• Aucun résultat trouvé

امتحانات في القياس و المكاملة

N/A
N/A
Protected

Academic year: 2022

Partager "امتحانات في القياس و المكاملة"

Copied!
52
0
0

Texte intégral

(1)

r¶ z˜ Tyq˜ þþþþþ ­@AF°˜ Ayl`˜ TFCdm˜ þþþþþ AyRA§r˜ œs’

Tl›Akm˜ ¤ xAyq˜ ¨ AžAt›

-x 6

y

0q

qqqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqq

T

1 1

(x, y) x y

x

-x 6

y Q

@

@@R

x

™›Akt˜ ¨ Tl›Akm˜   dy›

Z 1

−1

Z

1−x2

1−x2

u(x, y)dy

qqqqqqqqq dx

qqqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqq qqqqqqqq

qqqqqqqq qqqqqqqq qqqqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqqqqqqqqqq qqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq (x,

1x2) (x,

1x2)

−1 1

1

−1

u1

u1 u2

u2

x y

1

1 2

2015−2014

Ty`›A˜ Tns˜

(2)

xrhf˜

4 . . . . 2010/02/13 At› 1 5 . . . . 2010/06/09 At› 2 6 . . . . 2010/09/20 At› 3 7 . . . . 2011/02/06 At› 4 8 . . . . 2011/06/21 At› 5 9 . . . . 2011/06/29 At› 6 9 . . . . 2011/09/10 At› 7 10 . . . . 2012/03/15 At› 8 11 . . . . 2012/06/24 At› 9 12 . . . . 2012/09/06 At› 10 12 . . . . 2013/02/06 At› 11 13 . . . . 2013/06/01 At› 12 14 . . . . 2013/09/10 At› 13 15 . . . . 2014/02/06 At› 14 16 . . . . 2014/06/11 At› 15 16 . . . . 2014/06/23 At› 16 17 . . . . 2014/09/10 At› 17 20 . . . . 2010/02/13 At› ™ 18 23 . . . . 2010/09/20 At› ™ 19 24 . . . . 2011/06/21 At› ™ 20 27 . . . . 2011/09/10 At› ™ 21 30 . . . .2012/03/15 At› ™ 22 31 . . . . 2012/09/06 At› ™ 23 34 . . . . 2013/02/06 At› ™ 24 37 . . . . 2013/06/01 At› ™ 25 42 . . . .2013/09/10 At› ™ 26 45 . . . . 2014/02/06 At› ™ 27 49 . . . .2014/09/10 At› ™ 28

(3)

‰yR wm˜

A\ž) AyRA§C T` r˜ Tns˜ TblW˜ ›d’ ¨t˜ AžAt›¯ Ÿ› dˆ œ§rk˜ ¹CAql˜ dqž

.2014rbmtbF¤2010©rfy Ÿy A› ­rtf˜ ¨ Tbq˜A ­dAF°˜ Ayl`˜ TFCdm˜A (5 +A§Cw˜Ak .TlOfm˜ Ah˜wl CAbt¯ £@¡ Ÿ› {`b˜ AnqC dq˜¤

xAyq˜ T§r\n˜ ™S œh Ÿ› ¢nkm TbFAn› ­ A› xC dl˜ rwyF @¡   ¨ ryb• Anl›¤

. At›®˜ TbFAn› Tyfyk , Ab˜AV  A•   , rySt˜ Ÿ›¤ Tl›Akm˜ ¤

(4)

2010/02/13

 At› .

1

. ©JK.ñÊË éƒAJ

®K.ð éJÊKPñJ.Ë@ éKQ ‚ªK. é JÓ Z Qk. ø

@ð (

R2

ð

@)

R

Xð Q K ú

ÎK AÓ É¿ ú ¯

š¤± Ÿ§rmt˜ .1.1 .1.1.1

. éÊÓA¾ÖÏ@ I . KQK ºªK. Õç' èQå…AJ.Ó

R0π(R0xsiny dy)dx

ÉÓA¾JË@ I . ‚k @

.2.1.1

.

0< x

IJk

R01ye−xydy

I . ‚k @

‡J ‚ÖÏ@ ½Ë Y» I . ‚k @

∂x

e−xy

1 +y2[cosx+ysinx]

.

¨žA˜ Ÿ§rmt˜ .2.1

?

éƒñJ ¯

χS

Éë ? €ñJ ¯

S

Éë .

è QÒÖÏ@ é JË@X

χS

ð

S =]0,∞[×]0,1[

à

AK. ¬QªÖÏ@

R2

¡Qå…

S

áºJË áKPñ» YÖÏ@ áËAj.ÒÊË áK QÒÖÏ@ áJË@YË@ éËBYK.

χS(x, y)

, QKQ.K àðYK. ,I.J»

@

R2 3(x, y)

Ég.

@ áÓ .

χ]0,1[(y)

ð

χ]0,∞[(x)

.1.2.1

.

