• Aucun résultat trouvé

Carbonate mounds of the Moroccan Mediterranean margin: Facies and environmental controls

N/A
N/A
Protected

Academic year: 2021

Partager "Carbonate mounds of the Moroccan Mediterranean margin: Facies and environmental controls"

Copied!
10
0
0

Texte intégral

(1)

Carbonate

mounds

of

the

Moroccan

Mediterranean

margin:

Facies

and

environmental

controls

Loubna

Terhzaz

a,

*,

Naima

Hamoumi

a

,

Silvia

Spezzaferri

b

,

El

Mostapha

Lotfi

c

,

Jean-Pierre

Henriet

d,1

a

GroupofresearchODYSSEE,MaterialsNanotechnologiesandEnvironmentLaboratory(LMNE),MaterialsSciencesResearchCenter,

FacultyofSciencesofRabat,Mohammed-VUniversityRabat,BP1014Rabat,Morocco

b

DepartmentofGeosciences,UniversityofFribourg,1700Fribourg,Switzerland

c

ENSET,Mohammed-VUniversityofRabat,BP6207Rabat,Morocco

dDepartmentofGeology&SoilScience,GhentUniversity,9000Ghent,Belgium

1. Introduction

Thediscoveryofcold-watercarbonatemoundsatthe European Atlantic margins over the past decades has increasedtheinterestofthescientificcommunityinthese ecosystems(Freiwald,2002).However,somequestionsare stillopenconcerningthefactorscontrollingtheirgenesis, developmentandevolution.AlongtheMoroccan Mediter-ranean margin, cold-water carbonate mounds were reported in east of Mellila by Comas and Pinheiro (2007),whonamedthisfield ‘‘MelillaCarbonate Mound

Field’’andwestofMellilaLoIaconoetal.(2014).Thesetwo fieldswerenamedbyHebbelnetal.(2015)as‘‘Eastand West Melilla Cold water coral Province’’, respectively (Fig. 1). Studies on theeastern Melilla Province mostly focusedondescriptionsandagedeterminationsofcorals andtheirassociatedfauna(Finketal.,2013;Stalderetal., 2015).AgeochemicalstudycarriedoutbyFinketal.(2013) revealedthatcold-watercorals(CWC)wereprolificduring the last glacial–interglacial transition(13.5–12.8ka BP), early Holocene (11.3–9.8ka BP) and the mid-Holocene (5.4kaBP)andthattheirdevelopmentwascontrolledby marine productivityand circulationpatterns. Finket al. (2013) alsohighlightedaridconditionsbetween 16 and 9.6ka BP with high input of aeolian dust followed by humid conditions between 9.8 and 8ka withenhanced fluvial input. Furthermore, a sedimentological study by

Keywords:

Carbonatemounds

Coldwatercorals

Sedimentology

Sedimentarygeochemistry

MoroccanMediterraneanmargin

ABSTRACT

SedimentologicalandgeochemicalstudiesofboxcoresfromtheBrittlestarRidgeIand Cabliers carbonate mounds, along the Moroccan Mediterranean margin, show that sedimentsarecomposedofcoldwaterscleratiancoralsandmicriticmud,muddymicrite or muddy allochem limestone matrix, outlining seven different facies that can be attributed to ‘‘cluster reefs’’. The mixed siliciclastic/carbonate sediments have been derivedfrom bothextra-and intrabasinalsources.Extra-basinal sourcesmay bethe geologicalformations outcropping inthe Moroccanhinterland andSahara, thelatter includingcoralsandassociatedbioclasts.Sedimentsweretransportedbywindandrivers andredistributedbybottomcurrentsandlocalupwelling.Ourresultsconfirmtheroleof tectonicsinthegenesisofthesecarbonatemoundsandrevealthattheirdevelopments during theHolocene (10.34–0.91ka BP) was controlledby climatic fluctuations(e.g. Holocene Climate Optimum and Little Ice Age), eustatic sea level change, and hydrodynamicregime.

* Correspondingauthor.

E-mailaddresses:Loubna.terhzaz@gmail.com(L.Terhzaz),

naimahamoumi5@gmail.com(N.Hamoumi).

1

Deceasedauthor.

http://doc.rero.ch

Published in "Comptes Rendus Geoscience 350 (5): 212–221, 2018"

which should be cited to refer to this work.

(2)

Titschacketal.(2016)indicatesfortheupperUnitofthe BrittlestarRidge I(1) that theCWCskeletons represent around20%ofthedeposits,(2)thatthecarbonatecontent resultsfromorganicanddetritalsourcesand(3)thatthe aggradation rateis between 125and 241cmkyr1.The

aimofthisworkistocontributetoabetterunderstanding oftheformationandevolutionoftheuppermostpartof two carbonatemounds, BrittlestarRidgeI (BRI)and the CabliersMound(CM),locatedalongtheMoroccanmargin, off Melilla(Fig.1A).In thisstudy,wedescribethemain sedimentary facies and infer the sediment source and transport mechanisms throughgrain size,mineralogical andgeochemicalanalysesoftheinvestigatedboxcores.

2. Geologicalandoceanographicsettings

2.1. Geologicalsetting

The Moroccan Mediterranean margin consists of a rathernarrowcontinentalshelffrom5to16kminwidth (TessonandGensous,1978).Theshelf(Fig.1)isconnected through a steep slope to the southern Alboran basin (1200m water depth), which presents an irregular topography with ridges, and to the Provenc¸aux and Cabliers Banks (Comas et al., 1999; Fink et al., 2013; Gra`ciaetal.,2016;Hebbelnetal.,2015).TheBRI(Fig.1)is thesteepestandhighestofthethreeexistingridges,ithasa sinusoidalshapeandreaches6kminlengthand80min elevation fromthesea floor(Fink etal., 2013). TheCM outcrops in the Cabliers bank, which is bounded by depressionsatitseasternandwesternsides,byachannel, connects to the Yusuf faultat its northern side and is boundedbytheCabliersRidgetothesouth(Gra`ciaetal., 2016). The ridges and most mounds in this region are alignedindeepandlargedepressions(Comasetal.,1999).

The Moroccan Mediterranean margin is an active margin thatdevelopsin a regionalcompressive context linked to the NW–SE convergence of the Africa and Eurasianplates(Auzendeetal.,1975).TheAlboranbasin originatedattheendoftheCretaceousbythethinningof thethickcontinentalcrustasaresultofthecontinental collisionofthesurroundingBeticandRifChains(Comas et al.,1999). After theparoxysmalphasesof theAlpine orogeny,this hinterlandwassubjectedtocompressional and distensional tectonics during the Neogene and Quaternary and was accompanied by a calc-alkaline volcanism (Guillemin and Houzay, 1982; Hernandez, 1983; Louaya and Hamoumi, 2010; Morel, 1989). This tectonicactivityisstillrecordedatpresentasshownbythe numerous earthquakes that affect the region (Va´zquez etal.,2014).

