• Aucun résultat trouvé

Report on fractures of trilayered all-ceramic fixed dental prostheses

N/A
N/A
Protected

Academic year: 2022

Partager "Report on fractures of trilayered all-ceramic fixed dental prostheses"

Copied!
10
0
0

Texte intégral

(1)

Article

Reference

Report on fractures of trilayered all-ceramic fixed dental prostheses

BELLI, Renan, SCHERRER, Susanne, LOHBAUER, Ulrich

Abstract

Three cases of trilayered fixed dental prostheses fractured in vivo are fractographically analyzed to identify causes of failure. In all cases fractures initiated from a preexistent crack/defect in the zirconia framework produced previous to the fusion firing of a lithium disilicate veneering ceramic. In two cases zirconia framework pre-cracks were found to have been infiltrated with the intermediate fusion glass that diffused therein during sintering. This report highlights the susceptibility of zirconia to grinding damage and its role in limiting the lifetime of zirconia-based fixed dental prostheses.

BELLI, Renan, SCHERRER, Susanne, LOHBAUER, Ulrich. Report on fractures of trilayered all-ceramic fixed dental prostheses. Case Studies in Engineering Failure Analysis , 2016, vol. 7, p. 71-79

DOI : 10.1016/j.csefa.2016.10.001

Available at:

http://archive-ouverte.unige.ch/unige:99759

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

Report on fractures of trilayered all-ceramic fi xed dental prostheses

Renan Belli

a,

*, Susanne S. Scherrer

b

, Ulrich Lohbauer

a

aFriedrich-AlexanderUniversitätErlangen-Nürnberg(FAU),DentalClinic1OperativeDentistryandPeriodontology,ResearchLaboratory forDentalBiomaterials,Glueckstrasse11,91054Erlangen,Germany

bDivisionofProsthodontics-Biomaterials,UniversityClinicofDentalMedicine,UniversityofGeneva,Barthélemy-Menn19,1205Geneva, Switzerland

ARTICLE INFO

Articlehistory:

Received2May2016

Receivedinrevisedform30August2016 Accepted27October2016

Availableonline9November2016

Keywords:

Dentalceramic Zirconia Fracture Fractography Dentalbridges Crowns Trilayers

ABSTRACT

Threecasesoftrilayeredfixeddentalprosthesesfracturedinvivoarefractographically analyzedtoidentifycausesoffailure.Inallcasesfracturesinitiatedfromapreexistent crack/defectinthezirconiaframeworkproducedprevioustothefusionfiringofalithium disilicateveneeringceramic.Intwocaseszirconiaframeworkpre-crackswerefoundto have been infiltrated with theintermediatefusion glass thatdiffused thereinduring sintering.Thisreporthighlightsthesusceptibilityofzirconiatogrindingdamageandits roleinlimitingthelifetimeofzirconia-basedfixeddentalprostheses.

ã2016TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1.Introduction

Thepaceofinnovationinthefieldofprostheticdentistrycomesintowwithmanufacturersofdentalmaterials,usually guidedbytheirabilitytoadaptengineeringmaterials(e.g.,alloys,ceramics,composites)forprocessingroutinessuitablefor dentalapplications.ThemostrecentadvanceinthisrespectisbestepitomizedbytheintroductionofCAD/CAMtechnology inthe90s,settorevolutionizeprosthetictherapies.Inthe2000sthistechnologyreachedmaturity,featuringtodaythe requireddigitalresourcesnecessaryforhighprecisionscanning,modelingandmachining.Anaturalconsequencewasthe developmentofpre-sintered(e.g.,alumina,zirconia)andfully-sintered(e.g.,partiallycrystallizedglasses)ceramicmaterials, deliveredinsmallblocksforsingle-unitreconstructionsoraswideblanksformulti-unitpurposes.Thesearemachinedtothe desiredshape/sizeandusedsoloasmonolithicpiecesorcombinedtoothermaterialstoproducelayeredstructures.

In a commercialstrategy todisseminatetheuseofin-officeCAD/CAM machinery,processingtechniques havealso evolvedtoallowpractitionerstoproducemorecomplexlayeredchairsidestructures.Justrecentlyatechniquehasbeen introducedadvocatingthefusionofthemachinedversionoflithiumdisilicate(LS2)glass-ceramicoverlaysontozirconia (ZrO2)frameworksthroughtheuseofafusionglassasanalternativetotheotherwiselaboratory-produced“hot-pressed” technique.Thepartially-crystallizedLi2O

2SiO2glass-ceramicoverlayconstructisfiredontoasinteredZrO2frameworkviaa

*Correspondingauthorat:ResearchLaboratoryforDentalBiomaterials,DentalClinic1—OperativeDentistryandPeriodontology,Glueckstrasse11, D-91054Erlangen,Germany.