L1(R2)

úÍ@ ùÒ J K

R2 3(x, y)7−→f(x, y) =χS(x, y)ye−xy sinxR

©K.A JË@ à

@ I. K

@

[. I. ƒA JÓ PAJ.»@ ©Ó úÎJ KñK é JëQ.Ó áÓ èXA ®JƒB@ ½ JºÖß: XA ƒP@ ]

.2.2.1

Õç' . éJÒJ¯ H.A‚k áÓ ½ J ºÖ

ß éJ ®JºK.

T =RR2f(x, y)dxdy

ÉÓA¾JË@

éK.A JºË ú æJK.ñ ¯ é JëQ.Ó ÐY jJƒ@

à

@ áK.

èQKA ªÓ

éJ ®JºK. ÉÓA¾JË@ éK.AJºK.

Z +∞

0

sinx x

1e−x

x e−x

dx= 1 2ln 2.

˜A˜ Ÿ§rmt˜ .3.1

ÈAj.ÒÊË è QÒÖÏ@

éË@YË@ ù

ë

χI

IJk

ϕ(x) = 2xχI(x)

à

AK.

R

úΫ ¬QªÖÏ@

ϕ

ù

®J ®mÌ'@ ©K.AJË@ áºJË á« .

R3x

,

ϕn(x) =nϕ(n(xn))

à

AK.

é ¯QªÖÏ@

n}n=1

éJªK.AJË@ éJËAJJÖÏ@ áºJËð .

I = [0,1]

.

N?3n

,

suppϕn .(é’ ¯CÖÏ@ ù

ë {...} ) suppϕn={xR|ϕn(x)6= 0} à

AK. é¯QªÖÏ@

é«ñÒj.ÖÏ@ ùë ϕn Y Jƒ

.1.3.1

.

3< n

,

ϕn

éÓA«

é ®’.ð .

ϕ3

,

ϕ2

,

ϕ1

,

ϕ

©K.@ñJË@ HA KAJK. Õæ…P

@ , ÕΪÖÏ@  ® K úΫ

.2.3.1

. é JJªK I.Ê¢

ϕ

©K.A K ñm '

R

úΫ

é£A‚.K. H.PA ®JK

n}n=1

éJËA JJÖÏ@ à

@ á K.

?

L1(R)

ú

¯

ϕ

ñm ' éJ ËAJJÖÏ@ è Yë H.PA®K á« @ XAÓ

(5)

‰ r˜ Ÿ§rmt˜ .4.1 .1.4.1

à

AK.

I? =]0,1[

úΫ ù¢ªÖÏ@

gα

ù

®J ®mÌ'@ ©K.AJË@ áºJËð AJ®J®k @XY«

[1,+∞[3α

áºJË .

α < p

àA¿ AÒêÓ

Lp(I?)63gα

áºË ,

Lα(I?)3gα

à

@ áK. .

gα(x) =x−1/α(1lnx)−2/α

.2.4.1

áºË ,

L2(J)

úÍ@ ùÒ J K

g(x) =x−1/2(1 +|lnx|)−1

à

AK.

J =]0,+∞[

úΫ ¬QªÖÏ@

g

©K.A JË@ à

@ áK.

.

26=p

ð

[1,∞[3p

àA¿ AÒêÓ

Lp(J)63g

2010/06/09

 At› .

2

.­zymm˜ ¢t˜ χI Á¤I = [0,+∞[‰Sž¤ .yw˜ xAyq¤ Tyl§Cwb˜ ¢ryK` (¢n› ºz © ¤)R ¤zž ,¨l§ A› ¨

š¤± Ÿ§rmt˜ .1.2

.

R3x

,

g(x) =e−xχI(x)

ð

f(x) =e−|x|

à

AK. á ¯QªÖÏ@ á®J®mÌ'@ áªK.AJË@

g

ð

f

áºJË .

[1,+∞]3p

àA¿ AÒêÓ

Lp(R)

©JK.ñË ZA ’ ¯ úÍ@ àAJÒJ K

g

ð

f

à

@ I. K

@ (@)

.

R3x

é¢ ® K É¿ Y J«

f ? g

­

ÊË@ Z@Yg. I.‚k

@ (H.)

¨žA˜ Ÿ§rmt˜ .2.2

,

Qn={xR| |u(x)|> n}

ð

Jn=]− ∞,−n[∪]n,∞[

© ’ JËð

> p1

©Ó

Lp(R3u

áºJË .

u0(x) = 1+x22

à

AK. ¬QªÖÏ@

u0

©K.A JË@ éËAg ú

¯

Q1

á« .

N3n

.

n→∞lim

Z

R

χJn|u|pdx

éKAî DË@ I.‚jJË H.PA®JÊË éJ.ƒA JÓ é JëQ.Ó YÒJ«@ (@) ñë

λ(Qn)

IJk ,

RR|u|pdxnpλ(Qn)

à

@ PAJ.» B@ð

RQn|u|pdx

ð

RR|u|pdx

é KPA ®Öß. á

K. (H.)

.

n→∞lim λ(Qn)

i. J Jƒ@ .

Qn

Z Qj.ÊË ©JK.ñË €AJ ¯

˜A˜ Ÿ§rmt˜ .3.2

: ú ÎK AÓ ‡ ®m' @ X@

éKAî E B AÓ Y J« ÐðYªÓ é K@

R

úΫ QÒ J‚Ó

ξ

ù

®J

®k ©K.A K á« Èñ® K :Q» YK .(

K

éÒÒJÓ)

cK 3x

àA¿ AÒêÓ

ε≥ |ξ(x)|

IJm'.