2.2. Oceanographicsetting

Four water masses have been identified in the MediterraneanSea (Benzohraand Millot, 1995;Gascard andRichez,1985;Parillaetal.,1986):

theAtlanticwater,intheupper150mofwaterdepth, withasalinityof36.5psuincreasingupto38.0psuwhile progressingeastwardthroughtheStraitofGibraltarand withatemperatureof168C;thecharacteristicsofthis waterisnotregularfromwesttoeast;

the Modified Atlantic Water (MAW), between 150 to 200minwaterdepth,withasalinityof38.3psuanda temperature ranging from 12.65 to 13.208C, flowing throughtheStraitofGibraltarintotheAlgerianbasin: the Levantine Intermediate Water (LIW), between

200 and 600m water depth, formed in the eastern Mediterranean and flowing westward to the Atlantic

Fig.1.A.LocationofthestudyareaandtheboxcoreMD133471BC.TopographyandbathymetriesfromtheDigitalElevationModels(DEM)andShuttle

RadarTopographyMission(SRTM)ofEarthExplorer–USGSsource;redsquare:BrittlestarRidgeI(BRI);WMCP:WestMelillaColdwatercoralProvince;

EMCP:EastMelillaColdwatercoralProvince(ComasandPinheiro,2007;Hebbelnetal.,2015;LoIaconoetal.,2014);redpoint:Cabliersmound(CM)and

Boxcoreslocation;AB:AlboranRidge;CR:CabliersRidge;CB:CabliersBank;YF:YusufFault;WAG:westernAlboranGyre;EAG:easternAlboranGyre;AAG:

AtlanticAnticyclonicGyre(afterL’Helguenetal.,2002).B.3DmapofBrittlestarRidgeI,BRI,(Finketal.,2013)andthelocationofthestudiedboxcores.

(3)

Ocean. The LIW is characterized by a high salinity (>38.4psu)andatemperatureof13.158C;

the Western Mediterranean Deep Water (WMDW), found below the LIW, characterized by a salinity of 38.4psuandatemperatureof12.88C.

The circulation of surface water is linked to two anticyclonic gyres of about 100km in diameter: the Western Alboran Gyre (WAG) and the Eastern Alboran Gyre (EAG) (Fig. 1A), which can reach a water depth between200and300m(HeburnandLaViolette,1990). Associatedwiththesegyres,eddystructuresmaydevelop, such as the Atlantic Anticyclonic Gyre (AAG) (Fig. 1A), whichis foundabovetheEastMelillacarbonatemound province(L’Helguenetal.,2002).

Thetemperaturedecreasesfrom158Cto13.158C,and thesalinityincreasesfrom36.77to38.37psu,betweenthe surfaceandawaterdepthof200m(Hebbelnetal.,2015).

3. Materialsandmethods

The studied boxcores were collected during the EUROFLEETS Gateway cruise (MD 194) on the R/V Marion-Dufresne (10–21 June 2013), from carbonate mounds located off Melilla. The following carbonate mounds were sampled: CM (MD13-3471, BC 35847.740

N,2815.160W)atawaterdepthof314m,BRIEast

(MD13-3456 BC, 35826.190 N, 2830.800 W) at a water depth of

330m,BRITop(MD13-3461BC,35826.530N,2831.070W)

atawaterdepthof320mandBRIWest(MD13-3465BC, 35826.060N,2830.850W)atawaterdepthof346m,and

off-BRI(MD13-3468BC,35825.910 N,2830.860 W)atawater

depthof470m(Fig.1A,B).Sixteensamples(Fig.2)were taken from all lithologies identified following on-board visual core description (Van Rooij et al., 2013). The mineralogical and biogenic composition (mostly the matrix)ofthelithofacieswasidentifiedusingabinocular microscope, itscalcium carbonatecontentmeasured by calcimetry and grainsize determinedusing theFrench AFNOR seriesof sieves(AFNOR-NFX11-501,1957). The mineralogicalanalyseswerecarriedoutonbulksamples andclays(<2

m

m)usingtheX-raydiffractometerofthe TechnicalSupportUnitsforScientificResearch(UATRS)at theNationalCenterof Scientificand TechnicalResearch (CNRST). The semi-quantitative determination of the mineralcontentisestimatedfromtheintegrated intensi-tiesofthediffractionpeaks(theerrorrarelyexceeds2%). Thegeochemicalanalysisofmajorandtraceelements(%) wascarriedoutusingtheX-rayfluorescencespectrometer (error=0)attheUATRS,CNRST.Theobtaineddatasetswere processed usingPrincipalComponentAnalysis(PCA)and linear regression lines, alteration ratios, and elemental

Fig.2. Sedimentaryfacies,carbonatecontentsandmineralogicalassociationsofthesedimentsfromBrittlestarRidgeIandCabliersMounds.S:Sample

names;X:samplepositions;A:Age.Numbersinblack:coralage(Schro¨der-Ritzrauetal.,2015);Numbersinred:estimatedsedimentage(proposedby

Stalderetal.,2015);F:facies;LF:lithofacies;BA:biologicalassemblage,MA:mineralogicalassociation.

(4)

ratios. The values of the Chemical Index of Alteration CIA=(Al2O3/Al2O3+CaO*+NaO2+K2O)100 are applied

following Nesbitt and Young(1982) and the Plagioclase Index of Alteration PIA=(Al2O3–K2O)/[(Al2O3–

K2O)+CaO*+Na2O)]100isafterFedoetal.(1995).The

alteration ratios M1=(FeO+MgO+Al2O3)/(K2O+NaO+

-CaO) and M2=Al2O3/(FeO+MgO) have been calculated

andappliedfollowingEnglundandJorgensen(1973). Biologicalassemblagesarederivedfromthedescription ofthebiogenicassemblages(coralsandassociatedsessile andvagilefauna),asidentifiedanddescribedbyVertino(in VanRooijetal.,2013).Theageofthecoralswasestablished by Schro¨der-Ritzrau et al. (2015) using the 230Th/234U daughter-deficiencydatingmethod(Fig.2).

4. Results

4.1. Structureandsedimentaryfacies

The sedimentsfromthecarbonatemoundsare com-posedby matrixand biogeniccomponentsconsistingof corals and associated fauna. Therefore, their facies are defined basedon their lithofaciesand biological assem-blages.

4.1.1. Biologicalassemblages

The corals consist of cold-water scleratinians corals with predominant Madrepora oculata, Desmophyllum dianthus, Dendrophyllia cornigera, and Lophelia pertusa, accompaniedbylessabundantsolitarycoralsCaryophyllia calveri, Javaniacailleti,andStenocyathusvermiformis.The age of the coralsranges between 0.91 and 10.35ka BP accordingtoSchro¨der-Ritzrauetal.(2015)(Fig.2).With theexceptionofthetopofCM,wherelivescleractinians were collected (one specimen of D. cornigera and tiny D. dianthuspolyps), all recoveredcoralswere deadand fragmented.Someofthemwereexposedontheseafloor but,inmostcases,theywereembeddedinthefine-grained matrix (Fig. 2). The corals show different degrees of preservation, from well-preserved to bio-eroded and degradedandsometimesarecoveredwithblack ferrugi-nous crusts. Nine biological assemblages (BA1 to BA9) including four sub-biological assemblages (BA1a, BA1b andBA2a,BA2b)wereidentified(Fig.2)basedoncorals assemblagesandtheassociatedbiotaweredescribedby VertinoinVanRooijetal.(2013,supplementarydataS1). Theoff-BRIbiologicalassemblagesaredistinctlydifferent from the others, the BA9 contains a few fragments of reworkedL.pertusaandM.oculate,whereasBA8showsno corals.