E-mailaddress:rbelli@dent.uni-erlangen.de(R.Belli).

http://dx.doi.org/10.1016/j.csefa.2016.10.001

2213-2902/ã2016TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

ContentslistsavailableatScienceDirect

Case Studies in Engineering Failure Analysis

j o u r n a lh o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c s e fa

(3)

thinlayerofglassslurryactingasafusionglass.Fusionoccursduringaseparatefiringthatsimultaneouslycrystallizesthe lithiummetasilicate(Li2O

SiO2)precursoryphase.Theresultisathree-layerstructureconsistingofmaterialswithdifferent thermo-mechanicalproperties(LS2-glass-ZrO2).Intheshort-term,dentalbridgesproducedfollowingthistechniquehave showneithercomparableclinicalperformance [1]orhigher fracturerates[2] comparedtoconventionalhand-layered veneered-ZrO2.Theclinicalperformanceofsuchconstructsisyettobefullyassessedinthelong-term,butkeyinformation regardingfailurecanalreadybeprovidedbyfractographicanalysisofbrokenconstructs.Thisreportanalyzesthreeofsuch trilayerstructuresfracturedinvivoinordertobringinsightastotheirmechanicalbehaviorandfailuremechanisms.

2.Background

Inarecentcontribution[2]wereportedontheclinicalfractureratesofvariousall-ceramicrestorativesystemswithina 3.5yearsperiodbyanalyzingalargedatasetofnearly35thousandrestorationsproducedinadentalCAD/CAMmachining centerinGermany.AsignificantlylowerfractureratewasfoundfortheLS2-glass-ZrO2system(19from3.095restorations) whenusedassingle-unitprosthesesincomparisontomonolithicLS2structures(111from9.053restorations).Conversely, forextendedindications(i.e.,3-to5-unitfixeddentalprostheses)theLS2-glass-ZrO2systemshowedasignificantlyhigher numberofcatastrophicfractures(21from535restorations)thanaconventionallyhand-layeredveneered-ZrO2system(3 from 364 restorations). From the total of 491 fracture events, the authors had access to the original fragments of approximately30cases,3ofthembeingoftheLS2-glass-ZrO2trilayersystem.Thefractographicanalysesofthese3casesare reportedinthepresentpaper.ThesewillbepresentedseparatelyasCase1,2and3illustratedbyFigs.1–2,3–4and5–7, respectively.

Accordingtoinformationobtainedfromthemachiningcenter,allthreefixeddentalprothesesweremanufacturedfrom thesamematerialsandfollowedthesameprocessingprotocol.TheCAD-CAMcreatedframeworkwasfirstmachinedoutofa greenblank(e.maxZirCAD,Ivoclar-Vivadent,Schaan,Liechtenstein),driedandsinteredat1500Cfor2h.Apre-crystallized lithiumdisilicateglassCAD-CAMblock(e.maxCAD,Ivoclar-Vivadent)wasusedforthemachiningoftheoverlaystructure.

ForthefusionoftheZrO2frameworkwiththeLS2overlay,themanufactureroftheLS2(Ivoclar-Vivadent)recommendsthe useofaproprietaryfusionglasswithadjustedfiringprogram,particlesizeandcoefficientofthermalexpansion(CTE)of 9.5106K1.Divergingfromthisrecommendation,analternativefusionglass(DCMhotbondfusio6,DCMGmbH,Rostock, Germany)withaslightlyhigherCTE(9.8106K1)wasused,reachingamaximumsinteringtemperatureof770C.Since thecrystallizationfiringofthepre-crystallizedLS2blockmustreachamaximumtemperatureof840C,weassumethatthe crystallizationandfusionfiringswereundertakenseparately.

Case1representsasingle-unitfixedprosthesis(or“crown”)replacingtheseconduppermolarontheleftside(FDI numberingsystem:#27).Thefracturewasreportedbythedentist24monthsafterinstallation;thebrokenpartfragment waslostbythepatientbuttheremainingcrownstillonthetoothstructurewasremovedbythedentistanddeliveredtothe laboratory’sclaimdepartment.TheappearanceofthefracturedcrownisillustratedinFigs.1–2.Thefractureincludedthe zirconiaframeworkmarginonthedisto-palatalside,exposedsomeoftheZrO2frameworkshowingdelaminationof a substantialportionoftheLS2overlayceramic.

Case2correspondstoasingle-unitcomponent(or“crown”),aimedtorestorethesecondlowermolarintheleftside(FDI

#37).ThefractureillustratedinFig.3occurredafter19monthsfrominstallationandinvolvedmostofitsbuccalside.Nosign ofoverlayspallingwasdetectedtothenakedeye.

InCase3adoublefractureisanalyzedina3-unitfixeddentalprosthesisintheupperleftside,withthesecondpremolar(FDI

#25)astheunsupportedponticandthefirstpremolar(FDI#24)andfirstmolar(FDI#26)asabutmentssupportedbynatural teeth(Fig.4).Themesialfractureinvolvingthemesio-palatalmarginandthemargininthemiddleofthebuccalpremolarside.

