibo, Ousmane Seidou, Harouna Karambiri, Ketevera

Sittichok, Jean Emmanuel Paturel, Hadiza Moussa Saley

To cite this version:

Abdouramane Gado Djibo, Ousmane Seidou, Harouna Karambiri, Ketevera Sittichok, Jean Emmanuel

Paturel, et al.. Development and assessment of non-linear and non-stationary seasonal rainfall forecast

models for the Sirba watershed, West Africa. Journal of Hydrology: Regional Studies, Elsevier, 2015,

4, pp.134–152. �10.1016/j.ejrh.2015.05.001�. �hal-02051943�

(2)

ContentslistsavailableatScienceDirect

Journal

of

Hydrology:

Regional

Studies

j ou rn a l h o m epa ge : w w w . e l s e v i e r . c o m / l o c a t e / e j r h

Development

and

assessment

of

non-linear

and

non-stationary

seasonal

rainfall

forecast

models

for

the

Sirba

watershed,

West

Africa

Abdouramane

Gado

Djibo

a,b,∗

,

Ousmane

Seidou

b

,

Harouna

Karambiri

a

,

Ketevera

Sittichok

b

,

Jean

Emmanuel

Paturel

c

,

Hadiza

Moussa

Saley

d

aInternationalInstituteforWaterandEnvironmentalEngineering(2iE),01BP594Ouagadougou,

BurkinaFaso

bDepartmentofCivilEngineering,UniversityofOttawa,ON,Canada cInstitutdeRecherchepourleDéveloppement(IRD),Abidjan,Coted’Ivoire dCentreAfricaind’ÉtudesSupérieuresenGestion,Dakar,Senegal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received21January2015

Receivedinrevisedform2May2015 Accepted9May2015

Availableonline23June2015 Keywords:

Changepointdetection Seasonalrainfallforecast Bayesfactor

Sirbawatershed WestAfrica

a

b

s

t

r

a

c

t

Studyregion:TheSirbawatershed,NigerandBurkinaFasocountries,West Africa.

Studyfocus:WaterresourcesmanagementintheSahelregion,WestAfrica,is extremelydifficultbecauseofhighinter-annualrainfallvariability.Unexpected floodsanddroughtsoftenleadtoseverehumanitariancrises.Seasonal rain-fallforecastingisonepossiblewaytoincreaseresiliencetoclimatevariability byprovidinginformationinadvanceabouttheamountofrainfallexpectedin eachupcomingrainyseason.Rainfallforecastingmodelsoftenarbitrarilyassume thatrainfallislinkedtopredictorsbyamultiplelinearregressionwith parame-tersthatareindependentoftimeandofpredictormagnitude.Twoprobabilistic methodsbasedonchangepointdetectionthatallowtherelationshiptochange accordingtotimeorrainfallmagnitudeweredevelopedinthispaperusing nor-malizedBayesfactors.Eachmethodusesoneofthefollowingpredictors:sealevel pressure,airtemperatureandrelativehumidity.MethodM1allowsforchangein modelparametersaccordingtoannualrainfallmagnitude,whileM2allowsfor changesinmodelparameterswithtime.M1andM2werecomparedtothe clas-sicallinearmodelwithconstantparameters(M3)andtotheclimatology(M4).

Newhydrologicalinsightsfortheregion:Themodelthatallowsachangeinthe predictor–predictandrelationshipaccordingtorainfallamplitude(M1)anduses airtemperatureaspredictoristhebestmodelforseasonalrainfallforecastingin thestudyarea.

©2015TheAuthors.PublishedbyElsevierB.V.Thisisanopenaccessarticle undertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

∗ Correspondingauthorat:DepartmentofCivilEngineering,UniversityofOttawa,ON,Canada.Tel.:+16136080582. E-mailaddress:abdouramanegado@gmail.com(A.GadoDjibo).

http://dx.doi.org/10.1016/j.ejrh.2015.05.001

2214-5818/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

1. Introduction

SeveralstudiesshowthedegreetowhichWestAfricaisvulnerabletoclimatevariability,including

thosebyGianninietal.(2008)andChristensenetal.(2007).TheSahelianrainfallpatternisseason

dependentandisdirectlyrelatedtotheWestAfricanMonsoon(WAM)whichdynamicisyettobe

fullyunderstoodbyclimatologists(Mohinoetal.,2011;CaminadeandTerray,2010;Biasuttietal.,

2008;Camberlinetal.,2001;Rowell,2001,2003;Janicot etal.,2001;Palmer,1986).Thislackof

knowledgeabouttheWAMdynamicispartofthereasonforwhichforecastsintheSahelatallscales

areproblematic.Theuncertaintyintheforecastsdirectlyaffectslocalpopulations(Hayesetal.,2005).

Indeed,thelackofawarenessoftheshortandmediumtermevolutionofrainfallandstreamflows

oftenresultsinpopulationsbeingpoorlypreparetocopewithincreasinglyfrequentclimateextremes,

includinglackofprecipitation,andfloodsandtheirdirectcorollariessuchaslowercropyields,total

lossofagriculturalproductionorthedestructionofeconomicallyvaluableinfrastructure,suchasroads

anddams(Tarhule,2005;Samimietal.,2012).Recurrentdroughtsalsoregularlyaffectagricultural

production,streamflowsoftentakeauthoritiesandlargelyrurallocalpopulationsbysurprise,despite

overadecadeofpublicationofseasonalforecastsinWestAfrica(PRESAO:PrévisionSaisonnièreen

Afriquedel’Ouest.Hamatan,2002;Ogalloetal.,2000).Insuchanunstablesituation,anyscientific

informationregardingtheshort(24h)andmedium(6months)termsofrainfallandstreamflowtrends

becomesacrucialtoolfordecision-makingandwaterresourcesmanagement.Agriculture,theprimary

socio-economicactivityintheSahelianzone,couldbemoreefficientif,localandreliableseasonal

informationwasavailabletohelpfarmersmakecriticalagriculturaldecisions(Hansen,2002).Thus,the

developmentofseasonalrainfallandstreamflowforecastmodelsishighlyanticipatedbyallconcerned,

particularlytheruralpopulation,asitwouldenableeffectiveuseofclimaticinformationthatwould

helpensurefoodsecurity.Themodelswouldincreaseresiliencetoclimatevariabilitybyproviding

advanceinformationabouttheexpectedamountofrainorrunoffinthenextrainyseason(Hansen

etal.,2011).

Relevantefforts of thescientific communityare basedonthree differentbut complementary

approaches (Hastenrath,1995):dynamical(basedpurelyonnumericalmodels),statistical(based

purelyonstatistics)andhybridstatistical-dynamical(acombinationofstatisticsandnumerical

mod-els).

Thedynamicalapproachisbasedonnumericalmodelsofphysicsanddynamicsequationsthat

describetheclimatesystem(Kumaretal.,1996;BrankovicandPalmer,1997;Palmeretal.,2000,

2004).Thestatisticalapproachconsistsofestablishingadirectrelationshipbetweenthestateofthe

atmosphereoroceanatthemomentoftheforecastandduringeventoccurrences(e.g.precipitation)

withintheperiodofafewmonthsorweeks(Schepenetal.,2012;Lopez-Bustinsetal.,2008).The

existenceofsufficientlystrongandrobustphysicallinksbetweencertainvariablesisregardedas

foreseeable,andisthebasisofthestatisticalforecast.Thehybridstatistical-numericalapproachalso

knownasmodeloutputstatistics(MOS),isacombinationmethodbasedontheprincipleof

apply-ingstatisticalmethodstotheoutputobtainedfromnumericalmodels,inordertoperformfurther

analysis.