4.1.2. Lithofacies

The microscopic studies revealeda biogenic fraction composedofforaminifera,tinycoralfragmentsandother calcareousbioclastsofsizesrangingfromthe

m

mtothe mm scales, together with siliciclastic components (e.g. quartz,feldsparsandclay).Thecalciumcarbonatecontent, measured from mound matrix, varies from 34 to 53% (Fig.2).ThehighestvaluesarerecordedattheCM.Atall sites,thecarbonatecontentsarehigherinsedimentsatthe

baseoftheboxcorethanatitstop,exceptintheWestBRI. Theyvaryfrom53%to48%inCM,37%to36%inBRIEast, 52%to42%inBRITopand40%to41%inBRIWest.Off-BRI, thevaluesrangefrom41%to39%.Thegrainsizeanalyses showthatthesedimentsassociatedwiththeBRIandCMs aredominatedbytheveryfinefraction(<45

m

m)andthat thefinesandfractiondoesnotexceed3%.Threelithofacies (LF) are recognized, composed of mixed (siliciclastic/ carbonate) sediments corresponding in the Mount’s classification(Mount,1985)toa muddyallochem lime-stone (LF1),a muddymicrite (LF2), anda micriticmud (LF3)(Fig.2).

4.1.3. Facies

All nine facies (F) are recognized based on the assemblage of lithofacies and biological assemblage (Fig. 2 and Supplementary Data S1). Facies F1 to F7 correspondtothe‘‘skeletalmoundtype’’inthe classifica-tionofJamesandBourque(1992).Theyarecomposedof dominantmatrixandcoralsinplacebutneverincontact, thusthemoundsareconsideredas‘‘clusterreef’’following Riding(2002).FaciesF8andF9,whichcharacterizedthe sedimentsoff-BRI,correspondtooff-mounddeposits,no coralsareobservedinF8andF9containsafewreworked fragmentsofcoral.

4.2. Mineralogicalcomposition

X-ray diffractometry of bulk sediments and clay fractions reflects eight mineralogical associations (MA1 to MA8, Fig. 2), in which the ubiquitous minerals are: calcite,quartz,kaolinite,illiteandchlorite.Thedifferences among mineral associations can be summarized as follows: 1) predominance of calcite on quartz in MA1, MA3,MA4,MA6,MA7andMA8,2)presenceofdolomitein MA2,MA3,MA4andMA6,3)presenceoffeldsparinMA3 andMA6and4)predominanceofkaoliniteonilliteinMA1, MA3,MA4,MA5 andMA7.These mineralogical associa-tions imply the existence of carbonate and siliciclastic sourcecomponents.

4.3. Geochemistry

4.3.1. Sedimentsources

Sedimentswerecharacterizedusingprincipal compo-nentanalyses(PCA)ofthemajorelementsandcorrelation betweenthemajorelements.ThePCAofmajorelements (Fig. 3) allows one to highlight geochemical signatures characterizingthreesedimentsources:abiogenicsource forlithofaciesLF1andLF2ofCMandforLF1ofBRIWest,a terrigenoussourcefor LF3of BRIEastand off-BRIanda mixedsource(terrigenous/biogenic)forLF3andLF2ofBRI Top,andLF3off-BRI.

Thecorrelationsbetweenthemajorelementsallowone tocharacterizethesourceofsomeminerals.Thenegative correlation between MgO and LOI (loss on ignition) suggeststhatMgOisofdetritalorigin(Fig.4A).Thezero to low positive correlationbetween P2O5 and CaO and

between P2O5 and LOI indicates a mixed organic and

mineralorigin(Fig.4B,C).Thestrongnegativecorrelation between CaOandAl2O3 of(R2=0.652) reflectsamarine

(5)

originforalargepartofCa(Fig.4D).Thestrongpositive correlationofSiO2andTiO2withAl2O3indicatesthatthe

quartz is not related to remains of siliceous organisms (Fig.4E,F).

4.3.2. Climaticcontrols

Thebinarydiagram(%SiO2/%(Al2O3+K2O+Na2O)

pro-posed by Suttner and Dutta (1986) shows that the siliciclastic sediments of CM and BRI were deposited underaridclimaticconditions(Fig.5).

4.3.3. Evaluationofthechemicalmaturity

The values of the Chemical Index of Alteration CIA (Nesbittand Young, 1982)and thePlagioclase Index of Alteration PIA (Fedo et al., 1995), vary from 58.54 to 70.26 and from 59.58 to 73.82, respectively. However,

mostsampleshave a valueabove60,which indicates a moderatedegreeofalterationinthesourcezoneandan average destructionofthefeldsparduringtransportand sedimentation.ThelowestCIAvalues werefoundatthe surfacesedimentofCM(58.54)andtheBRITop(59.18). Furthermore,thealterationratiosM1andM2(SeeSection 3)varybetween0.75and1.52andbetween 2and2.33, respectively. Those values, plotted in the triangular diagram of Englund andJorgensen (1973) (Fig.6)show that thestudied samplesfit in the A1 class and reflect unalteredsediments.

4.3.4. Transportmodes

TheplotsoftheK/Al,Mg/Al,Rb/Al,Si/Al,Ti/AlandZr/Al ratios indicate two modes of terrigenous sediment transport towards the study area: fluvial and aeolian (Fig.7)(CalvertandPedersen,2007;JimenezEspejoetal., 2007).TiandZrcanbederivedfromheavy-minerals(e.g. rutileandzircon)andSifromquartzcontainedinNorth African dust. Increases in Ti/Al, Zr/Al and Si/Al ratios

Fig.4. Correlationsbetweenthemajorelements.

Fig.3.Principalcomponentanalyses,variables,andsamplesintheaxes

F1andF2.I:Terrigenous signature,II:biogenicsignature,III:mixed

signature(terrigenous+biogenic).

Fig. 5.%SiO2/%(Al2O3+K2O+Na2O) rates of samples plotted in the

diagramofSuttnerandDutta(1986).

(6)

suggestincreasedaeoliansupply(e.g.Calvertand Peder-sen,2007).Moreover,theoppositetrendoftheZr/Alratio againsttheSi/AlratiotowardsthetopofCM(Fig.7)may indicate either a different source area and/or varying sensitivities to wind speed (e.g. Jimenez Espejo et al., 2007). Mgislinkedtoclaysandespecially toa possible chlorite-richsource;itmaybealsorelatedtodolomite(e.g.