Thetrajectoryofthedistalfracturelinkedthebucco-distalconnectortothepalatalmarginofthemolarcrown.Thisresultedin threefragments,aslabledinFig.4.Atthispointinsufficientinformationwasavailabletomakeassumptionsregardingthe orderofevents,thatis,whichfracturetookplacefirstorinwhichdirection.Neitherinformationaboutthecementation procedure(adhesiveornot)normaterialsusedforthispurposehavebeenrecordedontheclaimsheets.

3.Fractographicanalysis

Therecoveredfragmentswerecleanedin3vol%sodiumhypochloriteand90vol%ethanolsolutionsinanultrasonicbath toremoveorganicdebrisandcontaminants.Photographsandstereomicroscopicimagesweretakentoregisterthevisual appearanceofthefragmentsbeforeprocessingforscanningelectronmicroscopy(SEM).Fragmentswerethensputter-coated withgoldandanalyzedinanSEM(LeitzISISR50,Akashi,Japan)forfracturemarkingsthatwouldallowthedeterminationof cracktrajectoriesandfractureorigins.

3.1.Case1

TwoimportantaspectsinCase1are:(i)thesemi-lunarshapedfractureinvolvingtheZrO2frameworkatthecrown margin;and(ii)thedelamination/fractureof theoverlayLS2 glass-ceramicinvolvingtheentiredisto-palatalcusp.The locationofthefractureoriginwilldeterminethechronologyofeventsandclarifywhichcomponentfracturedfirstandhow oneledtoanother.

72 R.Bellietal./CaseStudiesinEngineeringFailureAnalysis7(2016)71–79

(4)

Ageneralinspectionontheocclusalsurfaceofthecrownrevealedawornsurfaceregionindicatingocclusalcontact activitycompatibletothereportedservicetime.Surfacesmoothnesswaslostonthoseareasexposingthemicrostructureof theglass-ceramic(Fig.1a).Alsonotedweregrindingmarkingsfrommanualadjustmentsastheyresemblethosestemming fromdiamond-embeddedrotaryinstrumentsvisibleonthepalatalandocclusalsurfaces.Thethreecomponents(thatis, zirconiaframework,fusionglassandlithiumdisilicateoverlay)seemtohavebeenleveledoffatthemarginspostfusion firing.Rotatingfinishing/polishinginstrumentshavemostprobablybeenusedtoasufficientdegreetomaintainmaterial integrity,sincenoextensivedamageisseenhere.However,thelayercorrespondingtothefusionglasspresentedcracksthat didnotseemtoberelatedtothemainfracture(Fig.1b).

Observableunderelectronbackscatter-modeintheSEM,thefracturesurfacewherethedelaminationoccurredshowed remnantsofthefusionglassattachedtothezirconia’soutersurfacebutalsoregionsofexposedframework(Fig.1d).This suggestsascenarioofweakinterfacialbondbetweenthefusionglassandboththeZrO2andtheLS2.Defectivewettingofthe ZrO2bytheglassmeltshouldalsobeconsideredasaprocessingproblem.Zonesofporosityhavebeenobservedintheglass layer,pointingtoexcessiveairentrapmentandinsufficientairdiffusionoutoftheglassthroughthenarrowpathwaytoward theedges.ThefracturesurfaceoftheLS2overlaydidnotrevealanyfeatureindicativeofocclusalcontact-inducedcone crackinglinkedtoapossiblefractureorigin.MarkingsonthefracturesurfaceoftheLS2overlayweregenerallydifficultto readduetothecoarsemicrostructure.Wakehacklemarkings(exampleseeninFig.1c)onthefusionglasslayerindicatethe directionofcrackpropagationasshownbytheblackarrows.Thesemarkingspointbacktotheedgesofthesemi-lunar fractureintheZrO2framework(redarrow).InFig.2thesemi-lunarfracturesurfaceoftheZrO2isshownfromacervicalview aswellasfromanangleshowingthegroundintagliosideofthezirconiaframework.Wakehackleandtwisthacklelinesare

Fig.1.Case1.Atrilayered(LS2-glass-ZrO2)crownifshownwithafractureonthemargininvolvingtheZrO2frameworkandpartoftheLS2overlay.Thered arrowpointsthefractureorigin.IntheSEMoverviewofthecrownthedirectionofcrackpropagation(dcp)isindicatedinblackarrows.Differentrelevant regionsaremagnified.In(a)aregionontheocclusalsurfaceoftheoverlayisshownpresentingtracesofocclusalwearexposingthemicrostructureoftheLS2

material;Fig.1bshowsacrackrunningthroughthefusionglasslayerthatconnectstheoverlaytotheframeworkIn(c)wakehacklelineshelptodefinethe dcpinthefusionglass.Fig. 1disabackscatteredelectronimageofthecenterofthedelaminatedarea,showingthatthefractureruneitherintheglasssolder layeroratitsinterfacewiththeZrO2framework.

