• Aucun résultat trouvé

Examination of some index test procedures for peat

N/A
N/A
Protected

Academic year: 2021

Partager "Examination of some index test procedures for peat"

Copied!
43
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Internal Report (National Research Council of Canada. Division of Building

Research), 1965-06-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=a19bff85-38de-4ef7-bbe6-a33029eab205 https://publications-cnrc.canada.ca/fra/voir/objet/?id=a19bff85-38de-4ef7-bbe6-a33029eab205

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20338135

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Examination of some index test procedures for peat

(2)

NATIONAL RESEARCH COUNCIL CANADA

DIVISION O F BUILDING RESEARCH

AN EXAMINATION O F SOME INDEX T E S T PROCEDURES FOR P E A T by

ANALYZED

I. C. M a c F a r l a n e and C. M. Allen I n t e r n a l R e p o r t No. 3 1 4 of t h e Division of Building R e s e a r c h OTTAWA J u n e 1965

(3)

PREFACE

Laboratory engineering t e s t s on peat a r e a relatively recent development. Unlike m i n e r a l soils, which have an accepted quantitative classification system, peat soils have yet t o be c l a s s i f i e d in an acceptable quantitative manner. A few b a s i c index t e s t s , however, have become the common denominator in describing samples of peat tested in the laboratory. These t e s t s a r e water content, organic content, and specific gravity.

Engineers have, in general, applied t o peats t h e s a m e t e s t p r o c e d u r e s and techniques used f o r m i n e r a l soils, despite some doubt that such p r o c e d u r e s and techniques w e r e applicable without some modification. Consequently, a study was undertaken by t h e Division of Building R e s e a r c h t o investigate modifications t o t e s t p r o c e d u r e s for t h e s e t h r e e basic t e s t s , with the aim of developing a m o r e satisfact0r.y procedure for testing peats than h a s been used in the past. This study was c a r r i e d out during the s u m m e r of 1962 by the junior author, a s u m m e r student with the Division, under the direction of the senior author, a r e s e a r c h officer with the Division. The projected t e s t p r o g r a m was a lengthy one and consequently was not completed in the one s u m m e r ; this r e p o r t i s a r e c o r d of the p r o g r e s s that was made in that interval. It i s anticipated that this project will be continued.

Ottawa June 1965

Robert F. Legget Dir ect or

(4)

T A B L E O F CONTENTS DESCRIPTION O F P R O J E C T DESCRIPTION O F S A M P L E S WATER CONTENT G e n e r a l L i t e r a t u r e R e v i e w of Methodology T e s t P r o c e d u r e s R e s u l t s and O b s e r v a t i o n s C o n c l u s i o n s ORGANIC CONTENT G e n e r a l Review of Methodology T e s t P r o c e d u r e R e s u l t s and O b s e r v a t i o n s C o n c l u s i o n s

S P E C I F I C GRAVITY O F SOIL SOLIDS G e n e r a l

L i t e r a t u r e R e v i e w of Methodology T e s t P r o c e d u r e s

R e s u l t s C o n c l u s i o n s

G E N E R A L CONCLUSIONS AND RECOMMENDATIONS R E F E R E N C E S Appendix A C a l i b r a t i o n of Ov.en Appendix B D e t e r m i n a t i o n of W a t e r i n P e a t not L i b e r a t e d D u r i n g Oven D r y i n g Appendix C S u g g e s t e d T e n t a t i v e P r o c e d u r e f o r W a t e r Content T e s t s f o r P e a t Appendix D S u g g e s t e d T e n t a t i v e P r o c e d u r e f o r O r g a n i c and A s h Content T e s t s f o r P e a t P a g e 1 1 2 2 4 Appendix E S u g g e s t e d T e n t a t i v e P r o c e d u r e f o r D e t e r m i n i n g t h e S p e c i f i c G r a v i t y of P e a t

(5)

AN EXAMINATION O F SOME INDEX TEST PROCEDURES FOR P E A T

by I. C. M a c F a r l a n e and C.M. Allen DESCRIPTION O F P R O J E C T At t h e p r e s e n t t i m e no s a t i s f a c t o r y quantitative method of c l a s s i f y i n g p e a t s i s a v a i l a b l e ; t h o s e qualitative m e t h o d s t h a t a r e a v a i l a b l e a r e not n e c e s s a r i l y u n i v e r s a l l y accepted. C e r t a i n l a b o r a t o r y i n d e x t e s t s t o a s s i s t i n d e s c r i b i n g p e a t s , however, have now b e c o m e f a i r l y common. T h e s e include w a t e r content t e s t s , o r g a n i c ( o r a s h ) content t e s t s , and s p e c i f i c g r a v i t y of s o i l s o l i d s , a s w e l l a s

-

t o a l e s s e r d e g r e e

-

acidity, p e r m e a b i l i t y , and void r a t i o . T h i s b a s i c i n f o r m a t i o n p r o v i d e s a background of i n f o r m a t i o n on p e a t and f o r m s a b a s i s f o r c o m p a r i s o n of engineering t e s t s s u c h a s c o m p r e s s i o n c h a r a c t e r i s t i c s , s h e a r s t r e n g t h , etc.