JimenezEspejoetal.,2007).RbcanreplaceKin alumino-silicatemineralsandisabundantinmicas;theK/Alratio may therefore reflect an increase in the relative pro-portions of kaolinite relative to illite (e.g. Calvert and Pedersen, 2007), when local rivers (e.g. the Moulouya River) supplied more kaolinite to the basin. The data furthermoreallowustoqualifythedominanceofeachof thesemodesoftransportinspaceandtime.

5. Discussion:evolutionandcontrolofcarbonate mounds

The development of CM and BRI results from the interactionofgrowthphasesofcold-watercorals,erosion and sedimentation processes. Corals proliferatedduring thePleistocene–Holocenetransitionat10.35ka,10.19ka, 10.07kaand intheHoloceneat8.01ka,7.08ka,6.79ka, 6.4ka,5.95kaand0.91kaBP(Finketal.,2013; Schro¨der-Ritzrau et al., 2015; Stalder et al., 2015). According to Riding(2002), theaccumulationof sedimentspromotes therapidgrowthofcorals(constructors),whichinturnact astrapsforsediments.Thesesedimentsarecomposedofa carbonatephase(calciteanddolomite)andasiliciclastic phase.Thecalcitecouldhavebeenderivedfrombioerosion and disintegration of corals and other bioclasts. The presence of a biogenic source is demonstrated by: (1)

Fig.7.TraceandmajorelementsinrelationtoAl(BRI:BrittlestarRidgeI).

Fig.6.AlterationratesofthesamplesplottedinthediagramofEnglund

andJorgensen(1973).

(7)

thegreatamountofbioclasts(especiallyinLF1),(2)bythe highlighting of biogenic and mixed sources through principal component analyses and (3) by the zero to weakly positive correlation between P2O5 and CaO

(Fig.4B),reflectingamixedorigin(organicandmineral) and(4) bythestrong negativecorrelationbetween CaO andAl2O3,whichreflectsamarineoriginforthegreater

partoftheCaCO3(Fig.4D).However,apartofthecalciteis

of detrital origin and would be supplied together with dolomiteandsiliciclasticcomponentsfromthegeological formationsof the Moroccanhinterland and theSahara. Thisiscorroborated:(1)bythemineralogicalassociations (Fig. 2), which are similar to those of the geological formationsinthehinterland(Mahjoubietal.,2003)and theMoroccanAlboranmargin(ElMoumni,1987)and(2) by the detrital origin of dolomite, as indicated by the negativecorrelationbetweenMgOandLOI(Fig.4A)and because dolomite is part of sediments derived from terrigenous or mixed terrigenous/biogenic sources and resultsfromhighorrelativelymoderatefluvialsupply.The strong positive correlation of SiO2 and TiO2 withAl2O3

indicatesthatthequartzisnotrelatedtoabiogenicsource (Fig.4E,F)andthatthehighquartzcontentcharacterizing thesedimentsresultsfromahighcontinentalinput(Fig.7). FeldsparispresentonlyinsomelevelsofBRI(Fig.2)and associatedwithdepositshavingeitheraterrigenousora mixedsource.Ithasbeenderivedeitherfromtheerosion of the volcanic formations of the hinterland or from volcaniceruptionsofCapdesTroisFourchesand Gourou-gou(Hernandez,1983)(Fig.1).

The siliciclastic sediments of CM and BRI were depositedunderaridclimateconditions,asshowninthe binarydiagram (Fig. 5)and by their moderate toweak chemical weathering (Fig. 6). Their transport from the hinterland was provided by winds and input through fluvialcurrents,asdemonstratedbytheirchemicalratios (Fig.7)andtherelativelyhighvaluesofZr/AlinCM.Zr/Al ratiosbetween12and19werealsoreportedby Martı´n-Puertaset al. (2010)and Nieto-Moreno et al.(2011) to indicatehigher aeolian supply fromtheSahara prior to 2.7kaandinthewesternMediterraneanregionduringthe LittleIceage.Thecorrelationofthetransportmodewith rainfallvariability,asproposedbyWengleretal.(1992)for theRharbian(Holocene),shows thathighand moderate fluvialsuppliesinBRI(whichis closertothemainland– around35km) maycoincidewitha semi-aridand sub-humidclimatewithanaverageof520–600mmrainfallper year.Fluvial transport in sucha periodwas favored by torrentialflowsoftheKert,Medouar,Boussardouneand Moulouya Rivers (Louaya and Hamoumi, 2006, 2010), debouching into the Mediterranean (Fig. 1). Enhanced fluvialsupplywasalsodemonstratedbyFinketal.(2013) intheEMCPoffmoundrecordduringthelateHolocene. HighaeoliansupplyinCM(whichisabout75kmfromthe mainland)coincideswithanaridclimate(380mmrainfall peryear)andasemi-aridclimate(averageof400–550mm ofrainfallperyear).

The composition of the lithofacies and biological assemblage,aswellasthecharacteristicsofthecarbonate moundsof theCM andBRI,weremodulatedbyclimate oscillationsofdecadaltocentennialscaleoftheHolocene

interglacialstage:warm/cold,reportedbyDansgaardetal. (1969) and Scho¨nwiese (1995) and cycles of humidity/ aridity,proposedbyWengleretal.(1992).

Thereconstructionoftheclimatesthatcontrolledthe developmentofcarbonatemoundsisbasedoncoraland sedimentages(Schro¨der-Ritzrauetal.,2015),takinginto accounttheintervalof500yearsbetweentheageofcorals and the matrix sediments proposed by Stalder et al. (2015).TheCMiscomposedfrombasetotopbymuddy micrite(LF2)andmuddyallochemlimestone(LF1).The siliciclastic input here was provided by high aeolian and moderate fluviatile supplies, during a semi-arid climate with 400–550mm rainfall per year for LF2 (7.51and6.58ka)andanaridclimatewith380mm rainfallperyearforLF1(0.41ka).Thecarbonatephaseis essentially derived from a biogenic source. The high carbonatecontentsandthepresenceofshellfragmentsof vagileandsessileepifaunaaremostlikelyrelatedtothe degradationanddisintegrationofcarbonateafteramass death of local mound fauna, probably in relation to warming. Indeed, the sedimentation on this mound coincidesforLF1withawarmingperiodaftertheLittle Ice age, with temperatures of around 15.58C. LF2 coincideswithawarmingperiodrelatedtotheHolocene ClimateOptimum(6.2–7.8ka).SedimentsfromBRIEast mound arecomposedofmicriticmuds(LF3),whichare correlated to terrigenous sources in the Moroccan hinterland. Deposition was produced from high or moderatefluvialandlowaeoliansupplybetween semi-aridandsub-humidclimateperiodwithrainfallof600– 610mm per year. Sedimentation took place between5.9 and 5.45ka. Sediments at the BR I top consistofmuddymicrites(LF2)toppedbymicriticmud (LF3)derivedfromamixed(terrigenous/biogenic)source. LF2(datedat6.29ka)isfedbymoderatefluvialanda low aeolian supply duringa semi-arid climatic period, withanaveragerainfallof560mmrainfallperyear.The formationofLF2tookplaceduringtheHoloceneClimate Optimum (15.98C). LF3 (5.14ka) is characterized by highfluvialandhighaeoliansuppliesbetweensemi-arid andsub-humidclimaticperiods,with600mmofrainfall peryear.SedimentsatBRIIWestarecomposedofmicritic mud (LF3)from a mixedsource (terrigenous/biogenic) toppedbymuddyallochemlimestone(LF1)derivedfrom abiogenicsource.LF3(9.85ka)issuppliedbyrelatively highaeolianandmoderatefluvialinputs,incontrastto LF1(9.69ka)whichisfedbymoderatefluvialandlow aeolian supplies. They both coincide with a semi-arid climate with510–520mm ofrainfall.Sedimentation of LF1 took place during the deglaciation stage at the beginning oftheHolocene at9.69ka forLF1 (14.78C) andat9.85kaforLF3(14.68C).Sedimentsoff mound-BRIconsistofmicriticmud(LF3).Hereitsbasaldeposits are derived from a mixed source with relatively high aeolian andmoderatefluvialsupplies.The mudsofthe (LF3) level (dated at 10.07ka, Schro¨der-Ritzrau et al., 2015)uptothesurfacearederivedfrom aterrigenous sourcewithhighfluvialandlowaeoliansupplies.These off-mound deposits include also sediments and corals fromthecarbonatemoundsthatprobablyslidalongthe slopeoftheridge.