Statisticalmodelsarequitepopular,giventheireaseofdevelopmentandthelimitationsof

dynam-icalmodels(Sittichoketal.,2014;Ibrahimetal.,2014;Mara,2010;Bouali,2009;Biasuttietal.,2008; Hayesetal.,2005;PhilipponandFontaine,2002;Janicotetal.,2001;Hunt,2000;Thiawetal.,1999).

However,itisnotablethatallmodelsdevelopedfromthesestudiesarbitrarilyconsiderthe

relation-shipbetweenthepredictorsandthepredictand(rainfallintheSahel)tobeindependentoftimeand

rainfallmagnitude.

Theobjectiveofthispaperistodepartfromthathypothesistodevelopstatisticalseasonalrainfall

forecastingmodelswithchangingparameters,andtoinsteadcomparethenewmodelstotheclassical

linearmodelwithconstantparametersandtotheclimatology.

First, alinearrainfallforecasting modelisdeveloped foreach ofthepredictors under

consid-eration,as inSittichoketal. (2014).Attheend oftheprocess,anoptimallagtime and optimal

season are obtained toaverage the predictor. Using the latter lag time and the predictor time

series, newmodelsare developed that allowthelinear regression parameterto change

(4)

of the original linear model, and toa model representing the rainfall climatology in the study area.

2. Materialsandmethods

2.1. Studyarea

TheareaunderstudyconsideredinthisworkistheSirbawatershed,atransboundarywatershed,

sharedbyBurkinaFasoandNiger,locatedbetweenlatitudes12◦5554–14◦2330Nandlongitudes 1◦27W–-1◦2342Ewithanareaof38,750km2(Mara,2010).Fig.1depictsthegeographicalsituation

andcharacteristicsofthearea,whichisinfluencedbythreesub-climatezonesbasedonthedecreaseof

rainfallfromsouthtonorth:thesouthernSoudanianzonewithmeanannualrainfallof700–800mm,

thenorthernSoudanianzonewithmeanannualrainfallof550–650mmandtheSahelianzonewith

meanannualrainfallof300–500mm(Taweye,1995).MostofrainfalloccursfromJulytoSeptember

(JAS),regardlessofthesub-climatezone.Theclimateischaracterizedinpartbyhavingonlytwo

seasons:adryseason(OctobertoApril)duetotheharmattan(drywind)andarainyseason(Mayto

September)influencedbytheWAM(coldwind)(Descroixetal.,2009).Thehydrographicnetworkis

relativelydense,andconsistsofthreemaintributaries(Sirba,Faga,andYeli)plusafewdamwater

reservoirs(Mara,2010).Basedondescriptionsoftherainfallpattern,thehydrologicalregimeinthe

SirbawatershedistheSaheliantype,anditsvegetationformationisthorny,lightlywoodedsavannah

(Andersenetal.,2005;Descroixetal.,2009).ThereasonforchoosingtheSirbabasinisthreefold.

First,itislocatedapproximatelyinthemiddleoftheSahelregion,so,itisinfluencedbytheclimate

characteristicsofbothnorthernSahelandtheSaharadesert,andsouthernSahelandtheSudanian

savanna.Second,therearemanyclimatestationsinsideandaroundthebasinthatcollectclimatedata

daily.Andthird,thereismorethan40yearsofprecipitationdataavailable.

(5)

Table1

Detailsofrainfallstations.

Stationnumber(code) Stationname Longitude Latitude Country

320006 Torodi 1.8 13.12 Niger

320002 Tera 0.82 14.03 Niger

320004 Tillaberi 1.45 14.20 Niger

320005 Gotheye 1.58 13.82 Niger

200082 Boulsa −0.57 12.65 BurkinaFaso

200026 Dori 0.033 14.03 BurkinaFaso

200085 Bogande 0.13 12.98 BurkinaFaso

200048 Dakiri −0.27 13.30 BurkinaFaso

200024 Gorgadji −0.52 14.03 BurkinaFaso

200086 Piela −0.13 12.70 BurkinaFaso

200047 Tougouri −0.52 13.65 BurkinaFaso

2.2. Climaticdata

ThepredictandinthisstudyistheaverageseasonalprecipitationintheSirbawatershed.Itwas calculatedusingdailyrainfalldatathatwasrecordedbyanetworkof11raingagestationsinBurkina FasoandNiger,from1960to2008.Therainfalltimeserieswereprovidedbythenational meteoro-logicalofficesofBurkinaFasoandNiger.Fiveofthestationsarelocatedwithinthewatershed,and theremainingsixareamaximumof25kmfromthewatershedboundary(seeFig.1).Usingthe11

rainfalltimeseries,theThiessenpolygonmethodwasappliedtoestimatetheaveragerainfallinthe

watershed.

Theatmospheric dataaresealevel pressure(SLP),relativehumidity(RHUM),airtemperature

(AirTemp),zonalwind (UWND) andmeridionalwind (VWND). Thevariables are monthly

NCEP-DOEReanalysisdataobtainedfromtheNationalOceanicandAtmosphericAdministration(NOAA:

http://www.esrl.noaa.gov).Theyrelatetothegrid90◦N–90◦Slatitudesand0◦E–357.5◦Elongitudes,

and spantheperiod fromJanuary1979toAugust2013.Tables1 and 2present therainfalland

atmosphericdata,respectively.

2.3. Selectionoftheoptimallagtimeforeachpredictor

MonthlyprecipitationtimeseriesfromtheClimaticResearchUnit(CRUTS3.210.5◦global),witha

spatialresolution0.5◦×0.5◦definedon2◦W–2◦Elongitude,and10◦N–15◦Nlatitude(coveringmore

Table2

Descriptionofclimatevariables.

Parameter Units Level Referencedata Spatialcoverage Temporal

coverage

Sealevelpressures(SLP) Pa/s 1000hPa NCEP2 2.5◦×2.5grid

90◦N–90S, 0◦E–357.5E

1979/01/01to

2013/08/31

Airtemperature(AirTemp) K 1000hPa NCEP2 2.5◦×2.5◦grid

90◦N–90◦S, 0◦E–357.5E

1979/01/01to

2013/08/31

Relativehumidity(RHUM) % 1000hPa NCEP2 2.5◦×2.5grid

90◦N–90S, 0◦E–357.5E

1979/01/01to

2013/08/31

Meridionalwind(VWND) m/s 1000hPa NCEP2 2.5◦×2.5grid

90◦N–90◦S, 0◦E–357.5◦E

1979/01/01to

2013/08/31

Zonalwind(UWND) m/s 1000hPa NCEP2 2.5◦×2.5grid

90◦N–90S, 0◦E–357.5E

1979/01/01to

(6)

Fig.2.Predictoraveragingperiods.

thantheareaofSirbabasin)wereinitiallyusedaspredictandforselectingapoolofpotentialpredictors forseasonalrainfallforecasting.

Afterestablishingthepoolofpredictors,theobservedprecipitationfromraingagestationswas usedtodeterminethebestpredictorsinthegroup.ThemethoddevelopedbySittichoketal.(2014)

wasusedtolinktheobservedrainfallwitheachpredictor,andthecandidatepredictorwasaggregated

overallpossibletimewindows(withatimewindowlengthinmonthsisaninteger)inthe18months

priortotherainyseason.Eachoftheobtainedtimeserieswasusedasinputtoalinearmodellinking

ittotheseasonalrainfallontheSirbawatershed.HowtheperiodsaregeneratedisshowninFig.2.

Foreachperiod,alinearmodellinkingthepredictoraveragedoverthatperiodandseasonalrainfall

ontheSirbaisbuiltasfollows:

1.ForeachyearYthatthepredictorwasavailable.