R

áÓ

K

@Q

Ó Z Qk. Yg.ñK

0< ε

àA¿ AÒêÓ èðP YË@ Õæ ¢ JK. èXð Q Kð

C0(R)

K. éJË@ Q ‚ AJ«Aª ƒ ZA ’ ¯ ©K.@ñJË@ è Yë ɾ ‚

|ξ|= sup

x∈R

|ξ(x)|, ξ ∈ C0(R).

.

C0(R)⊃ Cc(R)

à

@ áK. Õç ' .

Cc(R)63ξ0

ø

@ , @Q

Ó Q « èY Jƒð

C0(R)3ξ0

©K.A JË BAJÓ ¡«

@ (@)

:(Y Jƒ

= supp

) ‡

®m'

ga

@QÒJ‚Ó AJ

®J ®k AªK.AK ék@Qå• á« .AJ®J®k @XY«

0< a

áºJË (H.)

suppga= [−a1, a+ 1]

ð

ga(x) = 1, ∀x[−a, a]

ð

0ga(x)1, xR.

. èðP YË@ Õæ ¢ JK. Xð QÓ

C0(R)

ú

¯ ­J J»

Cc(R)

à

@ IJ. JË

‡J.ƒ AÜØ Y ®Jƒ@ (k.)

(6)

‰ r˜ Ÿ§rmt˜ .4.2

: àA¿

[1,+∞[3p

©Ó

Lp(R)3w

àA¿ @ X@ é K

@

éêk.ñÖÏ@ ÈAÔ«

B@ áÓ IÒÊ« Y ®Ë

limt→0

Z

R

|w(z+t)w(z)|pdz= 0.

àA¿ @ X@ é K

@ úΫ àAëQ.ÊË PYËñë

é JKAJ. JÓð ( HAJ.K@ àðYK. AêÊJ.®K ú æË@) éj.J JË@ è Yë ­J £ñK ½ JºÖß Éë ÐA ¢J KAK. @QÒ J‚Ó

ϕ ? ψ

­

ÊË@ Z@Yg. àA¿ ,

(p0= p−1p )

,

Lp0(R)3ψ

àA¿ð

> p >1

©Ó

Lp(R)3ϕ

? éÊÒ»

AK.

R

úΫ

2010/09/20

 At› .

3

  © ,AyˆA`J rZAnt›  A• Ð .yw˜ xAyq ¤z› R2 Ylˆ ¯wm• Ayqyq A`A ϕ Ÿky˜ þþ ry•@

An§d˜ ¢žr=p

x21+x22yϕ(x1, x2) =ϕ(r) Z

R2

ϕ(x1, x2)dx1dx2= 2π Z

0

ϕ(r)r dr.

©¤rk˜ ­dw˜ ‘®‹ TAs› ¨¡σN) An§dlRN ¨ ¯wm•¤ AyˆA`J rZAnt›ϕ‰A ™ Ÿ› T›Aˆ TfO¤

: (©dyl’±

Z

RN

ϕ(x)dx= Z

RN

ϕ(|x|)dx = σN

Z

0

ϕ(r)rN−1dr,

x= (x1, . . . , xN), r=|x|= q

x21+· · ·+x2N.

 RYlˆ Ÿyr`m˜ v ¤u  Ayqyq˜  A`At˜ Ÿky˜ š¤± Ÿ§rmt˜ .1.3

u(x) =−χ[−1,0](x) +χ]0,1](x) wa v(x) = (1 +x2)−1.

. lim

x→+∞(u ? v)(x)Ÿyˆ œ u ? vl˜ º d s Y˜ ¨mtn§ψ(x) =e−x2  RYlˆ ‘r`m˜ ψ¨qyq˜ ‰At˜   Ÿy ( ¨žA˜ Ÿ§rmt˜ .2.3

?[1,+∞]“lŒm˜ šAm˜ Ÿ›p  A• Amh›Lp(R) ψ ¨mtn§ ™¡ .L1(R)

£®ˆ ry•@t˜ ¤ ¨nyw Tn¡rbm Any`ts› s .I1 = Z

R

e−x21dx1 = Z

R

e−x22dx2 ‰Sn˜ ( .I1 Tmy’ Ahn› tntF ¤I12 Tmy’

.(2 Ÿ› rb• ¨`ybV dˆ N y) IN = Z

RN

e−x21−x22−···−x2Ndx1dx2· · ·dxN  µ ‰Sn˜ .N  A• Amh›IN T›Aˆ TfO¤ œI3 s T§dyl’± ­rk˜ BR=B(0, R) Ÿkt˜¤ Ayqyq dˆ 0 < R <1 Ÿky˜ ( ˜A˜ Ÿ§rmt˜ .3.3  BR¨ ‘r`m˜ θ‰At˜ Ÿky˜¤ .R rWq˜ Ož¤0 z•rm˜ ÐRN ¨ Twtfm˜