(5)

identifiedindicatingthedirectionofcrackpropagation(blackarrows).Inthecenterofthesemi-lunarfracturesurface(black rectangle)asemi-ellipticalcrack(whitearrows)isdirectlyrelatedwiththebottomintagliosurfaceoftheframework.Higher magnificationsinFig.2showinsidethisfracturedsurfaceasemi-ellipticalcriticalcrackatthebaseoftheframework.An evenhighermagnificationallowsmeasurementsofinitialandcriticalcracksizes,markedwithwhitearrows.Theinitial crackmeasuresapprox.20

m

minlengthand80

m

minwidth(ainitial).Underanappliedtensilestressthecrackgrewtoa

criticalsizeofapprox.130

m

mlong(acritical)and220

m

mwide.Concentricarrestlinesareindicativeofahalt-and-go propagationofthecrackfront.Hacklelinesvisibleontheentirefracturesurfacerunnormaltothethicknessplane,fromthe internal(intaglio)surfacetowardtheglass-meltinterface.Theoverallcrackpropagationwithinthezirconiasemi-lunar fractureismarkedbytheblackarrowsbasedontherecognitionofhackleandtwisthacklefeatures.Thus,thefracturestarted withintheareaofthecriticalcrackinthecenterofthesemi-lunarzirconiafractureandpropagatedoutwardtowardthe zirconiamargins.Thecrackprogressedthroughtheweakerinterfaceforsomedistanceuntilbreakingthroughthethickness ofthelithiumdisilicateoverlay.ThecompressioncurlinFig.1indicatestheendofthefractureevent.

3.2.Case2

ThefractographicanalysisofCase2alsodealswithasemi-lunar-likefractureofthebuccalmargin.Thefracturespans fromthedistaltothemesialbuccalmargin(Fig.3).Acompressioncurllocatedonthebuccalmesialsidewaseasilyvisibleon thestereoandSEMgeneraloverviewimageandindicatesbending(flexure)ofthestructure.Acompressioncurlrepresents theendofafractureeventunderbendingstressesandisnecessarilyboundwithanopposingsideofthefracturesurface subjecttotensilestressesinwhichtheoriginshouldbelocated(i.e.disto-buccalmargin).Theglobaldirectionofcrack propagationfromdistaltomesial(blackarrows)isconfirmedbythepresenceofhackle,wakehackle,andtwisthacklelines alongthefracturepath(Fig.3aandb).Particularlywithinthefusionglasslayer,wakehackleemanatingfromporesareeasily spottedandprovideaprecisemappingofthedirectionofcrackpropagation,tracingbacktotheoriginonthebucco-distal margin.InFig.4theexactfractureinitiationoriginisnotpinpointedbutanapproximately2mmwideand350

m

mdeep

mirrorisseen(whitedashedlines)followedbymanyvelocityhackleextendingintothelithiumdisilicateoverlay.The localizeddirectionofcrackpropagationisindicatedwithblackarrows(zirconiaandLS2)andredarrows(fusionglass).The distalmargin edgeincluded inthefracture initiationprocessis somehowrounded, whichis unusual.Noevidence of reshapingoftheintagliosidecouldbenoted.Justabovetheroundedzirconiaintagliocoremargintracesofthefusionglass (Fig. 3c and d) infiltrating thezirconia coreare an indicationof existing small cracks in thegreen statemilled and subsequentlysinteredzirconiaframeworkwiththefusionglassmeltinfiltratedpreexistingcracksduringthefusionfiring.

Thismayinfactclosesmallexistingcracksinthezirconiaframeworkbutitalsoindicatesthatmachiningofzirconiaisnot Fig.2.Case1.Cervicalviewofthesemi-lunarfractureontheframeworkmargin.Redarrowspointthefractureorigin.Blackarrowsindicatethedirectionof crackpropagation(dcp).Atthezenithofthesemi-lunarfracturesurfaceathesemi-ellipticalcrackcanbeobservedhavingconcentricarrestlinesindicative ofsubcriticalcrackpropagationduetocyclicloading.Inthispoint,seenfromtheinnerofthecrown,tracesofgrindingdamagefromdiamondburadjusting procedurescanbedetected.Thedirectionofgrindingcoincideswiththeorientationofthecrack.Fromthesemi-ellipticalcrackaninitialandcriticalcrack sizescanbeestimated.

74 R.Bellietal./CaseStudiesinEngineeringFailureAnalysis7(2016)71–79

(6)

exemptofsmallsurfacedefectsunlesspolishedoffwhichisneverthecasewithframeworkscomingoutofCAD-CAMmilling units.Ontheocclusalsidenearthecompressioncurl,achipfracturepropagatedintotheLS2overlay(seeareaaboveFig.3a) asaresultofhighcontactloading.Thelocalizedfracturehoweverremainedconfinedwithinthelithiumdisilicateoverlay thicknessasseenbyseveralarrestlines.Thiscontactdamagefractureisconsideredasasecondaryeventoccurringafterthe mainfracture.