(i)thepredictorofyearY−1wasremovedfromthepredictorgrid;

(ii)therainfallofyearYwasremovedfromtherainfalldataset;and

(iii) thedimensionoftheremainingpredictordatasetwasreducedusingthecoefficientof

determi-nation(R2)toscreenpredictorgriddedpointsandobtainasmallnumberofpredictors.Principal

componentanalysis(PCA)wasthenappliedontheremainingpredictorgriddeddatafromthe

previoussteptoreducethenumberofpredictors.

2.Alinearregressionwasfittedbetweenthepredictorandprecipitationtimeseries.

3.ThefittedlinearregressionwasusedtosimulatetherainfallofyearY.Ifpredictorandrainfallwere

inthesameyear(Y),onlypredictorandrainfalltimeseriesforthatyearwereremovedinthefirst

step.

4.Whenthesimulatedrainfallwasavailablefor everyyearinthehistoricalperiod,theobjective

functionsR2,Nash,andhit-ratescorewerecalculatedtoestimatethemodel’sperformance.

TheperiodthatyieldedthebestNashcoefficient(i.e.theoptimallagtime)isthenselected.Table3

summarizesthefinalselectedpredictorsusedinthisstudytoforecastseasonalrainfall.

Table3

Selectedpredictorswiththeirlagtimeforseasonalforecast.

Predictors NMAXb R2 Nash HITratescore BestperiodM1–M2a Laggedperiod

Sealevelpressureat1000hPa 50 0.48 0.46 60.71 17–18 0 Relativehumidityat1000hPa 80 0.58 0.52 64.29 10–10 8months Airtemperatureat1000hPa 10 0.530 0.527 67.86 1–4 14months

aM1=1:12(JanuarytoDecember);M2=M1:18(consideredmonthofM1tothenextcomingJune). bNMAX:numberofbestgridpointsretainedafterscreeningthepredictorgridbasedonR2.

(7)

2.4. Seasonalforecastingmodelswithchangingparameters

TheadaptedalgorithmoftheBayesianchangepointdetectionmethodispresentedbefore

describ-ingthedevelopedmodelswithchangingparameters.

2.4.1. Multiplechangepointdetectionalgorithm

Changepointscanbedefinedasdiscontinuitiesoftimeseriesthatnormallyexistinclimatedata

(Reevesetal.,2006).Theycanoccurformanyreasons,including,observedstationmovement,changes

inrecordingequipment,changesinmeasurementtechniques,environmentalchangesandclimate

changeeffectssuchasshiftsinclimateregimes(LundandReeves,2002).Therearemanymethods

intheliteraturetodetectandcorrectchangepointsinvariousfieldsofresearch(Vincent,1998;

Begertetal.,2005; Beaulieuetal.,2005,2009;Fearnhead,2006;Seidouetal.,2007;Seidouand Ouarda,2007;Villarinietal.,2011).Indeed,theBayesianmethodforchangepointanalysisisoneof

themostpopulartechniques,asithelpsobtainthestatisticaldistributionforthedatesofchangeas

wellasthedistributionfortheotherparametersinthemodel(Sarretal.,2013;Seidouetal.,2007;

SeidouandOuarda,2007;XiongandGuo,2004;Perreaultetal.,2000;Gelfandetal.,1990;Barry andHartigan,1993).Inthisstudy,theBayesianchangepointmethodproposedbySeidouandOuarda (2007)isemployedtoevaluateabruptchangesinmeanordirectionoftrendsforclimaticvariables.This

methodwasadoptedbecauseithandlesanunknownnumberofchangesanddisplaysthecomplete

probabilitydistributionofthedatesofthechanges.TheBayesianchangepointdetectionmodelused

inthispresentcasecanalsoevaluateabruptchangesintherelationshipbetweentheprincipalanda

numberofrelevantexplanatoryvariables.Inthesecases,theestimatedtrendforeachsegmentofthe

timeseriesisperformedbasedonproxies.

Abriefdescriptionofthemodelalgorithmfollows.ReaderscanrefertoSeidouandOuarda(2007)

andEhsanzadehandAdamowski(2010)forfurtherdetails.

LetY=(y1,y2,...,yn)bethen-sampleofobservationsrepresentingtheresponsevariable,mbe

theunknownnumberofchangepointsand0=0,1,...,m+1=n.LetYt:sbeobservationsfromtime

ttotimes;Yt:s=(yt,yt+1,yt+2,...,ys)(t≤s).Then,fork=1,...,m+1,thekthsegmentisthesetof

dataobservedbetweenk+1+1andk.Aparameter∅kisassociatedwiththekthsegmentand(∅k)

denotesthepriordistributionof∅k.AsestablishedbyFearnhead(2006),theposteriorprobabilityof

changepointsisgivenby:



Pr(1/Y1:n)=P(1,1)Q (1+1)g0(1)/Q (1)

Pr(k/k−1,Y1:n)=P(k−1+1,k)Q(k+1)g(k−k−1)/Q (k−1+1), for k=2,...,m

(1)

where (g) is the probability distribution of the time interval between two consecutive change

points,andg0istheprobabilitydistributionofthefirstchangepoint.Fors≥tandyi∈Yt:s;P(t,s)=

 

s

i=tf(yi/)()distheprobabilityoftandsbelongingtothesamesegment.Q(t)isthelikelihood

ofsegmentYt:ngivenachangepointatt−1,andisderivedfromarecursiverelationusingP(t,s)and

bothgandg0(seeTheorem1,Fearnhead,2006).

Now,letX=(x1j,x2j,...,xnj),andj=1,...,d*denotethesetofd*explanatoryvectorsincludingany

intercepts.Thus,themultiplelinearregressioncanbewrittenas:

yi= d∗



j=1

jxij+εi, i=1,...,n or Y=X+ε (2)

where=(1,2,...,d∗)isthevectoroftheregressionparametersandε=(ε1,ε2,...,εd∗)isthe

Gaussianvectorofresidualswithmeanzeroandvariance2.Notethatrelation(1)changesafter

eachchangepointandisrecomputedforeachsegment.Inagivensegment,theparametervector∅is

definedas:

(8)

anditfollowsthat: f(yi/∅)= 1 √2exp

−0.5



yi−

j=1 d∗ jxij 

2

(4)

Inthisstudy,thepriordistributiontobeuseddependsonlyonthescaleparameterandassuch:

1(∅)=1()=p(/a,c)= −aexp

c 22



2(a−3)/2c(a−1)/2

a−1 2



a>1, c>0 (5)

whereaandcarethehyperparameters.Hence,asshowninSeidouandOuarda(2007),inthissetting

theposteriorprobabilityofthechangepointdisplayedinEq.(1)isgivenby:

P(t,s)=(2)d∗/2((ε T t:sεt:s+c)) (s−t+a−1)/2 

s−t+a−d2



(c)(a−1)/2



XT t:sXt:s



1/2 

a−1 2



for s≥t (6)

Inthisstudy,parameterainEq.(6)isfixedat2,sothatthepriordistributionisnon-informative.

TheBayesianchangepointdetectionmodelfirstestimatestheposteriordistributionofprobability

ofthenumberofchanges.Themostprobablenumberofdetectedchanges(associatedwiththehighest

probabilityofoccurrence)isthenselectedasthenumberofchangepointsobservedinthedataseries.

Conditionalonthisnumber,theBayesianinferencethenprovidesthetimepositionofdetectedchanges

andtheirrespective(posterior)distributionofprobabilityofoccurrence.Finally,themagnitudeofthe

detectedchangesisdetermined.Theidentifiedchangescouldrepresentshiftsinthemean,changes

inthedirectionofatrend,oracombinationofboth.

2.4.2. ModelM1

ModelM1wasdevelopedtodetectpotentialchangesintherelationbetweenpredictorand

predic-tandandassumesthattherelationshipchangeswithprecipitationamplitude.Toobtaintheforecast

foragivenyeari(i=1979–2002)themodelisappliedasfollows:

1.Yeariisremovedfromthepredictorandpredictandtimeseries.