θ(0) = 0 ¤ θ(x) =|x|−N|ln|x||−α, 0<|x|= q

x21+· · ·+x2N < R

.L1(BR)Y˜ ¨mtn§θ  y .YW`› A ¨qyq dˆ1< αy .0< ε A• Amh›L1+ε(BR)Y˜ ¨mtn§ ¯θ  b (

(7)

Lp(X,A, µ)Ÿ› ‰ w Ty˜Att›{fn}n=1 Ÿkt˜¤ .Asyq› ºAS(X,A, µ)Ÿky˜ ‰ r˜ Ÿ§rmt˜ .4.3

{fn}n=1 Ty˜Attm˜   |rfn˜ .L(X,A, µ) Ÿ› ‰ w Ty˜Att›{gn}n=1 Ÿkt˜¤ .1p <+∞ y

¨ –J þþµTCAqt›{gn}n=1 Ty˜Attm˜  ¤ .ºASf˜ @¡ Ÿ›f ‰A wžLp(X,A, µ) ¨ TCAqt›

‰›g‰A wžX kgnkL(X,A,µ)M, ∀nN?,

¨ f gwž TCAqt› {fngn}n=1 Ty˜Attm˜   Ylˆ A¡dnˆ Ÿ¡r .A›Am w› ¨qyq dˆ M y .Lp(X,A, µ) ].Tnmyh˜A CAqt˜ Tn¡rb› dts¤fngnf g= (fnf)gn+f(gng) tk   –nkm§ : AJC[

2011/02/06

 At› .

4

.yw˜ xAyq¤ Tyl§Cwb˜ ¢ryK` (¢n› ºz © ¤ R2 ¤)R ¤zž ¨l§ A› ™• ¨

.T = Z e

1

Z lnx 0

dy x(1 +y)

dx™›Akt˜ Ÿky˜ š¤± Ÿ§rmt˜ .1.4 .Tl›Akm˜ yr Hk` (þ) œ ­rJAb› T s () .Tl›Akm˜   dy› œFC ()

¨qyq˜ ‰At˜ Ÿky˜¤R2 C= [1,+∞[×[1,+∞[¢tnm˜ ry‹ ‰rm˜ Ÿky˜ ¨žA˜ Ÿ§rmt˜ .2.4  C Ylˆ ‘r`m˜ f f(x, y) = xy

(x+y)3·

.–tA Cr ?xwy’f ™¡

C dqm˜ As˜ ¢n› dftF ¤

∂x

−x (x+y)2

¹z˜ “tKm˜ s ()

K = Z

1

Z

1

f(x, y)dx dy.

?K =L™¡ .L=R 1

hR

1 f(x, y)dy i

dxC dqm˜ –˜@• s

xAy’ w¡λ2 ,L1(C,BC, λ2) ºASf˜ Y˜ ¨mtn§ ¯f ‰At˜   Yl`f˜ As˜ ¤ CAŒ}³A b () .yw˜

y ϕ(x) = (sinx)χI(x)   R Ylˆ ‘r`m˜ ϕ ¨qyq˜ ‰At˜ Ÿky˜ ˜A˜ Ÿ§rmt˜ .3.4   Tr`m˜ n}n=1 Tyqyq˜ ‰ wt˜ Ty˜Att› Ÿkt˜¤ .I =]0, π[ šAml˜ ­zymm˜ T˜ d˜ ¨¡ χI

.ϕn dnF ,suppϕnŸyˆ .R3x ,ϕn(x) =ϕ(xnπ)

.3< n,ϕn T›Aˆ TfO¤ .ϕ3 ,ϕ2 ,ϕ1 ,ϕ‰ wt˜ AžAy œFC ,œl`m˜ Hfž Ylˆ () .¢nyy` lW§ϕ‰A wžRYlˆ TVAsb CAqtn}n=1Ty˜Attm˜   Ÿy ()

?L1(R)¨ϕwž Ty˜Attm˜ £@¡ CAq Ÿˆ ÐA›

(8)

.Ÿyqyq Ÿ§ dˆ1> b >0¤ 1> a >0Ÿky˜ ‰ r˜ Ÿ§rmt˜ .4.4

?Ayhtn›R0ax−αdx‰Fwm˜  Am§C ™›Ak  wk§ ¨• α¨qyq˜ d`˜ CAyt § y• ()

?Ayhtn›Rb1(1x)−βdx‰Fwm˜  Am§C ™›Ak  wk§ ¨•β¨qyq˜ d`˜ CAyt § y•¤ () Y˜ Aymtn› x−α(1x)−β ‰At˜  wk§ ¨• β ¤α Ylˆ ŸyVrK˜ “bFAm› tntF (þ)

?L1(0,1)

2011/06/21

 At› .