3.3.Case3

Sincetwofracturestookplaceatoppositesidesofadentalbridgeconstruct,itisassumedthatonecamefirstleadingto instabilityofthestructure andeventuallyleadtothesecondfracture(Fig.4).Sinceonefractureproduces usuallytwo matchingfracturesurfaces,themostreadablefragmentwasselectedforthefractographicanalysesalthoughallpieceswere cautiouslylookedat.

Fig.3.Case2.BuccalviewofthefracturedcrownonthegypsummodelandaSEMoverviewofthefracturesurface.Thefractureoriginatedontheright- handsideandpropagatedtowardstheleft-handsideoftheimage(photographandoverviewSEM).Redarrowspointthepossiblefractureoriginsites,on theouterorontheintagliosurfaceoftheZrO2framework.InFig.3aandbarrestlinesontheLS2overlayandZrO2framework,alongwithwakehacklelines ontheglasslayerconfirmthistrajectory,indicatedbyblacksarrows(dcp=directionofcrackpropagation).Figs.3canddshowalongcrackontheouter surfaceoftheZrO2frameworkthatwasinfiltratedwiththeglasssolderduringthefusionsintering.Wakeandtwisthacklelinesindicatedthatthiscrackwas involvedinthefractureinitiation,whetherasoriginorbyweakeningtheframework.

(7)

Thedistalfracture(ontooth#26),illustratedinFig.6bythefracturesurfaceinFragment1,showsfinehackleandarrest linesonthezirconiacoretracingthecracktrajectorybacktothecervicaldistalmarginatthebuccalsidenearthedistal bridgeconnector.Inthezirconiaframeworknoevidentsignofa preexistentdamageinducedorprocessingdefectwas detected.Afractureorigin(redarrow,Fig.6a)waslocatedatasharpangleofthezirconiaframeworkmarginonthedisto- buccalside.Onthezirconiaframework,thecrackranfromthedistalmarginmovingupwardtotheocclusalsurface,crossed themid-sectionof themolarsegment and ended atthepalatal margin.Justabovethe zirconiaorigin,anothercrack originatedintheouterfusionglasslayer(Fig.6b).Thecrackpropagatedalongthefusionglassparalleltothezirconiafracture pathwithinthethicknessoftheLS2butmovedupwardtoexitocclusallyasseenbythepresenceofacompressioncurl, indicatingthatsomebendingwasinvolvedin thefractureprocess.Hence,thefractureof thelithiumdisilicateoverlay occurredsimultaneouslytothezirconiafractureandoriginatedwithinthefusionglass.Itisworthnotingthatthefusion glassspilledoverthemargins,infiltratingaroundtheframeworkedgesandispresentinexcessattheoriginsite.Theouter surfaceofthelithiumdisilicateatthefracturesiteoftheglassisveryroughandmayhavecontributedtofractureinitiation.

Themesialfracture,illustratedinFig.7wasanalyzedonFragment2.Onthebucco-mesialfracturesurface,manyfine hackleandacleararrestlinesinthezirconiaframework(Fig.7b)indicatethatthecrackinitiatedandpropagatedfromthe oppositedisto-palatalside.Aclose-upviewofthisside(Fig.7a)showsacomplexfracturesurfaceexposingacrackedzirconia frameworkintwodirections,aninterfacefractureofthefusion-glassaswellasofthelithiumdisilicateoverlay.Onthatside, theotherfragment halfwas not matching,indicating some lostmaterial andtherefore somevaluablefracture origin information.Nevertheless, wakehackle linesonthe fracturesurface ofthe glasslayer indicatethecrack propagation direction(blackarrows)movingfromthemarginupwardstowardstheLS2overlay.Theoriginismarkedbyaredarrowvery closetotheedgeandontheintagliosideofthezirconiaframeworkwhichshowsgrindingmarksfromreshapingaswellas glassspillingover.Thecrackmovedwithinthethicknessofthezirconiaandlithiumdisilicateupwardtowardtheocclusal sideandcontinuedtopropagateasindicatedbythebackarrowsuntilexitingonthemesialmargin.Thepresenceofglassnot onlyspillingoverbutalsoinfiltratingthezirconiaintagliomayindicatethepresenceofexistingframeworkcracksnearthe edgebutalsoshowssomeprocessingissuestobemasteredincludingirregularwettingleavingvoids(pores)attheLS2-ZrO2 Fig.4. Case2.SEMmagnificationoftheright-handsidefractureedgeinFig.3.ThefracturemirrorisoutlinedbythedottedlineintheZrO2framework.Black arrowsindicatethedirectionofcrackpropagation(dcp)intheframeworkandintheLS2overlay.Redarrowsindicatethedcpinthefusionglasslayer.

Observetheroundededgeattheintagliosurfaceoftheframework,wherethefractureoriginated.