2.Stepwiseregressionisusedtofitalinearrelationbetweenthepredictorandthepredictandinthe

remainderoftheseries,andaninitialforecastassumingasingleequationforallpointsisissued.

Theequationisalsousedtoissueaninitialforecastforyeari.

3.Thedataissortedinincreasingorderoftheforecastedpredictandfromstep2,andanewposition

i1isassignedtoyeari.Theinitialforecastforyeariisbetweentheinitialforecastforyeari1and

theinitialforecastforyeari1+1.

4.ThechangepointdetectionmethodbySeidouetal.(2007)isappliedtotheremainingdata.The

methodgenerates1000timeseriesoflengthN−1,witharandomnumberofchangepointsat

randomlocations.Thedensityofthechangepointsinagiventimeintervalisproportionaltothe

probabilityofchangeinthatinterval(Seidouetal.,2007).

5.Foreachofthe1000generatedsequencesofchangepoints,stepwiseregressionisappliedtofita

linearrelationbetweenthepredictorandpredictandonanysegmentsdelineatedbythechange

points,and,boththeoptimal(leastsquare)forecastand thestandarddeviationoftheresidual

arecalculated.Ifmistheorderofthecurrentgeneratedsequenceofchangepoints,iisinthe

kthsegment,x1,x2,...,xnthevaluesofthepredictorsforyeariand∝k,m1 ,∝k,m2 ,...,∝k,mn arethe

coefficientsoftheequationforthesegmentk,thentheleastsquareestimateis ˆYi=∝k,m0 +∝ k,m

1 ×

x1+∝k,m2 ×x2+···+∝k,mn ×xn.

6.Tenprobabilisticforecastsaregeneratedbysamplingtenvaluesfromanormaldistribution.The

meanofthenormaldistributionistheleastsquareforecastanditsstandarddeviationisthestandard deviationoftheforecasts.

(9)

7.The10,000forecastsforyeariareusedtocalculatetheempiricalprobabilitydensityoftheforecast.

Theestimateofthedistributionisnonparametric,usesanormalkernelfunction,andisevaluated

at1000equallyspacedpointsthatcovertherangeofthedataset.

Attheendoftheprocess,aprobabilitydensityfunctionisobtainedfortheforecastinyeari.

2.4.3. ModelM2

Model M2issimilartoM1,exceptthatit assumesthat thepredictand–predictorrelationship

changeswithtime(i.e.,theregressionparameterschangeovertime).ThesameapproachasinM1

wasfollowed,buttherewasnoorderingofthedatasetaftereachexclusionofyeari(i=1979–2002).

1.Yeariisremovedfromthepredictorandpredictandtimeseries.

2.TheSeidouetal.(2007)changepointdetectionmethodisappliedtotheremainingdata.Themethod

generates1000timeseriesoflengthN−1,witharandomnumberofchangepointsatrandom

locations.Thedensityofchangepointsinagiventimeintervalisproportionaltotheprobabilityof

changeinthatinterval(Seidouetal.,2007).

3.Foreachofthe1000generatedsequencesofchangepoints,stepwiseregressionisappliedtofita

linearrelationbetweenthepredictorandpredictandonanysegmentsdefinedbythechangepoints.

Boththeoptimal(leastsquare)forecastandthestandarddeviationoftheresidualarecalculated.Ifm istheorderofthecurrentgeneratedsequenceofchangepoints,iisinthekthsegment,x1,x2,...,xn,

andthevaluesofthepredictorsforyeariand∝k,m 1 ,∝

k,m 2 ,...,∝

k,m

n arethecoefficientsoftheequation

forsegmentk,thentheleastsquareestimateis ˆYi=∝k,m0 +∝ k,m 1 ×x1+∝ k,m 2 ×x2+···+∝ k,m n ×xn.

4.Tenprobabilisticforecastsaregeneratedbysamplingtenvaluesfromanormaldistribution.The

meanofthenormaldistributionistheleastsquareforecastanditsstandarddeviationisthestandard deviationoftheforecasts.

5.The10,000forecastsforyeariareusedtocalculatetheempiricalprobabilitydensityoftheforecast.

Theestimateofthedistributionisnonparametric,usesanormalkernelfunction,andisevaluated

at1000equallyspacedpointsthatcovertherangeofthedataset.

Attheend oftheprocess,a probabilitydensityfunctionis obtainedfor theforecastinyeari

(i=1979–2002).

Fig.3recapitulatesthestepsinvolvedinthemodelsM1andM2.

2.5. Seasonalforecastingmodelswithconstantparameters

Twomodelswithconstantparametersweredevelopedandtestedinordertofindthebestseasonal

rainfallforecastmodel.Thefirstmethod(M3)istheclassicallinearmodelwithconstantparameters,

andthesecond(M4)isbasedontheclimatology.

2.5.1. ModelM3

In modelM3,nochangepointsareassumed inthelinearregression betweenpredictand and

predictors.ThemodelM3isappliedasfollows(seeFig.4):

1.Yeariisremovedfromthepredictorandpredictandtimeseries.

2.Stepwiseregressionisusedtofitalinearrelationbetweenthepredictorandpredictand.Boththe

optimal(leastsquare)forecastandthestandarddeviationoftheresidualarecalculated.Ifiisin

thekthsegment,x1,x2,...,xn,andthevaluesofthepredictorsforyeariand∝k1,∝2k,...,∝knarethe

coefficientsoftheequationforthesegmentcontainingi,thentheleastsquareestimateforyeariis

ˆ

Yi=∝k0+∝k1×x1+∝2k×x2+···+∝kn×xn.

3.Tenprobabilisticforecastsaregeneratedbysamplingtenvaluesfromanormaldistribution.The

meanofthenormaldistributionistheleastsquareforecastanditsstandarddeviationisthestandard deviationoftheforecasts.

(10)

Fig.3.Stepsinseasonalrainfallforecastingmodelswithchangingparameters.(Allstepsarefollowedexceptstep1whichis notincludedwhileusingmodelM2.)

(11)

Fig.4.GraphicaldescriptionofmodelM3.

4.The10,000forecastsforyeariareusedtocalculatetheempiricalprobabilitydensityoftheforecast.

Theestimateofthedistributionisnon-parametric,usesanormalKernelfunction,andisevaluated

at1000equallyspacedpointsthatcovertherangeofthedataset.

Attheend oftheprocess,a probabilitydensityfunctionis obtainedfor theforecastinyeari

(i=1979–2002).

2.5.2. ModelM4

UndermodelM4,theclimatologyisusedtoestimatetheseasonalrainfall.Theprobabilitydensity

oftheforecastisanormaldistributioninwhichtheaverageobservedprecipitationisthemeanand

thestandarddeviationisthestandarddeviationoftheobservedprecipitation(seeFig.5).ModelM4

isappliedasfollow:

1.Yeariisremovedfromthepredictorandpredictandtimeseries.

2.Theaverageandthestandarddeviationoftheobservedprecipitationarecalculatedonthe

remain-derofthedata.

(12)

3.Theprobabilitydistributionoftheforecastisgeneratedat1000pointsovertherangeofthedata,

usinganormaldistribution.Themeanofthenormaldistributionistheaverageobserved

precipi-tation,andthestandarddeviationisthestandarddeviationoftheobservedprecipitations.

4.The10,000forecastsforyeariareusedtocalculatetheempiricalprobabilitydensityoftheforecast.

Theestimateofthedistributionisnonparametric,usesanormalkernelfunction,andisevaluated

at1000equallyspacedpointsovertherangeofthedataset.

Attheendoftheprocess,aprobabilitydensityfunctionisobtainedfortheforecastinyeari.

