• Aucun résultat trouvé

Anticipation in the retina and the primary visual cortex : towards an integrated retino-cortical model for motion processing

N/A
N/A
Protected

Academic year: 2021

Partager "Anticipation in the retina and the primary visual cortex : towards an integrated retino-cortical model for motion processing"

Copied!
48
0
0

Texte intégral

(1)

Anticipation in the retina and the primary visual cortex :

towards an integrated retino-cortical model for motion

processing

PhD student : Selma Souihel

Adviser : Dr Bruno Cessac

In collaboration with :

Frédéric Chavane

Sandrine Chemla

Olivier Marre

Matteo Di Volo

Alain Destexhe

(2)
(3)

3

The visual flow

Source : Wikipedia

Source : Ryskamp et al. 2014

(4)

The visual flow

Source : Ryskamp et al. 2014

(5)

5

Stating the problem : Visual Anticipation

Anticipation is carried out by the primary visual cortex (V1) through an activation wave

Source :

Benvenutti et al. 2015

(6)

Stating the problem : Visual Anticipation

But the retina is not a mere transmitter, it is able to perform many computations such as :

● Orientation sensitivity ● Contrast gain control

● Sensitivity to differential motion ● .... and « Motion Anticipation »

(7)

7

Stating the problem : Visual Anticipation

➢What are the respective :

➢Mechanisms underlying retinal and cortical

anticipation?

(8)

I ) Anticipation in the

retina

(9)

9

The Hubel-Wiesel view of vision

Ganglion cells

Nobel prize 1981

Ganglion cells response is the convolution of the stimulus with a spatio-temporal receptive

field followed by a non linearity

Ganglion cells are

independent encoders

(10)

The Hubel-Wiesel view of vision

Source : Berry et al. 1999

➢ Which mechanism can account for motion anticipation

(11)

11

Building a 2D retina model for motion

anticipation

● Bipolar voltage : ● Non-linear function :

● Activation function :

● Gain Control function :

● Output :

(12)

Building a 2D retina model for motion

anticipation

● Ganglion voltage ● Non-linear function :

● Activation function :

● Gain Control function : ● Output :

1) Gain control (Chen et al. 2013)

(13)

13

1D results : smooth motion anticipation with

gain control

Bipolar layer Ganglion layer

S ta rt of m oti on t 1 t2 Anticipation time = |t -t | t1 200 ms

(14)

1D results : smooth motion anticipation with

gain control

(15)

15

2) Gap junctions connectivity

Building a 2D retina model for motion

anticipation

Ganglion cells are

independent encoders

(16)

2) Gap junctions connectivity

Building a 2D retina model for motion

anticipation

Ganglion cells are

independent encoders

(17)

17

2) Gap junctions connectivity

● A class of direction selective RGCs are

connected through gap junctions

● Their activity comprises the activity pooled

from bipolar cells and the activity coming from the downstream RGCs, in the direction of

motion

Building a 2D retina model for motion

anticipation

(18)

1D results : smooth motion anticipation with

gap junctions

(19)

19

1D results : smooth motion anticipation with

gap junctions

(20)

3) Amacrine cells connectivity

● A class of RGCs are selective to differential motion

Building a 2D retina model for motion

anticipation

(21)

21

3) Amacrine cells connectivity

● The circuitry involves amacrine cells connectivity upstream of ganglion cells

Building a 2D retina model for motion

anticipation

(22)

Connectivity pathways

2) Amacrine cells connectivity

● Bipolar voltage :

● External drive :

● Amacrine voltage :

(23)

23

1D results : smooth motion anticipation with

amacrine connectivity

Bipolar layer Ganglion layer

S ta rt of m oti on

(24)

1D results : smooth motion anticipation with

amacrine connectivity

(25)

25

(26)

Suggesting new experiments : 2D results

1) Angular anticipation

Stimulus t = 0 ms 100 200 ms 300 ms 400 ms 500 ms 600 ms 700 ms Bipolar linear response Bipolar gain response Ganglion linear response Ganglion gain response A) B) C)

(27)

27

Suggesting new experiments : 2D results

(28)
(29)

29

A mean field model to reproduce VSDI

recordings

Zerlaut et al 2016

(30)

A mean field model to reproduce VSDI

recordings

Zerlaut et al 2016

Chemla et al 2018

(31)

Cortex mean field model

Zerlaut et al 2016

Chemla et al 2018

Single neuron model (The adaptative exponential integrate and fire model Brette and Gerstner, 2005 )

Semi analytical transfer function

Single neuron model

transfer function Semi analytical Mean field equations

Master equation local population dynamics (El Boustani and Destexhe, 2009)

(32)

Anticipation in V1

(33)

Response of the cortical model to a retina

drive without gain control

(34)

Response of the cortical model to a retina

drive with gain control

(35)

Response of the cortical model to a retina

drive with amacrine connectivity

(36)

Anticipation in the cortex : VSDI data

analysis

(Data courtesy of F.

(37)

37

Anticipation in V1

Source : Benvenutti et al. 2015

Further steps :

Calibrate the model to reproduce experimental data Find data showing anticipation in the primate retina

(38)

Conclusions

Ongoing work :

Studying analytically anticipation in the amacrine connectivity sub-model

Studying anticipation on non-uniform backgrounds

Assessing the effect of anticipation in the retina on the one in the cortex

Questions :

How to improve object identification 1) exploring the model's parameters and

2) using connectivity ?

Is our model able to anticipate more complex trajectories, with accelerations

for instance ?

How to calibrate connectivity using biology ?

(39)
(40)
(41)

41

(42)
(43)

43

Stimulus integration : anisotropy

(44)

Connectivity graph

Variables of the model :

Number of branches N

Branch length X

(45)

Cortex mean field model

Zerlaut et al 2016

Chemla et al 2018 Single neuron model (The adaptative exponential integrate and fire model Brette and Gerstner, 2005 )

The conductance-based exponential synapse

Semi analytical transfer function :

(46)

Cortex mean field model

Zerlaut et al 2016

Chemla et al 2018 The mean, standard deviation and auto-correlation time of the excitatory and inhibitory

conductance read :

(47)

Cortex mean field model

Zerlaut et al 2016

Chemla et al 2018

Master equation for first and second moments local population dynamics (El Boustani and Destexhe, 2009) read :

(48)

Comparing simulation results to VSDI

recordings

Cortex experimental recordings Simulation results Response to an LN model of the retina

Simulation results Response to a gain control model of the retina

Références

Documents relatifs

Given that samples were slowly cooled from room temperature to about –10°C, –30°C and –50°C, where they were maintained isothermally for 1h, the total diffusion time exceeds 3h

Ajouterdesdixièmes,descentièmesàun nombre..

Comme le modèle de la machine synchrone à aimants permanents qu‘on a présenté au chapitre précédent est un système multi variable, non linéaire et en plus il

The oncogenic Merkel cell polyomavirus (MCPyV) infects humans worldwide, but little is known about the occurrence of viruses related to MCPyV in the closest phylogenetic relatives

Ces auteurs ont constaté une différence de composition des lipides constituant l’enveloppe de ces virus qui bourgeonnaient soit de la membrane apicale comme le virus de la

Instead of 112 resources to obtain the best makespan, the Knapsack version using 12 processors as maximum number of processors needs 121 processors (10 groups of 12 resources and 1

The framework presented there is based on mathematical optimization: the design problem is formulated as an optimal control problem (OCP), which is potentially capable to optimize

Remark 4.9 (Independence of the initial level set function). The case of general mobilities: Existence and uniqueness by approximation In this section we prove one of the main