5

.¢FAy’¤ yw˜ ­ryK` ¢n› ºz © ¤ (RN ¤)R¨l§A› ™• ¨ ¤z§

 Ayqyq˜  A`At˜ ¤ J = [−2,2] ¤ I = [−1,1]  A} rtm˜  ¯Am˜ Ÿky˜ š¤± Ÿ§rmt˜ .1.5 .£dnF¤f ? g l˜ º d œg¤ f ©dnF Ÿyˆ .g(x) =χJ(x)¤ f(x) = 2xχI(x) R3x A• Amh› 0< h(x)  A• Ð .L1(R) Y˜ ¨mtn§ Ayqyq A`AhŸky˜ ¨žA˜ Ÿ§rmt˜ .2.5 .L1(R)Y˜ ¨mtn§ ¯ (h‰At˜ wlq›)h−1   b

].h−1/2h1/2º d˜ Ylˆ Tm¶®› Tn§Abt› “ybW –nkm§ : AJC[

  © ,AyˆA`J rZAnt›  A• Ð .RN Ylˆ Abw›¤ AFwy’ Ayqyq A`AϕŸky˜ þþ ry•@

ϕ(x1, . . . , xN) =ϕ(r), r= q

x21+· · ·+x2N

: (©dyl’± ©¤rk˜ ­dw˜ ‘®‹ TAs› ¨¡σN) An§d˜ ¢ž

Z

RN

ϕ(x)dx = Z

RN

ϕ(|x|)dx=σN

Z

0

ϕ(r)rN−1dr, x= (x1, . . . , xN), r=|x|=

q

x21+· · ·+x2N.

Ÿ§ dˆ p 1 ¤ α 6= 0 Ÿky˜¤ .RN ¨ T§dyl’¯ ­dw˜ ­r• U Ÿkt˜ ˜A˜ Ÿ§rmt˜ .3.5 :¥Akt˜ b .Ÿyyqyq

αp+N >0 ⇐⇒ ϕ(x) =|x|αLp(U).

(1)

αp+N <0 ⇐⇒ ψ(x) =|x|α Lp(cU), cU =RN \ U. (2)

‰Sn˜ .Ayqyq 1 < p < ¤ Ω =]0,1[ wtfm˜ šAm˜ Ÿky˜ ‰ r˜ Ÿ§rmt˜ .4.5 .3x ,un(x) =n1/pe−nx

:{un}n=1 Ty˜Attm˜   y .¤d`m˜ ‰At˜ wž ¨ TVAsb CAqt Ahnk˜ ­ ¤d› ry‹ (1 .N?3n A• Amh› ,kunkLp(Ω)M y 0< M A dw§ ¢ž Yn`m ,Lp(Ω)¨ ­ ¤d› (2 .¤d`m˜ ‰At˜ wž Lp(Ω)¨ T§CAqt› ry‹ (3 .p1+p10 = 1   ‘r`m˜ d`˜ w¡p0 y ,Lp0(Ω)3v A• Amh› ,lim

n→∞

Z

unv dx= 0 Ÿk˜ (4 ].Lp

0(Ω)ºASf˜ ¨¨ T} rt› dnF Ф ­rmtsm˜ ‰ wt˜ TA•  dtF –nkm§ : AJC[

(9)

2011/06/29

 At› .

6

.¢FAy’¤ yw˜ ­ryK` ¢n› ºz © ¤ (RN ¤)R¨l§A› ™• ¨ ¤z§

 Ayqyq˜  A`At˜ ¤ J = [−4,4] ¤ I = [−2,2]  A} rtm˜  ¯Am˜ Ÿky˜ š¤± Ÿ§rmt˜ .1.6  Ay –˜@• œFC .£dnF¤f ? g l˜ º d œg¤f ©dnF Ÿyˆ .g(x) =χJ(x)¤f(x) = 3x2χI(x)

.f ? g‰At˜

R3x A• Amh› 0< h(x)  A• Ð .L2(R) Y˜ ¨mtn§ Ayqyq A`AhŸky˜ ¨žA˜ Ÿ§rmt˜ .2.6 .L2(R) Y˜ ¨mtn§ ¯ (h‰At˜ wlq› ‰r›)h−2   b

α6= 0 Ÿky˜¤ .U Tq}®›U Ÿkt˜¤RN ¨ T§dyl’¯ ­dw˜ ­r• U Ÿkt˜ ˜A˜ Ÿ§rmt˜ .3.6 :‰At˜ ¨mtn§ ¨•α d`˜ CAyt § y• .Ÿyyqyq Ÿ§ dˆ p1¤

?Lp(U) ϕ(x) = (1− |x|)α (1 .cU =RN \ U An¡ ?Lp(cU) ψ(x) = (|x| −1)α (2

‰Sn˜ .Ayqyq dˆ1< p <¤ Ω =]1,1[wtfm˜ šAm˜ Ÿky˜ ‰ r˜ Ÿ§rmt˜ .4.6

un(x) = (n|x|)1/pe−nx2, xΩ.

:{un}n=1Ty˜Attm˜ ™¡

?A› ‰A wž¨ TVAsb TCAqt› ?­ ¤d› (1

?Lp(Ω)¨ ­ ¤d› (2

?Lp(Ω)¨ T§CAqt› (3 2011/09/10

 At› .