2.6. Bayesianmodelselection

Inthispaper,theBayesianapproachisusedtoselectthebestseasonalrainfallforecastmodelfrom

developedmodelswithchangingparametersandthosewithconstantparameters.Theposteriorand

priorprobabilitiesofthemodelsandtheobserveddatawerecomputedfirst(seeEq.(1)).

PosteriorProbmodel=(PriorProbmodel×Likelihoodmodel) Probobservations

(7)

whereLikelihoodmodel=



n

i=1likelihoodi,iistheyearofforecastedrainfall,andnisthenumberofyears.

ToapplyEq.(7),alltwelvemodels(i.e.M1,M2,M3,andM4usedwitheachofthethreepredictors)

wereconsidered.Theratioofamodel’sposteriorprobabilitytoobservationsconstitutesacomparative

criterionafternormalization.NormalizedBayesfactorsBf(seeEq.(8))werecalculatedforeachmodel

tofacilitatecomparisonbetweenthemodels’results,andtoprovideaweightedcomparisonofthe

likelihoodofeachmodelgiventheobserveddata.Bfcomparestheposteriorlikelihoodofdatadofa

givenmodelMitothatofthereferencemodelMr.FormoredetailsaboutBayesfactors,refertoMin

etal.(2007).

Bf =

Likelihood(d/Mi)

Likelihood(d/Mr)

(8)

SelectionofthebestseasonalrainfallforecastmodelrequiredanalysisoftheBayesfactorsforall

12models.Table5demonstrateshowtointerpretBayesfactor.Thereisstrongevidencefavorably

supportingmodelMr(areferencemodel)andMi(agivenmodel),whenBfislessthan1/10andhigher

than10,respectively.Incontrast,Bfbetween1/3and3,meantthatboththeMrandMimodelsareweak

models.Hence,thebestforecastmodelistheoneforwhichBfisalwaysfavorableintermsofvalue.

Inaddition,theevolutionoflikelihoodsofforecastedseasonalprecipitation(JAS)wasconfirmedvia

agraphicalrepresentationofeachmodel.Thegraphsshowthelikelihoodofeachforecastedrainfall

valueonacoloredscale,whereredandbluerepresentaprobabilityof1and0,respectively.

TheentiremethodologyusedinthisworkissummarizedbytheflowchartpresentedinFig.6.

2.7. Performancemeasures

Inthisstudy,therelativeperformancesofthefourrainfallseasonalforecastingmodels(M1,M2,

M3andM4)werecomparedquantitativelyusingtheNash–Sutcliffecriterion(Nash).Thiscriterion

waschosenbecauseitcanpresentthedifferencesinmagnitudebetweenobservedandsimulateddata

duringtheentiretimeperiod.ThebestNashvalueequatestothebestperformance.

Theperformanceofeachmodel(undereachpredictor)wasfurtherevaluatedbasedontwoother

criteria:(i)thenumberofforecastedvaluespermodelwithhighlikelihoods(e.g.80–100%);and(ii)

themodel’sperformanceifthedatasupportitfavorably,basedonBayesfactors;ifsoitisdeemedto

havecrediblehighperformance.

Therefore,themodelisconsideredtoperformbetterifalmost100%ofitsforecastedvalueshave

highlikelihoods,whichisclearlyindicatedbytheredplotonthegraph.Theopposite(i.e.,low likeli-hoods)isplottedinblue.

(13)

Fig.6.Selectionprocessofbestseasonalrainfallforecastmodel.

3. Resultsanddiscussions

3.1. Changesinrelationship

Itwasfoundthatthelinearrelationbetweenthepredictorandpredictandsystematicallydisplayed

thepresenceofoneormorechangepoints.Theprobabilityofchange,aswellastheconditional

probabilityofthechangepoints,wascalculatedaccordingtotheworkofSeidouandOuarda(2007).

Table4summarizesthenumberofchangepointsandtheirrespectivelocationsforeachmodel.It

wasobservedthatthenumberofchangepointsvariesbetweenmodels.Fig.7showstheoutputof

modelM1asahistogramrepresentingtheprobabilityofoccurrenceofthefirstchangeinthedata,

inthecaseofAirTemp.Theweightatthefirstdate(position)istheprobabilityofnochange.Clearly,

theeffectivelylocalizedhistogramindicatesthatthepositionofthechangeiswellidentified.Itwas

assumedthatnochangeoccurswhentheweightisabove0.5,and,whentheprobabilityofchangeis

above0.5,thepositionofthechangewasassumedtobebeyondthefirstyearthathadthehighest

probability.Thus,inFig.7atyear1990(lowerpanelatposition12)itwasobservedthattheprobability

ofchangeis55%,andtheprobabilityofnochangeis45%.Theconditionalprobabilityoftheexisting

(14)

Table4

Numberofchangepointsandtheirmostprobablelocationsforeachmodel.

Models Numberofchangepoints Positionofchanges

M1a 1 1992 M1rh 1 1990 M1s 1 1990 M2a 1 1990 M2rh 1 1990 M2s 1 1992

a:subscriptformodeldevelopedusingAirTempaspredictor.

rh:subscriptformodeldevelopedusingRHUMaspredictor.

s:subscriptformodeldevelopedusingSLPaspredictor.

3.2. Performanceofforecastingmodels

TherelativeperformanceofthefourrainfallseasonalforecastingmodelsdescribedinSections2.4

and2.5wasobtainedusingtheobservedandforecastedseasonaltimeseries.TheresultsshowedNash

valuesof0.76,0.52,0.46and0.58formodelsM1,M2,M3andM4respectively.Sincetheobjective

functionusedtopresenttheforecastskillisNash,thebestperformanceequatestothebestNash,

whichindicatedthatmodelM1outperformedtheothers,followedbymodelM4.

ThelimitationsofmodelM3couldbebecause,unliketheNashcriteria,regressionisnotsuitable

formeasuringthedifferenceinmagnitudeofboththeobservedandsimulateddata.AsformodelM2,

itslimitationsaretheresultoftheimposedconditionthatmakestherainfall-predictorrelationship

changeovertime.ModelsM1andM4seemstoperformacceptably.

Consideringtheperformanceofthemodelsundereachofthethreepredictors,itisinteresting

thatforthemodelsusingAirTempasthepredictor,92%,38%,81%,and54%oftheforecastedvalues

havehighlikelihoodsformodelsM1,M2,M3andM4,respectively.Thus,thestrongestmodelisM1a,

followedbyM3a,M4aandM2a.FormodelsusingRHUMasthepredictor,theperformanceofthe

modelsindecreasingorderisM1rh,M4rh,M2rh,andM3rh,astheyhave86%,79%,29%,and28%of

forecastedvalueswithhighlikelihoods,respectively.ForthelastpredictorSLP,theperformanceof

0 1 2 0 0.2 0.4 0.6 0.8 Number of changes pr obabili ty 0 5 10 15 20 25 30 0 0.2 0.4 0.6 0.8 Position Conditional probabilit y

(15)

Fig.8. EvolvingprobabilitiesofforecastedseasonalrainfallfromM1usingAirTemp.

eachmodelisshownbytheinequalitiesM4s>M1s>M2s>M3s,asmodelsM1,M2,M3,andM4have

86%,59%,36%,and89%offorecastedvalueshavehighlikelihoods,respectively.

3.3. Selectionofthebestmodel

SelectionofthebestseasonalrainfallforecastmodelinvolvedanalyzingtheBayesfactorsforall

modelcombinations,andvisuallyexaminingthelocationofseasonal(JAS)precipitationonagraphical

representationofeachmodel’sposteriorlikelihood.Iftheobservationsarelargelyinareasofhigh

likelihoodaccordingtoagivenmodel,thatmodelisdeemedcredible.Figs.8–10presentthegraphs

formodelsM1,M2andM3.Oneachgraph,somerainfallvalueswereintheredrange(highprobability)

andotherswereinthebluerange(lowprobability).Analysisoftheevolvinglikelihoods(Fig.8)found

(16)

Fig.10.EvolvingprobabilitiesofpredictedseasonalprecipitationsfrommodelM3usingSLP.