(8)

The cold-water corals ecosystems of the Moroccan Mediterraneanmargin,likethoseoftheStraitofGibraltar andtheMoroccanAtlanticmargin,wereinitiatedduring the Last Ice age (Fink et al., 2013; Hamoumi, 1997; Wienberg etal.,2009). CoralsfromtheMelillaProvince proliferated during the Pleistocene–Holocene transition (Fink etal., 2013;Stalder etal.,2015). Onlypartof the biologicalassemblagesBA1aandBA1bischaracterizedby the same coral species, all other biological assemblage containing different species. All studied mounds are characterized by two distinct biological assemblages (Fig. 2). These variations appear to be controlled by climatechangesduringtheHolocene,asdemonstratedby the correlation between the biological assemblage and variations ofnear-surfacetemperatures in theNorthern Hemisphereduringthelast11,000years(Dansgaardetal., 1969; Scho¨nwiese, 1995), taking into account that the temperatureofseawaterdecreaseswithdepth,from158C to13.158Cbetweenthesurfaceand200m(Hebbelnetal., 2015). The biological assemblage showing the greatest diversity,densityandsizeofcoralsaswellasthepresence ofamorediverseandlargerassociatedfaunareflectsthe coldestconditions,withtemperaturesbelow138C. Never-theless, whentemperatures are above158C, cold-water coralsarerareandsmall.However,althoughthemajority of cold-water corals requires temperature conditions between 48C and 138C (Freiwald,2002), L.pertusa and M.oculatacanliveattemperaturesrangingfrom58Cinthe NorthAtlanticOceanto13.98CintheMediterraneanSea, andD.cornigeraislesssensitivetotemperatureincrease. According to Gori et al. (2014), D. cornigera can live between12and168C.Madreporaoculataandinparticular, Dendrophylliidaehave ahighertolerance totemperature changesthanL.pertusa.

Thisbiodiversitycouldalsobefavoredby oceanograph-icconditionsandincreasednutrientinputsintheAlboran Sea.TheridgesaswellasmostmoundsintheEastMelilla province aresurrounded by wideand deep depressions with strong bottom currents (Comas et al., 1999), especially around the BRI. The effect of long-lasting bottom currents,reinforced by topography, is observed in several sites in the Alboran Sea (Herna´ndez-Molina etal.,2011).Thesecurrentspreventcoralsfromburialby sedimentsandpromoteadditionalnutrientflowsrelayed byascendingcurrents,thuscreatingafavorable environ-mentfordevelopmentofahighdiversefauna.Upwelling has been recognized in the northwestern Alboran Sea (Sarhanetal.,2000);wherethewesterlywindstriggerthe upwelling of nutrient-rich deep waters, leading to enhanced biological productivity rates of up to 200gCm2yr1(Sarhan et al., 2000). Today upwelling

hasalsobeenobservedalongtheAlgeriancoasts(Bakun and Agostini,2001)andalong theAlmeria–Oran frontal zone, with highprimary productivityin relationto the densityfrontcreatedbythedifferenceinsalinitybetween Atlantic waters and the Mediterranean surface waters (PrieurandSournia,1994).Thesezonesofhigh productiv-ity andtransportofbiogenicmaterialintothegyresare shown in satellite images reflecting increased concen-trations of chlorophyll a(0.21 to0.67mg/m3)(Baldacci

etal.,2001).Theon-setofnewoceanographicconditionsin

theMediterraneanSeaatabout8kaBPaccompaniedby thedeepeningofthepycnoclineandthereinforcementof nutrientinputbetweentheAtlanticandtheMediterranean water was reported by Rohling et al. (1995) based on planktonic foraminifera. Benthic foraminifera from the Melillacarbonate moundprovince (Stalder et al.,2015) indicate nutrient-rich, well-oxygenated and relatively high-energy currents with strong seasonal plankton bloomsbetween10kaand6ka.

TheEastMelillacarbonatemoundprovincebelongsto an active margin, whoseNW–SE convergence hasbeen reactivated duringthe UpperTortonian and Quaternary (Guillemin and Houzay, 1982; Louaya and Hamoumi, 2010;Morel,1989).Tectoniccontrolthushasalsoplayeda majorrole intheinitiationand thedevelopment ofthe coralsbyshapinganirregulartopographyandforminga hardsubstratum.Thebanksandridgesoutcroppinginthis province probably uplifted following transtensive and transpressivetectonicsduringtheHolocene(Comasetal., 1999). Morphological highs (ridges, mud volcanoes and banks),haveformedfavorablehabitatsatwaterdepthsof around 200–300m. In addition, a relationship between carbonatemoundsanddeepfluidscouldbesupportedby the presence of ferruginous crusts covering some coral fragmentsinCMandBRI.Theseencrustationsaresimilar to the iron and manganese coating on fossil coral fragments (tubotomaculum) associated with the mud volcano depositsin thewestern Rif, which were inter-pretedastheresultofprecipitationofFeandMninrelation tohydrothermalcirculationsinducedbymud volcanism (Hamoumi,2005). Mudvolcanoeshave beenrecognized along the MoroccanMediterranean margin (Comasand Pinheiro,2007)andtheassociationofcold-water corals withmudvolcanoeshasbeenreportedfromtheMoroccan Mediterraneanmargin(Margrethetal.,2011)andtheGulf ofCadiz(Foubertetal.,2008).

TheHoloceneperiodismarkedbyeustaticvariationsin the Mediterranean Sea, induced by a combination of climaticchangesandtectonics.Thefirsteustaticsealevel rise is related to the warming at the beginning of the Holoceneat8000yearsBP.Thiswasfollowedbysealevel rises at:7570 years BP, 7000 years BP, 6000 years BP, 5900years BP, 5500yearsBP, 4800–4500years BPand 3500–3300yearsBP (Aloisietal.,1978; Bla´zquez etal., 2017).TheagesofcoralsfromtheCMandBRImoundsare consistentwithperiodsof highsea level,suggesting an eustatic control on coral evolution. This has also been demonstratedintheStraitofGibraltar(Hamoumi,1997) and theAlboran Moroccanmargin (Fink etal.,2013; Lo Iaconoetal.,2014;Stalderetal.,2015).