7

.¢n› ºz Ylˆ ¤ ¢l• ºASf˜ Ylˆ yw˜ xAy’ ¯ An¡ dtsž ¯ Ahž b .un(x) = x2

n4x4+ 1   R Ylˆ Tr`m˜ {un}n=1 Ty˜Attm˜ Ÿkt˜ š¤± Ÿ§rmt˜ .1.7

!©C¤rR r§rbt˜ .¢nyy` ¨Œbn§u‰A wž ,[1,∞]3p A• Amh› ,Lp(R)¨¤ TVAsb TCAqt›

  Tr`m˜ R2 ­r•B Ÿkt˜ ¨žA˜ Ÿ§rmt˜ .2.7

B = n

(x, y)R2 |0x2+y2 < 1 2

o

 B Ylˆ ‘r`m˜ ¤ AyˆA`J rZAntm˜ ¨qyq˜ ‰At˜ ϕrbt`ž , w› ¨qyq dˆ α™ Ÿ›¤

ϕ(x, y) = lnp

x2+y2

−α(x2+y2)−1/2, (x, y)B\ {(0,0)}, ϕ(0,0) = 0.

?L2(B)ϕ‰At˜ ¨mtn§ ¨•α d`˜ CAyt § y•

   Ar`m˜  Ayqyq˜  A`At˜ ¤ I = [−1,1] ¨qyq˜ šAm˜ Ÿky˜ ˜A˜ Ÿ§rmt˜ .3.7 .f ? gl˜ º d Ÿyˆ .Cw•@m˜ šAml˜ ­zymm˜ T˜ d˜ ¨¡χI ,g(x) = x21+1 ¤ f(x) = 2xχI(x)

(10)

  J Ylˆ Tr`m˜ {vn}n≥1 Ty`At˜ Ty˜Attm˜ ¤ J = [0,1] šAm˜ Ÿky˜ ‰ r˜ Ÿ§rmt˜ .4.7 .vn(x) =n/(n2x2+ 1)

.Ty˜Attm˜ £@h˜vTWysb˜ T§Ahn˜ Ÿyˆ (1

L1([a,1]) ¨ C ¤ CAqt˜ ,Ÿk˜ .L1(J) ¨ v wž CAqt ¯ {vn}n≥1 Ty˜Attm˜   b (2 .0< a <1 A• Amh›

.L1(J) ¨v wž CAqt{x vn}n≥1 Ty˜Attm˜   b (3 .J šAm˜ Ylˆ rmts›¤ w› ¨qyq ‰A Y˜hz›r§ Ÿyy˜At˜ Ÿy˜ ¥s˜ ¨

‰At˜ wž CAqt ¯ {h vn}n≥1 Ty˜Attm˜   b ,min

J h =gm >0 ,h {yS  A• Ð (4 .L1(J)ºASf˜ ¨ ¤d`m˜

.L1(J) ºASf˜ ¨ ¤d`m˜ ‰At˜ wž CAqt{h vn}n≥1   y ,h(0) = 0 A• Ð ,Ÿk˜ (5 2012/03/15

 At› .

8

.¢n› ºz Ylˆ ¤ ¢l• (R2 ¤)RºASf˜ Ylˆ yw˜ xAy’ ¯ An¡ dtsž ¯

š¤± Ÿ§rmt˜ .1.8 .D=

(x, y)R2|x2+y29 y

x2+ 1   ‘r`m˜ R2 ©wtsm˜ zy œFC () .R2 Ylˆ šwm•f(x, y) =xyχD(x, y) ‰At˜   Ÿy .Dzyl˜ ­zymm˜ T˜ d˜ χD Ÿkt˜ ()

. yrt˜ @¡ Hk`¤ xœy Y˜ Tbsž Tl›Akm˜A @¡¤R2 Ylˆf ‰At˜ ™›Ak s T˜ d˜ ¨¡χI yϕ(x) = (1x)χI(x)  YW`m˜ ¨qyq˜ ‰At˜ ϕŸky˜ ¨žA˜ Ÿ§rmt˜ .2.8 .ϕn(x) =nϕ(n(x+n))yn}n=1Ty`At˜ Ty˜Attm˜ Ÿkt˜¤ .I = [0,1]Q rtm˜ šAml˜ ­zymm˜

.ϕn ‰At˜ dnF ,suppϕn Ÿyˆ¤ϕn T›Aˆ TfO¤ϕ2 ,ϕ1 ,ϕ‰ wt˜ AžAy œFC () .¢nyy` lW§ϕ‰A wž TVAsb TCAqt›n}n=1 Ty˜Attm˜   Ÿy ()

?L1(R)¨ϕ n}n=1Ty˜Attm˜ CAqt ™¡ (þ)

˜A˜ Ÿ§rmt˜ .3.8

¤ 0 < x < 1 ™ Ÿ› g(x) = x1

lnx   ‘r`m˜ g ‰At˜  wk§ ¨• β ¤ α ŸytA˜ Ÿyˆ () .[0,1]Q rtm˜ šAm˜ Ylˆ rmts›g(1) =β ¤ g(0) =α

.Yþ¶An˜ ™›Akt˜  dtFA ¢tmy’ As w¡ And¡¤ ww›T = Z 1

0

x1

lnx dx Am§C ™›Ak  Ð

‘r`m˜ ¨qyq˜ ‰At˜ uŸky˜¤ .Ω =]0,1[×]0,1[  ‘r`m˜ R2¨ wtfm˜ ºz˜ Ÿky˜ () .63(x, y) A• Ðu(x, y) = 0¤ 3(x, y) A• Ðu(x, y) =xy  R2 Ylˆ