Table5

ScaleforBayesfactorinterpretation.

Bayesfactor Interpretation

Bf<1/10 StrongevidenceforMr

1/10≤Bf<1/3 ModerateevidenceforMr

1/3≤Bf<1 WeakevidenceforMr

1≤Bf<3 WeakevidenceforMi

3≤Bf<10 ModerateevidenceforMi

Bf≥10 StrongevidenceforMi

Source:Minetal.(2007).

that22ofthe28forecastedrainfallvaluesundermodelM1usingAirTempareintheredrange,which

indicateshighprobability.

Figs.9and10showtheevolvinglikelihoodsofforecastedseasonalprecipitationformodelsM2

andM3,respectively.Onthesegraphs,mostoftheforecastedseasonalrainfallstendtowardblue(i.e.

lowprobability).InmodelsM2andM3,only29%and36%oftheobservationsfallinareasofhigh

likelihoodrespectively,sothemodelsaredeemednotcredible.

Table6displaysthenormalizedBayesfactorsforallmodels.Table5showshowtointerpretthe

magnitudeoftheBayesfactors,andconcludesthatthereisweak,moderateorstrongevidenceto

supportthecompetingmodels.Table7showsthatthereisastrongevidenceforModelM1,using

AirTempaspredictor.BayesfactorsfavorablysupportedmodelM1(AirTemp)becauseithadstrong

evidence(St.E)eitherasreferenceorgivenmodel,comparedtotheotherswhichhadmoderateor

weakevidenceasinTable7.Thus,forseasonalrainfallforecasts,evaluatingchangesintherelationship

ofpredictand–predictorwiththerainfallamplitudeseemstobethebestapproachfortheSahelian

region.

Thus,seasonalforecastmodelswithparametersthatchangeaccordingtorainfallmagnitudecould

beconsideredoptimalforseasonalrainfallforecastovertheSirbawatershed,ratherthanclassical

modelswhereparametersareconstantCombiningthischangingparametermodelwiththeBayesian

changepointdetectionprocedure,andusingthenormalizedBayesfactor,constitutesanacceptable

meansofforecastingseasonalrainfalloverWestAfrica,andaddressanissuethat haschallenged

(17)

Gado Djibo et al. / Journal of Hydrology: Regional Studies 4 (2015) 134–152 149 Table6

NormalizedBayesfactorsoftwelveseasonalrainfallforecastmodels.

Mr Mi

AirTemp RHUM SLP

M1a M2a M3a M4a M1rh M2rh M3rh M4rh M1s M2s M3s M4s

AirTemp

M1a 1 8.62E−05 2.53E+00 5.53E−04 9.53E−02 1.19E−14 4.63E−20 5.53E−04 6.09E−06 8.82E−12 5.91E−23 5.53E−04

M2a 1.16E+04 1 2.94E+04 6.41E+00 1.11E+03 1.38E−10 5.37E−16 6.41E+00 7.07E−02 1.02E−07 1.74E−18 6.41E+00

M3a 3.95E−01 3.41E−05 1 2.18E−04 3.77E−02 4.69E−15 1.83E−20 2.18E−04 2.41E−06 3.48E−12 1.50E−22 2.18E−04

M4a 1.81E+03 1.56E−01 4.58E+03 1 1.72E+02 2.15E−11 8.37E−17 8.65E−01 1.10E−02 1.60E−08 2.71E−19 1.00E+00

RHUM

M1rh 1.05E+01 9.04E−04 2.66E+01 5.80E−03 1 1.24E−13 4.85E−19 5.80E−03 6.40E−05 9.25E−11 1.57E−21 5.80E−03

M2rh 8.43E+13 7.27E+09 2.13E+14 4.66E+10 8.03E+12 1 3.90E−06 4.66E+10 5.14E+08 7.43E+02 1.26E−08 4.66E+10

M3rh 2.16E+19 1.86E+15 5.47E+19 1.19E+16 2.06E+18 2.56E+05 1 1.19E+16 1.32E+14 1.91E+08 3.23E−03 1.19E+16

M4rh 2.09E+03 1.80E−01 5.29E+03 1.00E+00 1.99E+02 2.48E−11 9.67E−17 1 1.27E−02 1.84E−08 3.13E−19 1.00E+00

SLP

M1s 1.64E+05 1.41E+01 4.15E+05 9.07E+01 1.56E+04 1.95E−09 7.59E−15 9.07E+01 1 1.45E−06 2.45E−17 9.07E+01

M2s 1.13E+11 9.77E+06 2.87E+11 6.27E+07 1.08E+10 1.35E−03 5.25E−09 6.27E+07 6.91E+05 1 1.70E−11 6.27E+07

M3s 1.69E+22 5.76E+17 6.69E+21 3.69E+18 6.37E+20 7.93E+07 3.09E+02 3.69E+18 4.08E+16 5.89E+10 1 3.69E+18

M4s 1.40E+03 1.21E−01 3.54E+03 1.00E+00 1.33E+02 1.66E−11 6.47E−17 1.00E+00 8.53E−03 1.23E−08 2.09E−19 1

a:subscriptformodeldevelopedusingAirTempaspredictor. rh:subscriptformodeldevelopedusingRHUMaspredictor. s:subscriptformodeldevelopedusingSLPaspredictor.

(18)

A. Gado Djibo et al. / Journal of Hydrology: Regional Studies 4 (2015) 134–152 Table7

Comparisonoftwelveseasonalrainfallforecastmodels.

Mr Mi

AirTemp RHUM SLP

M1a M2a M3a M4a M1rh M2rh M3rh M4rh M1s M2s M3s M4s

AirTemp

M1a Wk.E.M1a St.E.M1a St.E.M1a St.E.M1a St.E.M1a St.E.M1a St.E.M1a St.E.M1a St.E.M1a St.E.M1a St.E.M1a St.E.M1a

M2a St.E.M1a Wk.E.M2a St.E.M3a Md.E.M4a St.E.M1rh St.E.M2a St.E.M3rh Md.E.M4rh St.E.M2a St.E.M2a St.E.M2a Md.E.M4s

M3a St.E.M1a St.E.M3a Wk.E.M3a St.E.M3a St.E.M1rh St.E.M2rh St.E.M3a St.E.M3a St.E.M1s St.E.M3a St.E.M3s St.E.M3a

M4a St.E.M1a Md.E.M4a St.E.M3a Wk.E.M4a St.E.M1rh St.E.M4a St.E.M4a Wk.E.M4a St.E.M4a St.E.M4a St.E.M3s Wk.E.M4a

RHUM

M1rh St.E.M1a St.E.M1rh St.E.M1rh St.E.M1rh Wk.E.M1rh St.E.M1rh St.E.M1rh St.E.M1rh St.E.M1s St.E.M1rh St.E.M3s St.E.M1rh M2rh St.E.M1a St.E.M2a St.E.M2rh St.E.M4a St.E.M1rh Wk.E.M2rh St.E.M2rh St.E.M4rh St.E.M1s St.E.M2rh St.E.M3s St.E.M4s M3rh St.E.M1a St.E.M3rh St.E.M3a St.E.M4a St.E.M1rh St.E.M2rh Wk.E.M3rh St.E.M3rh St.E.M1s St.E.M2s St.E.M3rh St.E.M4s M4rh St.E.M1a Md.E.M4rh St.E.M3a Wk.E.M4a St.E.M1rh St.E.M4rh St.E.M3rh Wk.E.M4rh St.E.M4rh St.E.M4rh St.E.M3s Wk.E.M4rh SLP