Fig.5.Case3.Occlusalviewofthefractured3-unitbridgeonthegypsummodel(Fig.5a).Twofracturesarevisible;themedialfractureonelement#24and thedistalfractureonelement#26,resultinginthreefragments,asindicatedontheimage.Fig.5bpresentstheviewofthemedialfractureformedby Fragments1and2whileFig.5ctheviewofthedistalfractureformedbyFragments1and3.

76 R.Bellietal./CaseStudiesinEngineeringFailureAnalysis7(2016)71–79

(8)

interface.Grindingmarksin theinner surface of thezirconiaframework aretypicalfor reshapingprocedures bythe laboratorybecauseofseatingfrictionontheworkingmodel.Suchreshapingwithdiamondbursmayaddtodegradethe zirconiaandcreatesomevulnerabilityespeciallynearthemargins,wherehooptensilestressesusuallybuildup.

Thefractographymaynotprovideusananswerastowhichfractureoccurredfirst.However,someconsiderationsmaybe expressed.Hence,thejaggedfracturesurfaceofthemesialfracture(Fig.7)maybefrommultiplecrackingduetoalocalized instabilityofthepartiallybrokenstructurewhiletheposteriorpartofthebridgewasstillnotfractured.Somerocking movementuntiltotalfractureoccurredmayexplainthedifferenceinthefracturesurfacebetweenthemesialfractureof Fragment2(Fig.7)andthedistalfractureonFragment1.Unfortunately,noinformationastotheremovalprocessbythe dentistisavailablewhichmightalsobeinvolvedinadditionaldamage.

4.Causesoffailureanddiscussion

InallthreefailedtrilayeredLS2-glass-ZrO2fixeddentalprosthesesrecoveredfromapoolof40fracturecasesreportedin [2],thefractureoriginwasfoundtobepreexistentsurface/marginalcracksintheZrO2framework.Surfaceandmarginal defectsmayhaveresultedfromthemachiningofthegreenbody,butlargecrackinginthisstagewouldnothavebeen sustainedwithoutfurthercatastrophicfailureuponsintering.Mostprobably,thepre-cracksintheframeworkwereinflicted post-sinteringoftheZrO2bydiamond-embeddedrotatinginstruments(dentalburs)utilizedforreshapingpurposes.Classic grindingdamagewasfoundaroundpreexistingcracksinCase1and3.Theproblematicsurfacegrindingdamagehasbeen recentlyexploredfordentalZrO2[3],showingthatdefectsupto28

m

mindepthmaybegeneratedmerelyfromgrinding

with75

m

mdiamondparticles,potentiallyreducingthestrengthofZrO2bynearly40%.

InCase1thefinalshapeoftheframeworkfracture,originatingfromagrindinginducedflawontheintagliosurface,along withthedirectionalmarkingsobserved,stronglysuggestaloadingscenarioofalocalizedstressconcentrationattheintaglio surfacenearthemargin.Conceptually,adentalcrownissupportedbyanabutmenttoothusuallyhavingaslightconical geometrywiththebasetowardthemargin.Consequently,thecircumferentialmarginaledgeexperienceshoopstresses Fig.6.Case3.ViewofFragment1distalfracture(bottomleft)andSEMoverview.Theredarrowpointstheoriginofthisfracture,attheframeworkmarginof element#26closetothedistalconnectoronthevestibular(orbuccal)side.Blackarrowsindicatethedirectionofcrackpropagation(dcp).Fig.6aisa magnificationoftheoriginsiteintheframework,showingthatthefractureinitiatedfromasharpcornerintheframeworkmargin.Noclearstructuraldefect istobeseenthere.In(b)theoriginoftheoverlayfractureisshownrightabovetheoriginsiteintheframework.Fracturemarkingsin(c),(d)and(e)servedto identifythedirectionofcrackpropagation.

(9)

uponocclusalloading,andanon-uniformmarginaladaptationmayconcentratestressesinareaswherethegapbetween toothandframeworkisnarrower.Thetrajectorytowardthemargindespitethecrackhavingitslong-axisparalleltoit, supportsthistheory.Addedtothat,hacklelinesshowthatthecrackpropagatedconcurrentlytowardtheouterframework surface,anindicationthattheintagliosurfacewassubjectedtotensilestressesalsointhecervico-occlusaldirection.

Withthedimensionsoftheinitialand criticalcracksizesinhandaiandac,respectively,thestressesnecessaryfor inducingunstablefracturecanbeestimatedas:

s

i¼ KIc

Yip ¼ffiffiffiffiai 4:5 1:55 ffiffiffiffiffiffiffiffiffiffiffiffiffi

20

m

m

p ¼649MPa ð1Þ

and

s

c¼ KIc

Ycp ¼ffiffiffiffiffiac 4:5 1:2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