6. Conclusion

Sedimentologicalandgeochemicalstudiesofthe Britt-lestarRidgeIandtheCablierscarbonateMoundoftheEast Melilla province in the Moroccan Mediterranean margin allowsonetodistinguishsedimentaryfacies,sedimentary sources,modesofsedimenttransportandthegenesisand controlofthemounds.Thesemoundsareof‘‘clusterreef’’ type sensuRiding(2002)andarecharacterizedbycold-water scleractiniancoralsdominatedby M.oculata,D. dianthus.

(9)

D. cornigera, and L. pertusa, accompanied by C. calveri, J.cailleti,andS.vermiformis,aswellashaveadiversesessile andvagilefaunaandadominant matrixofmicriticmud, muddymicriteandmuddyallochemlimestone.Partofthe carbonatematrixisderivedfrombioerosionanddegradation ofcorals,skeletonsandshells,aswellaschemical precipita-tion andmicrobiological processes.Theother partofthe matrix andthe siliciclasticcomponents hasbeenderived fromgeologicalformationsoftheMoroccanhinterlandand Saharathroughtransportbywindsandriversandinthesea bybottomcurrentsandupwellingofnutrient-richwater. Sediments at the Cabliers Mound (located far from the mainland) are from a biogenic source with a small terrigenouscomponenttransportedbywinds.TheBrittlestar RidgeIisclosertothemainlandandsedimentationhereisof terrigenousormixed(terrigenous/biogenic)origin,with high terrigenousinputdominatedbyfluvialtransport.

Thedevelopment,genesis,andevolutionofcarbonate moundsinthestudiedareasiscontrolledby tectonics, climate, eustasy and hydrodynamic regime. Tectonics playedamajorroleinformingtheirregulartopography andhardsubstratewithshoals(ridges,mudvolcanoes andbanks)atwaterdepthsrangingfrom200to300m. Thesestructuresarerelativelyfarawayfromterrigenous inputs,buttheactionofbottomscurrentsandupwelling ofnutrient-rich watershavecreatedfavorablehabitats for cold-water corals. Climatic fluctuations during the Holocene(e.g.HoloceneClimateOptimumandLittleIce Age) triggered the oceanographic conditions and the hydrodynamicregimethatcontrolledthesedimentation inthearea.

Acknowledgements

ThanksareduetoDr.DavidVanRooijforgivingusthe opportunitytoparticipateintheMD194cruiseonboard the research vessel Marion-Dufresne, to Dr. Agostina Vertino for the determination of the coral species, to Dr.FranciscaMartinezRuizandtoDr.TjeerdVanWeering fortheirinsightfulcommentsandsuggestions,aswellas forthetimedevotedtothecorrectionofthispaper,andto Dr. Sylvie Bourquin for the pertinent remarks and the effortsprovidedtopublishthispaper.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbe found,intheonlineversion,athttps://doi.org.10.1016/j.crte. 2018.04.003.

References

AFNOR-NFX11-501,1957.Wovenwiretestsieves..

Aloisi,J.-C.,Monaco,A.,Planchais,N.,Thommeret,J.,1978.TheHolocene

transgressionintheGolfeduLion,southeastFrance:paleogeographic andpaleobotanicalevolution.Geogr.Phys.Quat.XXXII(2),145–162.

Auzende,J.-M.,Bonnin,J.,Olivier,J.-L.,1975.Lamargenord-africaine

conside´re´ecommeunemargeactive.Bull.Soc.geol.France17(4), 486–495.

Bakun,A.,Agostini,V.N.,2001.Seasonalpatternsofwindinduced

up-welling/downwellingintheMediterraneanSea.Sci.Mar.65(3),243– 257.

Baldacci,A.G.C.,Grasso,R.,Manzella,G., etal.,2001.Astudyofthe

Alboran seamesoscalesystembymeansofempiricalorthogonal functiondecompositionofsatellitedata.J.Mar.Syst.29,293–311.

Benzohra, M., Millot,C.,1995.Characteristics andcirculation ofthe

surfaceandintermediatewatermassesoffAlgeria.DeepSeaRes. PartIOceanogr.Res.Pap.42(10),1803–1830.

Bla´zquez,A.M.,Rodrı´guez-Pe´rez,A.,Torres,T.,Ortiz,J.E.,2017.Evidence

forHolocenesealevelandclimatechangefromAlmenaramarsh (westernMediterranean).Quat.Res.88,206–222.

Calvert,S.E.,Pedersen,T.F.,2007.Elementalproxiesforpalaeoclimatic

andpalaeoceanographicvariabilityinmarinesediments: interpreta-tionandapplication.In:Hillaire-Marcel,C.,Vernal,A.D.(Eds.), Prox-iesinLateCenozoicPaleoceanography.Elsevier,Amsterdam.

Comas,M.,Pinheiro,L.M.,2007.Discoveryofcarbonatemoundsinthe

AlboranSea:theMelillamoundfield.AbstractfortheFirstMAPG InternationalConvention,Conference&ExhibitionMarrakech Con-ventionCenter.28–31.

Comas,M.,Platt,J.P.,Soto,J.I.,Watts,A.B.,1999.TheoriginandTectonic

HistoryoftheAlboranBas.InsightsfromLeg161Results.Proc.Ocean DrillingProgramSci.Results161,555–580.

Dansgaard,W.,Johnsen,S.J.,Møller,J.,Langway,J.C.,1969.OneThousand

CenturiesofClimaticRecordfromCampCenturyontheGreenlandIce Sheet.Science166(3903),377–380.

ElMoumni,B.,1987.Lase´dimentation,auQuaternaireterminal,dansla

partieme´ridionaledelamerd’Alboran(Margemarocaine).The`sede 3e

cycle.Universite´ dePerpignan,France(212p).

Englund,J.O.,Jorgensen,P.,1973.Achemicalclassificationsystemfor

argillaceoussedimentsandfactorsaffectingtheircomposition.Geol. Fo¨ren.StockholmFo¨rh.95I(1),87–97.

Fedo, C.,Nesbitt,H.W.,Young, G.M., 1995.Unraveling theeffectsof

potassiummetasomatisminsedimentaryrocksandpaleosols,with implicationsforpaleoweatheringconditionsandprovenance. Geolo-gy23(10),921.

Fink,H.G.,Wienberg,C.,DePolHolz,R.,Wintersteller,P.,Hebbeln,D.,

2013.ColdwatercoralgrowthintheAlboranSearelatedtohigh

productivityduringtheLatePleistoceneandHolocene.Mar.Geol. 339,71–82.