M1s St.E.M1a St.E.M2a St.E.M1s St.E.M4a St.E.M1s St.E.M1s St.E.M1s St.E.M4rh Wk.E.M1s St.E.M1s St.E.M1s St.E.M4s

M2s St.E.M1a St.E.M2a St.E.M3a St.E.M4a St.E.M1rh St.E.M2rh St.E.M2s St.E.M4rh St.E.M1s Wk.E.M2s St.E.M2s St.E.M4s

M3s St.E.M1a St.E.M2a St.E.M3s St.E.M3s St.E.M3s St.E.M3s St.E.M3rh St.E.M3s St.E.M1s St.E.M2s Wk.E.M3s St.E.M4s

M4s St.E.M1a Md.E.M4s St.E.M3a Wk.E.M4a St.E.M1rh St.E.M4s St.E.M4s Wk.E.M4rh St.E.M4s St.E.M4s St.E.M4s Wk.E.M4s

St.E.:strongevidence(forexample,St.E.M1a:strongevidenceforM1a);Md.E.:moderateevidence;Wk.E.:weakevidence. a:subscriptformodeldevelopedusingAirTempaspredictor.

rh:subscriptformodeldevelopedusingRHUMaspredictor. s:subscriptformodeldevelopedusingSLPaspredictor.

(19)

4. Conclusion

Seasonalforecastmodels,witheitherchangingparametersorconstantparameters,were devel-opedandtestedinthisstudy,usingthreepredictors(airtemperature,sealevelpressureandrelative humidity).NormalizedBayesfactors,andgraphsofthelikelihoodofforecastedrainfallundereach model,werecompared.Itwasfoundthatthebestseasonalrainfallforecastmodelusesairtemperature asthepredictorandallowsparameterchangesaccordingtorainfallmagnitude.Thus,seasonal fore-castmodelswithchangingparameterscouldbethebestforseasonalrainfallforecastingintheSirba watershed.Indeed,changesinthepredictand–predictorrelationshipaccordingtorainfallamplitude, combinedwiththeBayesianmodelselectionprocedure,appeartobethebesttechniqueforforecasting seasonalrainfallintheSahel.

References

Andersen,I.,Dione,O.,Jarosewich-Holder,M.,Olivry,J.C.,2005.TheNigerRiverBasin:avisionforsustainablemanagement.In: Golitzen,K.G.(Ed.),DirectionsinDevelopment.TheWorldBank,Washington,DC,USA,p.145.

Barry,D.,Hartigan,J.A.,1993.ABayesiananalysisforchangepointproblems.J.Am.Stat.Assoc.88,309–319.

Beaulieu,C.,Ouarda,T.B.M.J.,Seidou,O.,2005.Comparativestudyofhomogenizationtechniquesforprecipitationdataseries.

In:ProgressReportNo.3(ProjectontheHomogenizationofPrecipitationData).OuranosConsortium,Montreal(inFrench).

Beaulieu, C., Seidou, O., Ouarda, T.M.B.J., Zang, X., 2009. Intercomparison of homogenization techniques for

pre-cipitation data continued: comparison of two recent Bayesian change point models. Water Resour. Res. 45,

http://dx.doi.org/10.1029/2008WR007501.

Begert,M.,Thomas,S.,Walter,K.,2005.HomogenoustemperatureandprecipitationseriesofSwitzerlandfrom1864to2000. Int.J.Climatol.25(1),65–80.

Biasutti,M.,Held,I.M.,Sobel,A.H.,Giannini,A.,2008.SSTforcingsandSahelrainfallvariabilityinsimulationsofthetwentieth andtwenty-firstcenturies.J.Clim.21,3471–3486.

Bouali,L.,(Thèsededoctorat)2009.Prévisibilitéetprévisionstatistico-dynamiquedessaisonsdespluiesassociéesàlamousson ouestafricaineàpartird’ensemblesmulti-modèles.UniversitédeBourgogne,France,159pp.

Brankovic,C.,Palmer,T.N.,1997.Atmosphericseasonalpredictabilityandestimatesofensemblesize.Mon.WeatherRev.125, 859–874.

Caminade,C.,Terray,L.,2010.TwentiethcenturySahelrainfallvariabilityassimulatedbytheARPEGEAGCM,andfuturechanges. Clim.Dyn.35,75–94.

Christensen,J.H.,etal.,2007.Regionalclimateprojectionsinclimatechange2007:thephysicalsciencebasis.In:Solomon,S., etal.(Eds.),ContributionofWorkingGroupItotheFourthAssessmentReportoftheIntergovernmentalPanelonClimate Change.CambridgeUniversityPress,NewYork,pp.847–940.

Descroix,L.,Mahe,G.,Lebel,T.,Favreau,G.,Galle,S.,Gautier,E.,Olivry,J.-C.,Albergel,J.,Amogu,O.,Cappelaere,B.,Dessouassi, R.,Diedhiou,A.,Breton,E.L.,Mamadou,I.,Sighomnou,D.,2009.Spatio-temporalvariabilityofhydrologicalregimesaround theboundariesbetweenSahelianandSudanianareasofWestAfrica:asynthesis.J.Hydrol.375,90–102.

Ehsanzadeh,E.,Adamowski,K.,2010.TrendsintimingoflowstreamflowsinCanada:impactofautocorrelationandlongterm persistence.Hydrol.Process.24,970–980.

Fearnhead,P.,2006.ExactandefficientBayesianinferenceformultiplechangepointproblems.Stat.Comput.16,203–213.

Gelfand,A.E.,Hills,S.E.,Racine-Poon,A.,Smith,A.F.M.,1990.IllustrationofBayesianinferenceinnormaldatamodelsusing Gibbssampling.J.Am.Stat.Assoc.85,972–985.

Giannini,A.,Biasutti,M.,Held,I.M.,Sobel,A.H.,2008.AglobalperspectiveonAfricanclimate.Clim.Change90,359–383.

Hamatan,M.,2002.SynthèseetévaluationdesprévisionssaisonnièresenAfriquedel’Ouest.DEASciencesdel’Eaudans l’EnvironnementContinental.UniversitéMontpellier2,115pp.

Hansen,J.W.,2002.Realizingthepotentialbenefitsofclimatepredictiontoagriculture:issues,approaches,challenges.Agric. Syst.74(3),309–330.

Hansen,J.W.,etal.,2011.Reviewofseasonalclimateforecastingforagricultureinsub-SaharanAfrica.Exp.Agric.47(2),205–240.

Hastenrath,S.,1995.Recentadvancesintropicalclimateprediction.J.Clim.8,1519–1532.

Hayes,M.,Svoboda,M.,LeComte,D.,Redmond,K.,Pasteris,P.,2005.Droughtmonitoring:newtoolsforthe21stcentury.In: Wihite,D.A.(Ed.),DroughtandWaterCrises:Science,Technology,andManagementIssues.TaylorFrancis,BocaRaton,LA, pp.53–69.

Hunt,B.G.,2000.NaturalclimaticvariabilityandSahelianrainfalltrends.Glob.Planet.Change24,107–131.

Ibrahim,B.,Karambiri,H.,Polcher,J.,Yacouba,H.,Ribsttein,P.,2014.ChangesinrainfallregimeoverBurkinaFasounderthe climatechangeconditionssimulatedby5regionalclimatemodels.Clim.Dyn.42,1363–1381.

Janicot,S.,Trzaska,S.,Poccard,I.,2001.SummerSahel-ENSOteleconnectionanddecadaltimescaleSSTvariations.Clim.Dyn. 18,303–320.

Kumar,A.,Hoerling,M.,Ji,M.,Leetmaa,A.,Sardeshmukh,P.,1996.AssessingaGCM’ssuitabilityformakingseasonalpredictions. J.Clim.9,115–129.