130

m

m

p ¼328MPa: ð2Þ

whereMPa)KIcistheframeworkfracturetoughness(approx.4.5MPapmfor3Y-TZP[4–6])andYthegeometryfactorof semi-ellipticalsurfacecracks.Thearrestlinesinthesemi-ellipticalcrackconcentrictotheinitialgrindingdamagearetypical signsofsubcriticalcrackgrowth,duringwhichtheinitialcracksizeaigrewtoac,thecriticalcracksizebeforeunstable fracture. Consequently, the maximum applied stress during the loading cycles,

s

appl,max, assuming constant stress amplitude,remainedbelow

s

i,probablyintherange328MPa

s

appl,max<648MPa.Becauseachangesasitgrows,Ymust alsochange(calculatedusingtheNewmanandRajuequation[7]).Acleardepreciationofthestructuralstrengthofthe framework resulted fromthe grinding damage (typical strength of 3Y-TZP is 900–1100MPa). This has also a severe implicationtothefatiguelifeoftheconstruct.Duetoitssusceptibilitytostresscorrosioninahumidenvironment,3Y-TZP canundergosubcriticalcrackgrowthatstressintensitylevelsbelowthecriticalstressintensityfactorforunstablefracture, withthethresholdKtharound0.45KIc[8].Thismeansthatsubcriticalgrowthoftheinitialgrindingdamageaicouldhave Fig.7.Case3.ViewofFragment2distalfracture(bottomleft)andSEMoverview.Thiswasthemainfractureevent.Theredarrowpointsthelocationofthe fractureorigin.Blackarrowsindicatethedirectionofcrackpropagation(dcp).AtthebottomleftcornerofFragment2,anareaofextensefragmentationisto beseen.Fig.7aisamagnificationofthisarea,andshowsthepresenceofthefusionglasscoveringthebulkcross-sectionoftheframeworkextendingallthe waytotheintagliosurface,wheretracesofgrindingarevisible.Othercracksandsurfacedefectsarepresentaroundthisarea.In(b)anarrestlinehelpsto determinethetrajectoryofthecrackfromtheleft-handsidetotheright-handsideoftheimage.

78 R.Bellietal./CaseStudiesinEngineeringFailureAnalysis7(2016)71–79

(10)

startedatstressvalueslowerthanhalfthatof

s

c,around292MPa,astressmagnitudethatfallsclosetothatof

s

c.Arealistic

loadcyclewouldattainitsmaximum

s

appl,maxslightlyhigherthan328MPadownto0MPaatunloading.

InCases2and3pre-crackswerefound,respectively,ontheouterZrO2surfaceandonthemarginextendingtothebulk.

Thesewereonlydetectedduringfractographybecausetheywerefilledwiththefusionglass,whichinfiltratedthecracks duringthefusionsintering.Incase2theglassmeltinfiltratinglocallythezirconiaattheinterfacewasnotinvolvedwiththe originofthecrack.Howeverincase3,thefusionglassattheimmediatevicinityofthecrackoriginatthemesialmarginwas connectingwithaveryroughoutersurfaceofthelithiumdisilicateoverlay(Fig.6b).Thisleadsonetowonderhowthe polishingprocessisdoneinthelaboratoryafterthefusionglassfiring.Fromafractographyperspective,thefusionglasslayer, duetoitshighporecontentandlackofmicrostructure,showedvaluablesurfacemarkings,especiallywakehacklelines, whichhelpeddefinecrackpropagationdirections.

Asallfractureoriginsdevelopedatthezirconiaframework,theprocessinganddesignplaysamajorrole.Hence,several processingweaknessescanbenoted.First,thezirconiaframeworkshowedsystematicallygrindingmarksfromreshaping withdiamondburs,inclosevicinitywiththecrackorigin.Second,poorwettingandpresenceofporositiesinthefusionglass combinedwithirregularthicknessesandspillingoverinsidethezirconiaframework(intaglio)areindicatorsofdifficultiesin controllingthequalityofthefusionprocess.Thefractureoftheframeworkledinevitablytothefractureoftheoverlay constructduetohighstressesatfailure,aspredictedbyinvitroexperiments[9],withrarecasesofinterfacialdelamination.

Inthatparticularstudy,LS2-glass-ZrO2bendingbeamsyieldedstrengthvaluescomparabletomonolithicZrO2.Here,the trilayerednatureoftheconstructscannotbeaccountedforanystructuralcompromise.Yet,comprehensivethermalstress assessmentsarelackingand shouldbepursuedfora betterunderstandingofinternalstressesin suchconstructs. The differencesinclinicalfractureratesrecordedbetweensingle-unitand3-to5-unitprosthesesin[2]mightberelatedtoa higherprobabilityofdefectstakingplaceinmulti-unitconstructsduetothehigheramountofsitestobesubjectedto processingdefects,irregularfusion-glasslayer,thermalresidualstressandgrinding.Reshapingisusuallyundertakenonthe intagliosurfaceduetoapoorfittosupportingabutments,aknownprobleminmulti-unitprostheses.

