• Aucun résultat trouvé

Optimized cultivar deployment improves the efficiency and stability of sunflower crop production at national scale

N/A
N/A
Protected

Academic year: 2021

Partager "Optimized cultivar deployment improves the efficiency and stability of sunflower crop production at national scale"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: hal-02956660

https://hal.inrae.fr/hal-02956660

Submitted on 3 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Optimized cultivar deployment improves the efficiency

and stability of sunflower crop production at national

scale

Pierre Casadebaig, Arnaud Gauffreteau, Nicolas Langlade, Mestries

Emmanuelle, Sarron Julien, Trépos Ronan, Philippe Debaeke

To cite this version:

Pierre Casadebaig, Arnaud Gauffreteau, Nicolas Langlade, Mestries Emmanuelle, Sarron Julien, et al.. Optimized cultivar deployment improves the efficiency and stability of sunflower crop produc-tion at naproduc-tional scale. iCROPM 2020 Second Internaproduc-tional Crop Modelling Symposium, Feb 2020, Montpellier, France. pp.125-126. �hal-02956660�

(2)

125

Second International

Crop Modelling Symposium February 3-5, 2020Le Corum, Montpellier, France Book of abstracts

iCROPM 2020- oral presentation Session III: linking crop/plant models and genetics

Session III:

linking crop

/plant models and genetics

S3-O.02 Optimized cultivar deployment improves the efficiency and stability of sunflower crop production at national scale.

Casadebaig Pierre1 (pierre.casadebaig@inra.fr), Gauffreteau Arnaud2, Langlade Nicolas3, Mestries Emmanuelle4, Sarron Julien5, Trépos Ronan6, Debaeke Philippe1

1 UMR AGIR, INRA, Castanet-Tolosan, France; 2 UMR Agronomie, INRA, Thiverval-Grignon, France; 3 UMR LIPM, INRA, Castanet-Tolosan,

France; 4 Terres Inovia, Castanet-Tolosan, France; 5 UMR HortSys, CIRAD, Montpellier, France; 6 UR MIAT, INRA, Castanet-Tolosan, France Plant breeding programs design new crop varieties which, while adapted to distinct population of environments, are nevertheless grown over large areas during their commercial life.

Over this global farming area, the crop is exposed to highly diverse stress patterns caused by climatic uncertainty and various management options, that can often lead to decreased crop performance regarding to the expected level (yield gap).

Phenotypic plasticity is defined as the range of phenotypes a single genotype can express as a function of its envi-ronment (Nicotra et al., 2010). At the population level, this process underlies the relative variation in performance of varieties across environments. It is commonly referred as genotype x environment interactions in plant breeding and agronomy and can explain up to 20% of total yield variance observed in multi­environment trials.

In this study, our aim is to assess how a finer spatial management of genetic resources could reduce the geno-type­phenotype mismatch in farming environments and ultimately improve the efficiency and stability of crop pro-duction. We used modeling and simulation to predict the crop performance resulting from the interaction between cultivar growth and development, climate and soil conditions, and management actions (Casadebaig et al., 2016). We designed a computational experiment that evaluated the performance of a collection of commercial sunflower cultivars in a realistic population of farming environments in France, built from agricultural surveys (Sarron et al., 2017). Distinct farming locations that shared similar simulated abiotic stress patterns were clustered together (Chenu et al., 2013) to specify environment types (figure 1). Optimization methods were then used to search for cultivars x environments combinations that lead to increased yield expectations.

Results showed that a single cultivar choice adapted to the most frequent cropping environments is a robust strategy. However, the relevance of cultivar recommendations to specific locations was gradually increasing with the knowledge of pedo­climatic conditions. At the national scale, tuning the choice of cultivar impacted crop per-formance the same magnitude as the effect of yearly genetic progress made by breeding.

We argue that this approach, while being operational on current genetic material could act synergistically with plant breeding as more diverse material could allow access to cultivars with distinctive traits that are more adapted to specific conditions.

(3)

126

Second International

Crop Modelling Symposium February 3-5, 2020Le Corum, Montpellier, France Book of abstracts

iCROPM 2020- oral presentation Session III: linking crop/plant models and genetics

Session III:

linking crop

/plant models and genetics

Figure 1. Temporal and spatial distribution of environment types. The panel A displays the evolution of the relative proportion of environment types over 20 years. For reference, panel B is the national sunflower yield. The right panels display the spatial distribution of environment types (colors) for each individual farming condition

(dots) of the sampled cropping area, for a subset of four contrasted years.

Keywords: crop management, phenotypic plasticity, modeling, genotype­by­environment interactions, sunflower crop. References:

1. Casadebaig P, Mestries E, Debaeke P (2016) A model­based approach to assist variety assessment in sunflower crop. European Journal of Agronomy 81: 92–105. doi: 10.1016/j.eja.2016.09.001.

2. Chenu K, Deihimfard R, Chapman SC (2013) Large­scale characterization of drought pattern: A continent­wide model-ling approach applied to the Australian wheatbelt–spatial and temporal trends. New Phytologist 198: 801–820. doi: 10.1111/nph.12192.

3. Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL (2010) Plant phenotypic plasticity in a changing climate. Trends in plant science 15(12): 684–692. doi: 10.1016/j. tplants.2010.09.008.

4. Sarron J, Brun F, Casadebaig P, Rollet P, Mestries E, Debaeke P (2017) Diagnostic agronomique des évolutions de rendements du tournesol en france. GISHP2E Eds..

Figure

Figure 1. Temporal and spatial distribution of environment types. The panel A displays the evolution of the   relative proportion of environment types over 20 years

Références

Documents relatifs

L’objectif principal de notre étude était d’étudier la CRP à l’admission comme facteur pronostique chez les patients admis dans les services de médecine interne via les

Résumé : À partir d’un cadre réflexif basé sur le monde agro-halieutique (pro- duits de la terre et produits de la mer) en Bretagne et Pays de la Loire, notre argu- mentation

Pour comparer statistiquement les performances entre les deux séries de classifications radiologiques (avec et sans WMs) et entre le classificateur et la première lecture

Saussure, Ferdinand de. La grammaire du gotique. Deux cours inédits.. 2 Le livre de Rousseau contient, en réalité, l’édition critique de deux cours basés sur des

Pour répondre aux questions soulevées, il explore, en cinq temps, la manière dont volumes de ventes, nature des acquéreurs, types de logements vendus, taille des programmes et

- n’avoir inclus que des patients en première ligne de traitement (pas d’antécédent de chirurgie, chimiothérapie ou radiothérapie) traités à visée curative. Tous les

Martor   (The  Museum  of  the  Romanian  Peasant  Anthropology  Review)  is  a  peer‐reviewed  academic 

Nicolas Blanchet, Pierre Casadebaig, Philippe Burger, Didier Vares, Céline Colombet, Marie-Claude Boniface, Patrick Vincourt, Philippe Debaeke,.