In g e n e r a l , t h e engineering p r a c t i c e h a s been t o apply t o p e a t s t h e s t a n d a r d s o i l m e c h a n i c s t e s t i n g p r o c e d u r e s and t e c h n i q u e s u s e d f o r i n o r g a n i c s o i l s . Difficulties s o m e t i m e s a r i s e , however, when t h e s e s t a n d a r d t e s t p r o c e d u r e s a r e applied b e c a u s e of t h e c o m p l e x n a t u r e of p e a t with i t s high w a t e r and o r g a n i c content. Consequently, modifications a r e often m a d e t o t h e s e p r o c e d u r e s and t h e r e s u l t i n g l a c k of u n i f o r m i t y of t e s t m e t l ~ o d s h a s m a d e i t difficult t o c o m p a r e r e s u l t s of t e s t s on v a r i o u s p e a t s .

T h i s u n c e r t a i n t y led t o t h e c a r r y i n g out, by t h e

Division of Building R e s e a r c h , of a n i n v e s t i g a t i o n into t e s t p r o c e d u r e s f o r t h e t h r e e b a s i c index t e s t s ; w a t e r content, o r g a n i c content, and s p e c i f i c g r a v i t y of soil. solids. T h e a i m w a s t o a s c e r t a i n f r o m a study of t h e l i t e r a t u r e and by e x p e r i m e n t a t i o n t h e m o s t s a t i s f a c t o r y p r o c e d u r e s f o r d e t e r m i n i n g t h e s e t h r e e c h a r a c t e r i s t i c s .

DESCRIPTION O F SAMPLES

Two t y p e s of p e a t s a m p l e w e r e u s e d

-

one of a v e r y f i b r o u s n a t u r e , t h e other m o r e decomposed ( o r a m o r p h o u s - g r a n u l a r ) . T h e f o r m e r w a s obtained f r o m t h e M e r Bleue P e a t Bog n e a r Ottawa, in a n a r e a c l a s s i f i e d a s EBI m u s k e g (11) with C a t e g o r y l o p e a t (woody

(6)

p a r t i c l e s held i n non-woody, fine f i b r o u s

eat).

T h e decomposed p e a t s a m p l e w a s obtained f r o m a s m a l l muskeg a r e a , which is c r o s s e d b y t h e T r a n s -Canada Highway, n e a r Rockland, Ontario. C l a s s i f i c a t i o n of t h e o r i g i n a l vegetation i s now difficult, but it was p r o b a b l y FI. T h e p e a t i s C a t e g o r y 3: a m o r p h o u s - g r a n u l a r with non-woody fine f i b r e s .

In t h e l a b o r a t o r y , t h e p e a t s a m p l e s w e r e thoroughly r e m o u l d e d with a kitchen hand-mixer. T h e r e m o u l d e d s a m p l e s w e r e then s t o r e d in c o v e r e d p l a s t i c p a i l s in a humid r o o m ( r e l a t i v e humidity

90 p e r cent, t e m p e r a t u r e 55" F). By using r e m o u l d e d s a m p l e s , i t was hoped t o e l i m i n a t e t h e v a r i a t i o n s i n h e r e n t i n u n d i s t u r b e d peat s a m p l e s , and t h u s be a b l e t o achieve r e p r o d u c i b i l i t y of r e s u l t s .

WATER CONTENT G e n e r a l

In s o i l m e c h a n i c s terminology, "water cont entl' o r " m o i s t u r e content'' is defined a s "the l o s s in weight e x p r e s s e d a s a p e r c e n t a g e of t h e d r y m a t e r i a l when t h e s o i l is d r i e d t o a constant weight at 105" t o 110°C" ( I ) ,

P e a t h a s a g r e a t c a p a c i t y f o r taking up and holding w a t e r ; i n t h i s r e s p e c t it a c t s somewhat like a sponge. T h i s affinity f o r w a t e r is one of t h e m o s t i m p o r t a n t c h a r a c t e r i s t i c s of t h e m a t e r i a l and i s p a r t l y r e s p o n s i b l e f o r t h e wide v a r i a t i o n i n p h y s i c a l and

m e c h a n i c a l p r o p e r t i e s of peat. T h e quantity of w a t e r h e l d i n peat v a r i e s considerably, being l e s s f o r t h e m o r e decomposed ( a m o r p h o u s - g r a n u l a r ) t y p e s than f o r t h e m o r e f i b r o u s types. In i t s n a t u r a l condition and below t h e w a t e r table, peat u s u a l l y contains sufficient w a t e r t o