5.Conclusionsandrecommendations

Manydentalprosthesesfailduetoprocessingdefectsintroducedduringfabricationandpriortoinstallation[10–12].The threecasespresentedhereshoweddefectsintheZrO2whichledtothefracturesunderserviceatsignificantlyearliertimes thanforecastedforundamageddentalzirconia[8].Thishighlightstheapparentlackofqualitycontrolduringtheprocessing ofZrO2exercisedbytechnicians/dentists,especiallyregardingsurfacestate,grindingzirconiaceramicsasifequivalentin handlingasmetals.Frameworkdimensionshavingverythincross-sectionsarecontributingtothis scenario.Ifsurface damageisnottobeprevented,thicker–or“anatomical”–frameworkgeometriesshouldbeemployedtoassureextended lifetimes.Theglassmelttofuseazirconiaframeworkwithanestheticandstrong lithiumdisilicateoverlaymayneed improvementsifthistechnologyistobecontinuedtobeuseindentallaboratories.

Themaindifficultyofexecutingfailureanalysisofcasesthatareprovidedbyamillingcenterinreturnofclaimsfrom dentistsisthatnoinformationisavailableregardingthedescriptionofthefractureeventbythepatient,northetechnique usedtorecoverthebrokenpartsinsitu.Thesearevaluabledescriptionsthathelpinterpretthefracturesurfaceandfracture process.Inaddition,dentaltechniciansarerarelyincludedinthefailureanalysis,whoshouldinthefuturebeaninteractive discussionpartner.

References

[1]GrohmannP,BindlA,HämmerleC,MehlA,SailerI.Three-unitposteriorzirconia-ceramicfixeddentalprostheses(FDPs)veneeredwithlayeredand milled(Cad-on)veneeringceramics:1-yearfollow-upofarandomizedcontrolledclinicaltrial.QuintessenceInt2015;46:871–80.

[2]BelliR,PetscheltA,HofnerB,HaijtóJ,ScherrerSS,LohbauerU.FractureratesandlifetimeestimationofCAD/CAMall-ceramicrestorations.JDentRes 2016;95:67–73.

[3]CannetoJ-J,Cattani-LorenteM,DurualS,WiskottAHW,ScherrerSS.Grindingdamageassessmentonfourhigh-strengthceramics.DentMater 2016;32:171–82.

[4]BelliR,WendlerM,ZorzinJI,daSilvaLH,PetscheltA,LohbauerU.Fracturetoughnessmodemixityattheconnectorsofmonolithic3Y-TZPandLS2 dentalbridgeconstructs.JEurCeramSoc2015;35:3701–11.

[5]EichlerJ,RödelJ,EiseleU,HoffmanM.Effectofgrainsizeonmechanicalpropertiesofsubmicrometer3Y-TZP:Fracturestrengthandhydrothermal degradation.JAmCeramSoc2007;90:2830–6.

[6]Turon-VinasM,AngladaM.Fracturetoughnessofzirconiafromashallownotchproducedbyultra-shortpulsedlaserablation.JEurCeramSoc 2014;34:3865–70.

[7]NewmanJC,RajuIS.Anempiricalstressintensityfactorequationforthesurfacecrack.EngFracMech1981;15:185–92.

[8]StudartAR,FilserF,KocherP,GaucklerLJ.Invitrolifetimeofdentalceramicsundercyclicloadinginwater.Biomaterials2007;28:2695–705.

[9]BassoGR,MoraesRR,BorbaM,GriggsJA,DellaBonaA.Flexuralstrengthandreliabilityofmonolithicandtrilayerceramicstructuresobtainedbythe CAD-ontechnique.DentMater2015;31:1453–9.

[10]BelliR,ScherrerSS,ReichS,PetscheltA,LohbauerU.Invivoshell-likefracturesofveneered-ZrO2fixeddentalprostheses.CaseStudEngFailAnal 2014;2:91–9.

[11]LohbauerU,AmbergerG,QuinnGD,ScherrerSS.Fractographicanalysisofadentalzirconiaframework:Acasestudyondesignissues.JMechaBehav BiomedMater2010;3:623–9.

[12]LohbauerU,BelliR,ArnetzlG,ScherrerSS,QuinnGD.Fractureofaveneered-ZrO2dentalprosthesisfromainnerthermalcrack.CaseStudEngFailAnal 2014;2:100–6.

Références

Documents relatifs

Fracture toughness results of specimens containing higher hydrides concentration near the crack-tip region, preferentially orientated in the crack plane, were compared to those

probabilities, where an isotropic line is a set of d points on the lattice such that the symplectic product of any two of them is 0 (modulo d).. In order to answer this and

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The National Institute for Health and Clinical Excellence (NICE), the Scottish Intercollegiate Guidelines Network, and the Royal College of General Practitioners include

In the mode of calculating fatigue crack growth, the Paris law is used to simulate the process, which connects the rate of crack propagation under a cyclic load with the parameters

We also present several numerical tests where we compare the proposed sediment transport formula with the classical formulation and we show the behaviour of the new model in

En este sentido, el artículo plantea que a partir de estas prácticas en la escena posdramática, el texto teatral pierde jerarquía, pero a la vez se constituye como un