.R2 Ylˆ šwm•u  Ÿy (þ)

(11)

.K = Z

xydxdy Yþ¶An˜ ™›Akt˜ Ÿytyfyk s ( ) .T  Am§C ™›Ak As˜ Ah›dtF ¤ K ¤T Xr ¨t˜ T’®`˜ d .ξn(x) = 1/(1 +x2)n yn}n=1 Ty`At˜ Ty˜Attm˜ Ÿkt˜ ‰ r˜ Ÿ§rmt˜ .4.8

.¢nyy` lW§ξ ‰A wž TVAsb TCAqt›n}n=1 Ty˜Attm˜   Ÿy ()

?L(R)¨ C ¤ w¡ ™¡ ?[1,∞[3p A• Amh›Lp(R)¨ C ¤ξn}n=1CAq ™¡ () 2012/06/24

 At› .

9

¤ f(x) =exχ]−∞,0[(x)  RYlˆ Ÿyr`m˜ g¤ f  Ayqyq˜  A`At˜ Ÿky˜ š¤± š ¥s˜ .1.9 .™y˜d˜ ¨ ­Cw•@m˜ Tˆwmml˜ ­zymm˜ T˜ d˜ Y˜χ ryK§ .g(x) =e−xχ]0,∞[(x)

.RŸ› xTWqž ™• dnˆ ¢tmy’ s œ dy ‘r`›f ? g l˜ º d ÐAm˜ ™’

¨žA˜ š ¥s˜ .2.9  N? 3n¨`ybV dˆ ™• ™ Ÿ› ‘r`m˜ ¨qyq˜ ‰At˜  Ay œFC ? .1.2.9

Tn(t) = 1

2{|t+n| − |tn|}, tR.

? ¤d› ‰At˜ @¡ ™¡ .Tn(f) =Tnf ‰At˜ rbt`n˜¤ .[1,∞]3p‰›Lp(R)3f Ÿky˜ ? .2.2.9 .Lp(R)¨f wž TCAqt›{Tn(f)}n=1 Ty`At˜ Ty˜Attm˜   b .Tn(f)¤f Ÿy`At˜ Ÿy  CA’

N?3n™•¤L1loc(R)3f ‰A ™• ™ Ÿ› ‘r`m˜ ‰At˜ Y˜fnþ rKn˜ ˜A˜ š ¥s˜ .3.9 .R3x ,fn(x) = n2 Rx+1/n

x−1/n f(t)dt  .ψ(x) =x χ[0,∞[(x)‰At˜ T˜A ¨R3x7−→ψn(x) = n2 Rx+1/n

x−1/n ψ(t)dtR‰At˜ Ÿyˆ ? .1.3.9

ψ‰At˜ wž A\tžA TCAqt›n}n=1Ty˜Attm˜   b œ .œl`m˜ Hfž Ylˆψ Ay¤ ¢žAy œFC .RYlˆ

Ty˜Attm˜   Ylˆ Ÿ¡r œ T} rt› fn ‰ wt˜ dnF   Ÿyb Cc(R) 3 f  A• Ð ? .2.3.9  A• Amh›Lp(R) f wž Ty˜Attm˜ £@¡ CAq nttF .RYlˆ f wž A\tžA CAqt {fn}n=1

.[1,∞]3p

Á¤> p >1Ÿky˜¤ yw˜ H§A’¤ ­ryK` ¤z›J .

=]0,+∞[šAm˜ Ÿky˜ ‰ r˜ š ¥s˜ .4.9 .J 3x,F(x) = 1xRx

0 f(t)dt  ‘r`m˜ F ‰At˜ Ÿky˜¤Lp(J)3f

.L163F   ŸybL1 3f ‰›0< f  A• Ð. ? 1.4

  T¶zt˜A ®›Ak› bCc(J)3f ‰›0f |rf. ? 1.4 Z

0

Fp(x)dx=−p Z

0

Fp−1(x)xF0(x)dx.

Hardy© CA¡ Tn§Abt› nttF RFp−1f Ylˆ Cd˜w¡ Tn§Abt› “bWt œ xF0=fF   ^¯

kFkLp p

p1kfkLp.

(12)

2012/09/06

 At› .

10

.J = [0,+∞[‰Sž¤ .¢n› ºz Ylˆ ¤ ¢l• ºASf˜ Ylˆ yw˜ xAy’ ¯ An¡ dtsž ¯ ryK§ y f(x) =e−xχJ(x)   R Ylˆ ‘r`m˜ f ¨qyq˜ ‰At˜ Ÿky˜ š¤± š ¥s˜ .1.10