Lopez-Bustins,J.A.,Martin-Vide,J.,Sanchez-Lorenzo,A.,2008.Iberiawinterrainfalltrendsbaseduponchangesinteleconnection andcirculationpatterns.Glob.Planet.Change63,171–176.

Lund,R.,Reeves,J.,2002.Detectionofundocumentedchangepoints:arevisionofthetwo-phaseregressionmodel.J.Clim.15, 2547–2554.

(20)

Mara,F.,(Thèsededoctorat)2010.Développementetanalysedescritèresdevulnérabilitédespopulationssahéliennesface àlavariabilitéduclimat:lecasdelaressourceeneaudanslavalléedelaSirbaauBurkinaFaso.UniversitéduQuébecà Montréal,273pp.

Min,S.,Simonis,D.,Hense,A.,2007.ProbabilisticclimatechangepredictionsapplyingBayesianmodelaveraging.Philos.Trans. R.Soc.A365,2103–2116.

Mohino,E.,Janicot,S.,Bader,J.,2011.Sahelrainfallanddecadaltomulti-decadalseasurfacetemperaturevariability.Clim.Dyn. 37,419–440.

Ogallo,L.A.,Boulahya,M.S.,Keane,T.,2000.Applicationsofseasonaltointerannualclimatepredictioninagriculturalplanning andoperations.Agric.For.Meteorol.103,159–166.

Palmer,T.N.,1986.InfluenceoftheAtlantic,PacificandIndianOceansonSahelrainfall.Nature322,251–253.

Palmer,T.N.,Andersen,U.,Cantelaube,P.,Davey,M.,Déqué,M.,Diez,E.,Doblas-Reyes,F.J.,Feddersen,H.,Graham,R.,Gualdi,S., Guérémy,J.F.,Hagedorn,R.,Hoshen,M.,Keenlyside,N.,Latif,M.,Lazar,A.,Maisonnave,E.,Marletto,V.,Morse,A.P.,Orfila, B.,Rogel,P.,Terres,J.M.,Thomson,M.C.,2004.DevelopmentofaEuropeanmultimodelensemblesystemfor seasonal-to-interannualprediction(DEMETER).Bull.Am.Meteorol.Soc.85,853–872.

Palmer,T.N.,Brankovic,C.,Richardson,D.S.,2000.Aprobabilityanddecision-modelanalysisofPROVOSTseasonalmulti-model ensembleintegrations.Q.J.R.Meteorol.Soc.126,2013–2034.

Perreault,L.,Bernier,J.,Bobee,B.,Parent,E.,2000.Bayesianchange-pointanalysisinhydrometeorologicaltimeseries2.Part2. Comparisonofchange-pointmodelsandforecasting.J.Hydrol.235,242–263.

Philippon,N.,Fontaine,B.,2002.TherelationshipbetweentheSahelianandprevious2ndGuineanrainyseasons:amonsoon regulationbysoilwetness.Ann.Geophys.20,575–582.

Reeves,J.,Chen,J.,Wang,X.L.,Lund,R.,Lu,Q.,2006.Areviewandcomparisonofchangepointdetectiontechniquesforclimate data.J.Appl.Meteorol.Climatol.46,900–914.

Rowell,D.P.,2001.TeleconnectionsbetweenthetropicalPacificandtheSahel.Q.J.R.Meteorol.Soc.127,1683–1706.

Rowell,D.P.,2003.TheimpactofMediterraneanSSTsontheSahelianrainfallseason.J.Clim.16,849–862.

Samimi,C.,Fink,A.H.,Paeth,H.,2012.The2007floodintheSahel:causes,characteristicsanditspresentationinthemediaand FEWSNET.Nat.HazardsEarthSyst.Sci.12,313–325.

Sarr,M.A.,Zoromé,M.,Seidou,O.,Bryant,C.R.,Gachon,P.,2013.Recenttrendsinselectedextremeprecipitationindicesin Senegal-Achangepointapproach.J.Hydrol.,http://dx.doi.org/10.1016/j.jhydrol.2013.09.032.

Schepen,A.,Wang,Q.J.,Robertson,D.E.,2012.Combiningthestrengthsofstatisticalanddynamicalmodelingapproachesfor forecastingAustralianseasonalrainfall.J.Geophys.Res.117,148–227.

Seidou,O.,Asselin,J.J.,Ouarda,T.B.M.J.,2007.Bayesianmultivariatelinearregressionwithapplicationtochange-pointmodels inhydrometeorologicalvariables.WaterResour.Res.,http://dx.doi.org/10.1029/2005WR004835.

Seidou,O.,Ouarda,T.B.M.J.,2007.Recursion-basedmultiplechangepointdetectioninmultiplelinearregressionandapplication toriverstreamflows.WaterResour.Res.43,W07404,http://dx.doi.org/10.1029/2006WR005021.

Sittichok, K., Gado Djibo, A., Seidou, O., Saley, H.M., Karambiri, H., Paturel, J., 2014. Statistical seasonal rain-fall and streamflow forecasting for the Sirba watershed, using sea surface temperature. Hydrol. Sci. J.,

http://dx.doi.org/10.1080/02626667.2014.944526.

Tarhule,A.,2005.Damagingrainfallandflooding:theotherSahelHazards.Clim.Change72(3),355–377.

Taweye,A.,(Dissertation)1995.Contributionàl’étudehydrologiquedubassinversantdelaSirbaàGarbé-Kourou.Centre RégionalAGRHYMET,96pp.

Thiaw,W.,Barnston,A.G.,Kumar,V.,1999.PredictionsofAfricanrainfallontheseasonaltimescale.J.Geophys.Res.104, 31589–31597.

Villarini,G.,Smith,J.A.,Serinaldi,F.,Ntelekos,A.A.,2011.Analysesofseasonalannualandmaximumdailydischargerecordsfor centralEurope.J.Hydrol.399,299–312.

Vincent,L.A.,1998.AtechniquefortheidentificationofinhomogeneitiesinCanadiantemperatureseries.J.Clim.11,1094–1105.

Xiong,L.,Guo,S.,2004.Trendtestandchange-pointdetectionfortheannualdischargeseriesoftheYangtzeRiverattheYichang hydrologicalstation.Hydrol.Sci.J.49(1),99–112.

Figure

Fig. 1. Location map of the Sirba watershed and its hydro-meteorological stations.
Fig. 2. Predictor averaging periods.
Fig. 3. Steps in seasonal rainfall forecasting models with changing parameters. (All steps are followed except step 1 which is not included while using model M2.)
Fig. 4. Graphical description of model M3.
+5

Références

Documents relatifs

Our results and previously published work show that Sphagnum riparium macrofossils were usu- ally found in peat pro files indicating transition phases between rich fen and bog ( Table

To support the optimal digitizing system selection according to a given application,the two databasesare coupled with a decision process based on the minimization

the slope of the even- ness line, U R , the index of uneven rainfall distribution (i.e. the sum of square of the distances of the actual cumulated rainfall points from the

This study highlights how CMIP5 models represent the annual cycle of rainfall characteristics over West Africa, focusing on the timing of the monsoon season (onset, cessation),

Despite their widespread use satellite products carry a certain level of uncertainty (e.g. estimation biases). The presence of bias in satellite rainfall estimates

On the other hand, the Criel s/mer rock-fall may be linked to marine action at the toe of the cliff, because the water level reaches the toe of the cliff at high tide and the

Focusing on West Africa (box in Figure 1), we have the following findings: (i) an overall rainy season delay in the whole region (significant delay in both start and end of rainy

We observed that the phenological indicators from the MODIS Land Cover Dynamics Yearly product reproduce the spatial variability of crop phenological stages in Southern Mali..