• Aucun résultat trouvé

Identification of causal signature using omics data integration and network reasoning-based analysis

N/A
N/A
Protected

Academic year: 2021

Partager "Identification of causal signature using omics data integration and network reasoning-based analysis"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02193860

https://hal.inria.fr/hal-02193860

Submitted on 24 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Identification of causal signature using omics data integration and network reasoning-based analysis

Méline Wery, Emmanuelle Becker, Franck Auge, Charles Bettembourg, Olivier Dameron, Anne Siegel

To cite this version:

Méline Wery, Emmanuelle Becker, Franck Auge, Charles Bettembourg, Olivier Dameron, et al.. Iden- tification of causal signature using omics data integration and network reasoning-based analysis. JO- BIM 2019 - Journées Ouvertes Biologie, Informatique et Mathématiques, Jul 2019, Nantes, France.

pp.1. �hal-02193860�

(2)

Identification of causal signature using

omics data integration and network reasoning-based analysis

M´eline WERY 1,2 , Emmanuelle BECKER 1 , Franck AUGE 2 , Charles BETTEMBOURG 2 , Olivier DAMERON 1 and Anne SIEGEL 1

1 Dyliss Team, Univ Rennes, INRIA, CNRS, IRISA, F-35000 Rennes, FRANCE 2 SANOFI R&D Translational Sciences Platform, Chilly-Mazarin, FRANCE M´eline WERY – PhD Student Mail : meline.wery@irisa.fr

Introduction

Identifying a pathological signature for a complex disease remains a challenge.

The actual definition of a signature in the context of a disease is :

• a set of features able to separate two populations

• based on statistical test

Features can be further used as candidate therapeutic targets.

Limits of current approaches

1. Limited to one omic layer

2. Require a clear stratification of population

3. Identified features = mix causes, consequences and noise 4. Limited to the most striking effects ⇒ regulation ?

Objective : Pathological signature based on individual features

⇒ Individualize the identification of signature based on patient specific information (Polymorphism + Gene expression)

⇒ Integrate multi-omics data with prior knowledge on interaction network

Conclusion & Perspectives

Diagnosis signature from literature is insufficiant for complex disease

Identify a signature by taking into account the dependencies of regulation Causal signature ⇒ Minimal set of MIS between patients

⇒ New stratification of patients

⇒ Enrich signature with clinical criteria

⇒ Propose candidate therapeutic targets Method

Part 1 : Discretization of omics data

Part 3 : Identifying Minimal Intervention Set (MIS)

Genotyping Gene expression

By patient

Gene

SNP with HIGH impact

Undefined value No

Yes

Part 2 : One-by-one patient approach

Analysis of each gene expression

< Interval of expression for each gene

in control population <

[

? ? ?

Value in : { -1 , 0 , 1 }

Dynamic of the system ? Regulatory dependancies ?

Need to clamp other variables (= MIS

2

) in order to

explain the phenotype based on the genotype ?

]

Mapping the Genotyping data for each patient

Stable state of the system

=

Gene Expression

=

Phenotype

One biological network

KRF 1 (Pathway Commons)

1 Blavy, P. et al (2014) BMC Systems Biology 2 Samaga, R. et al (2010) Journal of Computational Biology 3 Videla, S. et al.. (2017). Bioinformatics

eQTL

Filter and discretization over gene expression

Value in { 1 ; -1 }

Caspo 3

Références

Documents relatifs

Keywords: Maritime monitoring systems, automatic rule-based reasoning, data mining, maritime accident risk identification.. 1

Additional file 12: Ovarian cancer multi-omics data visualisation on ACSN: zoomed on mitochondrial metabolism signalling pathway. Immunoreactive (A) and Proliferative (B) subtypes

In 1993, Stern proposed in [23] the first efficient zero-knowledge identification scheme based on the hardness of the binary syndrome decoding problem.. A few years later, Véron in

As a conclusion, SGCCA performs better than the com- peting methods, in terms of cross-validated test error rates and moreover provides shorter lists of relevant features, which

-Le cancer du col utérin occupe le second rang des cancers de la femme dans le monde ; son incidence varie beaucoup d’un pays à l’autre en fonction des facteurs de risque mais

Decision making problem is one of the most important field in multiple cri- teria decision (Triantaphyllou 2000 ). It exists many methods such as: Pareto analysis, decision

qualitative modelling, cognitive maps, bayesian networks, fisher’s knowledge, fisheries management, qualitative decision support...

Figure 1: Performance of RetinaNet flank detection. a) Number of identified flanks per image. b) Manual classification of cropping problems encountered in 186 images where