Ož r•Ð ,As  ¤ ¤ dy ‘r`›f ? f l˜ º d ÐAm˜ ™’ .J šAml˜ ­zymm˜ T˜ d˜ Y˜χJ

TWqž ™• dnˆ(f ? f)(x) s .–tA Cr ,supp (f ? f) £dnF ©wt§ ©@˜ © d`˜ œyqtsm˜

.RŸ›x

αŸky˜¤ .(1,1),(1,0),(0,0)Xqn˜ dnˆ ¢F¤¦C ©@˜ lm˜ T Ÿky˜ ¨žA˜ Ÿ§rmt˜ .2.10 .L=

Z

T

dx dy

(x+y+ 1)α+1 ™›Akt˜ s .1Ÿˆ¤0Ÿˆ Aft› Ayqyq

J šAm˜ Ylˆ C rmtF¯A ”AqtJ²˜ ®A’¤ Ar`› Ayqyq A`A P Ÿky˜ ˜A˜ Ÿ§rmt˜ .3.10 .ACAqt›

Z 0

P0(x)e−xdx™›Akt˜  wk§ y¤ lim

x→+∞P(x)e−x= 0 “q§¤

.Ÿyl›Akt˜ Xr ¨t˜ T’®`˜ r•Ð ‰› CAqt›

Z 0

P(x)e−xdx™›Akt˜   b .1.3.10 .

Z 0

te

tdt™›Akt˜ s :“ybW .2.3.10

].AqAs˜ Ahylˆ ™Om˜ T’®`˜  dtF C rk ¨ rk¤x=

tryŒtm˜ ™§dbt Ÿy`ts   –nkm§ : AJC[

‰ r˜ Ÿ§rmt˜ .4.10 .

Z 0

u0(x)dx >0¤

Z

−∞

u0(x)dx= 0 “q§¤L1(R)Y˜ ¨mtn§u0 ‰A d¤ .1.4.10 .

Z 0

u(x)dx > 0 ¤

Z

−∞

u(x)dx = 0 “q§¤ L1(R) Y˜ ¨mtn§ Ayfy• A`A u Ÿky˜ .2.4.10   Ylˆ Ÿ¡r .R3x,un(x) =nu(nx)  Tr`m˜ {un}n=1Ty`At˜ Ty˜Attm˜ Ÿkt˜¤

n→∞lim Z 1

−1

un(x)ϕ(x)dx= 0, ∀ϕE,

.[−1,1]Q rtm˜ šAm˜ Ylˆ ­rmtsm˜ ¤RYlˆ Tr`m˜ Tyqyq˜ ‰ wt˜ ºAS Y˜ z›r§Ey

  Ÿyb   –nkm§ : AJC[

Z 1

−1

un(x)ϕ(x)dx= Z n

−n

u(t)h ϕt

n

ϕ(0)i

dt+ϕ(0) Z n

−n

u(t)dt

].rfO˜ Y˜  ¯¤¥§ Ÿymy˜ Ylˆ Ÿyl›Akt˜   Ab³ Tm¶®› Tn¡rb› dts œ

2013/02/06

 At› .

11

.yw˜ xAyq¤ Tyl§Cwb˜ ¢ryK` (¢n› ºz © ¤ R2 ¤)R ¤zž ¨l§ A› ™• ¨

.

Z 1

−1

Z

1−x2

1−x2

u(x, y)dy

dx ¹An˜ ™›Akt˜ ¨ Tl›Akm˜   dy› œFC () š¤± Ÿ§rmt˜ .1.11 .u(x, y) = 1

1 +x2+y2 ‰At˜ T˜A ¨ ™›Akt˜ @¡ s ()

Références

Documents relatifs

Increasing prepulse intensity resulted in stronger inhibition of the startle response to the pulse, with the high-PPI mice consistently showing ≈15 % more %PPI compared with the

Our main finding shows that competitive wage offers by candidates lead to lower social welfare than remunerations predetermined by the public, since wage competition may lead to

For instance it follows from the undecidability of the Post Cor- respondence Problem that the universality problem, the inclusion and the equivalence problems for context-free

ﻝﻼـﺨ ﻥﻤ ﺎﻬﻏﻭﻠﺒﻟ ﺓﺩﻫﺎﺠ ﻰﻌﺴﺘ ﻲﻫﻭ ،ﻊﻤﺘﺠﻤﻟﺍ ﺕﺎﻴﺎﻏ ﻕﻴﻘﺤﺘ ﻰﻟﺇ ﻑﺩﻬﺘ ﺔﻴﻜﻴﻤﺎﻨﻴﺩ ﺔﻜﺭﺤ ﺭﺎﺒﺘﻋﺎﺒ ﺔﻴﺠﻭﻏﺍﺩﺒﻟﺍﻭ ﺔﻴﻤﻠﻌﻟﺍ ﻡﻬﻓﺭﺎﻌﻤ ﺩﻴﺩﺠﺘﻭ ﻥﻴﺴﺭﺩﻤﻟﺍ ﻯﻭﺘﺴﻤ ﻥﻴﺴﺤﺘﻭ ،ﺎﻬﺠﻤﺍﺭﺒ ﺭﻴﻭﻁﺘ ﻴﻻ

[r]

[r]

.عوشرلما نم رطالمخا لالما سأأرل كيللما جورلخا برتعي يرخألا اذه ،ليام قوس.. لصفلا لوألا : ةيلكاش ا تكاشر قيرط نع

The lack of significant active corrosion found on the main reinforcement, which was protected by a very low permeability concrete and a thick 75-mm cover, explains why no