Foubert,A.,Depreiter,D.,Beck,T.,Maignien,L.,Pannemans,B.,Frank,N.,

Blamart,D.,Henriet,J.P.,2008.Carbonatemoundsinamudvolcano

provinceoffnorth-westMorocco:Keytoprocessesandcontrols.Mar. Geol.248,74–96.

Freiwald,A.,2002.Reefformingcoldwatercorals.In:Wefer,G.,Billett,D.,

Hebbeln,D.,Jørgensen,B.B.,Schlu¨ter,M.,VanWeering,T.(Eds.),Ocean MarginSystems.Springer-Verlag,Berlin,Heidelberg,pp.365–385.

Gascard, J.C., Richez,C., 1985.Water Massesand Circulation inthe

WesternAlboranSeaandintheStraitsofGibraltar.Prog.Oceanogr. 15,157–216.

Gori,A.,Reynaud,S.,Orejas,C.,Gili,J.M.,FerrierPage,C.,2014.

Physio-logicalperformanceofthecoldwatercoraldendrophylliacornigera revealsitspreferencefortemperateenvironments.CoralReefs33, 665–674.

Gra`cia,E.,Perea,H.,Bartolome,R.,LoIacono,C.,Costa,S.,Diez,S.,Placaud,

X.,Smith,C.,Rodriguez,P.,Sanchez,H.,Quedec,O.,Danobeitia,J.,

cruiseteam,SHAKE.,2016.FirstAUVandROVinvestigationof

seis-mogenicfaultsintheAlboranSeaWesternMediterranean.Seventh InternationalWorkshoponMarineTechnology–Martech,Barcelona, Spain.

Guillemin,M.,Houzay,J.-P.,1982.LeNe´oge`nepostnappesetle

Quater-naire duRif nord-oriental,Maroc.Stratigraphieettectoniquedes bassinsdeMelilla,duKert,deBoudinaretdupie´montdesKebdana. NotesetMem.Serv.Geol.Maroc314,7–238.

Hamoumi,N.,1997.Lesformationscoralliairesdude´troitdeGibraltar:

Impact sur le projet Liaison fixe Europe–Afrique parun tunnel, rapportSNED.,22p.

Hamoumi,N.,2005.ThemudvolcanicprovincesoftheGulfofCadiz

MoroccanmarginandNWRifbelt:challengingareastobetter un-derstandcomplexmarinelandataregionalscale.,29,CIESM Work-shopMonographs,Monaco,pp.79–85.

Hebbeln,D.,Wienberg,C.,Bartels,M.,Bergenthal,M.,Frank,N.,Gaide,S.,

Henriet,J.P.,Kaszemeik,K.,Klar,S.,Klein,T.,Krengel,T.,Kuhnert,M.,

MeyerSchack,B.,Noorlander,C.,Reuter,M.,Rosiak,U.,Schmidt,W.,

Seeba, H.,Seiter,C.,Stange, N.,Terhzaz, L.,VanRooij, D.,2015.

MoccoMeBo:ClimatedrivendevelopmentofMoroccancoldwater coralmoundsrevealedbyMeBodrillingAtlanticvs.Mediterranean settings,CruiseMSM36–February18–March17,2014–MalagaSpain– LasPalmasSpain.MARIAS.MERIANBerichte,MSM36.DFG Senats-kommissionfuerOzeanographie. (81).

(10)

Heburn,G.W.,LaViolette,P.E.,1990.VariationsintheStructureofthe AnticyclonicGyresFoundintheAlboranSea.J.Geophys.Res.:Oceans 95,1599–1613.

Hernandez, J.,1983. Le volcanismemioce`ne du Rif oriental Maroc:

Ge´ologie, pe´trologieetmine´ralogied’uneprovinceshoshonitique, The`sed’E´tat.Universite´ Paris-6,France(458).

Herna´ndez-Molina,F.J.,Serra,N.,Stow,D.A.V.,Llave,E.,Ercilla,G.,Van

Rooij,D.,2011.Alongslopeoceanographicprocessesandsedimentary

productsaroundtheIberianmargin.Geo-Mar.Lett.31,315–341.

James, N.P.,Bourque,P.A.,1992.Reefsandmounds.In:Walker,R.G.,

James,N.P.(Eds.), FaciesModels,ResponsetoSeaLevelChange. pp. 323–347.

JimenezEspejo,F.J.,MartinezRuiz,F.,Sakamoto,T.,Iijima,K.,Gallego

Torres, D.,Harada, N., 2007. PaleoenvironmentalChanges inthe

WesternMediterraneansincetheLastGlacialMaximum:High Reso-lutionMultiproxyRecordfromtheAlgero–BalearicBasin.Palaeo3 246(2),292–306.

L’Helguen,S.,LeCorre,P.,Madec,C.,Morin,P.,2002.Newandregenerated

productionintheAlmeriaOranfrontarea,easternAlboranSea.Deep SeaRes.PartI:Oceanogr.Res.Pap.49(1),83–99.

LoIacono,C.,Gra`cia,E., Ranero,C.R.,Emelianov,M.,Huvenne, V.A.I.,

Bartolome´,R.,BoothRea,G.,Prades,J.,2014.TheWestMelillaCold

WaterCoralMounds,EasternAlboranSea:Morphological Character-izationandEnvironmentalContext.DeepSeaRes.PartIITop.Stud. Oceanogr.99,316–326.

Louaya,A.,Hamoumi,N.,2006.Applicationdelate´le´de´tectiona` l’e´tudede

lage´omorphologieetdelamorphodynamiqueducomplexelagunaire deNador.Bull.Geo.Observateur15,51–65.

Louaya,A.,Hamoumi,N.,2010.E´tudemorphostructuraledelare´gionde

Nador,Marocnord-oriental.Afr.Geosci.Rev.17(2),107–127.

Mahjoubi,R.,Kamel,S.,ElMoumni,B.,Noack,Y.,Parron,C.,2003.Nature,

origineandre´partitiondelaphaseargileusedelalagunedeNador MarocNordOriental.Geol.Belg.6(1–2),31–42.

Margreth, S.,Gennari,G.,Ru¨ggeberg,A.,Comas,M.C., Pinheiro,L.M.,

Spezzaferri,S.,2011.GrowthandDemiseofColdWaterCoral

Eco-systemsonMudVolcanoesintheWestAlboranSea:TheMessages fromthePlanktonicandBenthicForaminifera.Mar.Geol.282(1–2), 26–39.

Martı´n-Puertas,C.,JimenezEspejo,F.,Martinez-Ruiz,F.,Nieto-Moreno,V.,

Rodrigo, M.,Mata,M.P.,Valero-Garce´s,B.L.,2010. LateHolocene

climatevariabilityinthesouthwesternMediterraneanregion:an integratedmarineandterrestrialgeochemicalapproach.Clim.Past. 6,807–816.

Morel,J.-L.,1989.E´tatsdecontrainteetcine´matiquedelachaıˆneRifaine,

Maroc,duTortoniena` l’Actuel.Geodin.Acta.3(4),283–294.

Mount,J.,1985.Mixedsiliciclasticandcarbonatesediments:aproposed

firstordertexturalandcompositionalclassification.Sedimentology 32(3),435–442.

Nesbitt,H.W.,Young,G.M.,1982.Predictionofsomeweatheringtrendsof

plutonicandvolcanicrocksbasedonthermodynamicandkinetic considerations.Geochim.Cosmochim.Acta.48(7),1523–1534.

Nieto-Moreno,V.,Martinez-Ruiz,F.,Giralt,S.,JimenezEspejo,F.,

Gallego-Torres,D.,Rodrigo-Gamiz,M.,Garcı´a-Orellana,J.,Ortega-Huertas,M.,

de Lange, G.J.,2011. Tracking climate variabilityin thewestern

MediterraneanduringtheLateHolocene:amultiproxyapproach. Clim.Past.7,1395–1414.

Parilla,G.,Kinder,T.H.,Preller,R.H.,1986.Deepandintermediate

Medi-terraneanWaterinthewesternAlboranSea.DeepSeaRes.33(1),55– 88.

Prieur,L.,Sournia,A.,1994.Almofront1April–May1991:An

interdisci-plinarystudyoftheAlmeria–OrangeostrophicfrontSW Mediterra-neanSea.J.Mar.Syst.5(3–5),187–203.

Riding,R.,2002.Structureandcompositionoforganicreefsandcarbonate

mudmounds:Conceptsandcategories.Earth-Sci.Rev.58(1),163–231.

Rohling,E.J.,DenDulk,M.,Pujol,C.,VergnaudGrazzini,C.,1995.Abrupt

hydrographic changein theAlboran Seawestern Mediterranean around8000yrsBP.DeepSeaRes.PartI42,1609–1619.

Sarhan,T.,Lafuente,J.G.,Vargas,M.,Vargas,J.M.,Plaza,F.,2000.Upwelling

mechanismsinthenorthwesternAlboranSea.J.Mar.Syst.23,317– 331.

Scho¨nwiese,C.,1995.Klimaa¨nderungen:Daten,Analysen, Prognosen.

Springer,Heidelberg,Germany.

Schro¨der-Ritzrau,A.,Frank,N.,Fohlmeister,J.,Waldner,A.,Reith,S.,2015.

HolocenecoralpresenceacrosstheStraitofGibraltarMD194 Euro-fleets.In:VanRooij,D.,Hamouni,N.,Ru¨ggeberg,A.(Eds.), Late PleistoceneCarbonateMoundRecordalongtheMediterranean At-lanticGateway.FirstMD194EuroFLEETSGatewayspostcruise meet-ing,5May2015.FacultyofSciencesRabat,Morocco,(Programmeand AbstractBook),pp.10–11.

Stalder,C.,Vertino,A.,Rosso,A.,Ru¨ggeberg,A.,Pirkenseer,C.,

Spangen-berg,J.E.,Spezzaferri,S.,Camozzi, O.,Rappo,S.,Hajdas,I.,2015.

Microfossils,aKeytoUnravelColdWaterCarbonateMoundEvolution throughTime:EvidencefromtheEasternAlboranSea.PLoSOne10 (10),e0140223.

Suttner,L.J.,Dutta,P.K.,1986.Alluvialsandstonecompositionand

paleo-climate,IFrameworkmineralogy.J.Sediment.Petrol.56(3),329–345.

Tesson,M.,Gensous,B.,1978.Lesse´dimentssuperficielsdelalagunede

Nador(sebkhadeBouAreg):principalescaracte´ristiquesand re´par-tition.Bull.Inst.PeˆchesMaroc24.

Titschack,J.,Fink,H.G.,Baum,D.,Wienberg,C.,Hebbeln,D.,Freiwald,A.,

2016. Mediterranean Cold Water Corals: AnImportant Regional

CarbonateFactory? TheDepositionalRecord2(1),74–96.

VanRooij,D.,Hebbeln,D.,Comas,M.,Vandorpe,T.,Delivet,S.,2013.The

MD194 shipboardscientists, 2013. EuroFLEETS CruiseSummary. Report«MD194GATEWAY». Ca´diz,Spain,Lisbon,Portugal,10–21 June.GhentUniversity,Belgium214.

Va´zquez,J.T.,Estrada,F.,Vegas,R.,Ercilla,G.,d’Acremont,E.,

Ferna´ndez-Salas,L.M.,Alonso,B.,Ferna´ndez-Puga,M.C.,Gomez-Ballesteros,M.,

Gorini,C.,2014.QuaternarytectonicsinfluenceontheAdra

conti-nentalslopemorphology(NorthernAlboranSea).In:Una aproxima-cio´nmultidisciplinaralestudiodelasfallasactivas,losterremotosy elriesgosı´smic,2 Reunio´nIbe´ricasobreFallasActivasy Paleosis-mologı´a,22–24October2014,Lorca,Spain.89–92.

Wengler,L.,Vernet,J.-L.,Ballouche,A.,Damblon,F.,Michel,P.,1992.

Significationdespale´omilieuxete´volutionduclimatauMaghreb.Le MarocorientalauPle´istoce`nere´cent.Bull.Soc.Bot.France.Acta.Bot. 139(2–4),507–529.

Wienberg,C.,Hebbeln,D.,Fink,H.G.,Mienis,F.,Dorschel,B.,Vertino,A.,

Lo´pezCorrea,M.,Freiwald,A.,2009.Scleractiniancold-watercoralsin

theGulf ofCa´diz– Firstclues about theirspatial andtemporal distribution. Deep SeaRes. Part I Oceanogr. Res. Pap. 56 (10), 1873–1893.

Figure

Fig. 5. %SiO 2 /%(Al 2 O 3 + K 2 O + Na 2 O) rates of samples plotted in the diagram of Suttner and Dutta (1986).
Fig. 6. Alteration rates of the samples plotted in the diagram of Englund and Jorgensen (1973).

Références

Documents relatifs

Ainsi, pour évaluer la capacité du modèle à repro- duire des trajectoires stéréotypées circulaires lors de la der- nière séance d’entraînement, nous avons remplacé S et b S

We used the VIKING near-infrared imaging survey to search for quasars above a redshift z  6.5. We employed two sets of color criteria to select potential quasars at high redshift.

In a similar context, Danóczy and Hahnloser (2006) also proposed a two-state HMM for detecting the “singing-like” and “awake-like” states of sleeping songbirds with neural

Morphologically, the Western Mediterranean Ridge can be divided into three main units from the Sirte Abyssal Plain to the Hellenic Trench: a broad outer unit,

This is illustrated by an experimental reference sample quenched at 580°C in which two different populations of gregoryite can be identified (Fig. 3 ): (1) a population with

If this is indeed the case, one would assume that it would be preferable to develop a short multichannel form (MiniPONS) of the PONS that contains most of the channels and

(1981) demonstrated that after short exposure of bacteria to antimicrobial agents a so-called postantibiotic effect (PAE) on bacterial regrowth, after short exposure to the study

[ 1 ] Nd isotopic compositions ( &#34; Nd) of seawater profiles and deep ‐ sea corals collected off the coast of Iberia and from the Bay of Biscay were measured (1) to constrain the