s a t u r a t e t h e vegetable m a t t e r . It i s evident, t h e r e f o r e , t h a t t h e w a t e r content of a peat s a m p l e i s a m o s t significant p h y s i c a l c h a r a c t e r i s t i c , and i t is i m p o r t a n t t h a t e v e r y effort should b e m a d e t o obtain a s a c c u r a t e a d e t e r m i n a t i o n a s p o s s i b l e in t h e l a b o r a t o r y . T h i s p r e s u p p o s e s , of c o u r s e , that t h e s a m p l e i s t r u l y r e p r e s e n t a t i v e of field conditions, which i n i t s e l f is e x t r e m e l y difficult t o obtain f o r p e a t s . That is a s e p a r a t e p r o b l e m , however, and is not within t h e s c o p e of t h i s discussion.

T h e drying c h a r a c t e r i s t i c s of peat a r e dependent on t h e c h e m i c a l and p h y s i c a l m a n n e r i n which w a t e r i s h e l d by t h e p e a t substance. T h e r e have been s e v e r a l c l a s s i f i c a t i o n s of peat m o i s t u r e content although none s e e m s t o o f f e r a completely s a t i s f a c t o r y

explanation of t h e behaviour of p e a t drying. The following a r e t h e m a i n c l a s s i f i c a t i o n s (5) :

(7)

(1) Ostwald8s classification:

i) Water of occlusion held in l a r g e p o r e s over 1 m m in diameter. ii) Capillary water held within and between c a p i l l a r y walls.

iii) Colloidally bound water held by s e v e r a l colloidal chemical compounds such a s humins, humic acid, pectin, lignin, etc. iv) Osmotically bound water, within undecomposed plant cells.

v) Chemically bound water, a s water of crystallization. (2) Dumansky8s classification:

i) F r e e water in 2 f o r m s

-

that in c a p i l l a r i e s with a diameter

of between 0. 1 and 1 0 ' ~ cm and that held in p o r e s and c a p i l l a r i e s with a diam. from 1 0 ' ~ t o l o e 7 c k .

ii) Physically bound water in l a y e r s of oriented water molecules bordering, t h e solid phase, the denser layer lying next t o t h e p a r t i c l e s u r f a c e and the l e s s dense and l e s s well oriented l a y e r s lying outside these. This might be described a s adsorbed water.

iii) Osmotically held water in undecayed plant cells.

iv) Chemically bound water, analagous t o water of crystallization. ( 3 ) Stabnikosf's classification:

Mechanically held water which i s e a s i l y removed by p r e s s u r e .

ii) Colloidally bound water (a) water which i s lost i n a i r of 100 p e r cent humidity.

(b) adsorbed water which i s retained in a i r of 100 p e r cent humidity. In the oven-drying p r o c e s s f o r peat, i t i s not fully understood p r e c i s e l y which types of water a r e f r e e d and which a r e not.

Consequently, t o p e r m i t a complete explanation of the drying c h a r a c t e r i s t i c s of peat, considerable r e s e a r c h i s s t i l l n e c e s s a r y on the manner by which water i s held in peat.

(8)

L i t e r a t u r e Review of Methodology

In general, the methud f o r determining t h e water content of peat h a s been the s a m e a s that for determining the water content of m i n e r a l soils. Anderson ( 2 ) determined water content by drying a sample of peat for 2 4 h r in an oven a t 110°C. F e u s t e l and B y e r s

(6)

placed an a i r d r y sample in a 105°C oven for 48 h r , and Hanrahan (8) dried peat samples t o constant weight at 107°C. Smith et a1 ( 1 3) dried peat at 105°C. Colley (3) used an oven t e m p e r a t u r e of 110°C and a drying t i m e of 14 hr. Stanek (1 4) obtained m o i s t u r e content by drying peat f o r 48 h r in an oven at 108" C. R i s i et a1 (1 2) used a drying t i m e of 48 h r f o r l a r g e 200 -gm samples and 24 h r for s m a l l , 10 -gm samples, a t a t e m p e r a t u r e of 105°C in both c a s e s .

On the other hand, Ackroyd (1) suggests that t h e s e t e m p e r a t u r e s may be too high f o r organic s o i l s and recommends a lower t e m p e r a t u r e of about 60" C t o prevent oxidation of the organic m a t t e r . This was the drying t e m p e r a t u r e utilized by Miyakawa for Japanese p e a t s (10). Goodman (7), however, used a drying t e m p e r a t u r e of 85°C.

T e s t P r o c e d u r e s

The oven used for the water content t e s t was a F i s h e r Senior F o r c e d Draft Isotemp model. It was calibrated initially a s

described in Appendix A. The r a n g e of t e m p e r a t u r e s used was 75°C to 1 20°C, increasing i n i n c r e m e n t s of 5 degrees.

In the humid room, peat samples of the p a r t i c u l a r type t o be t e s t e d w e r e placed in twelve s m a l l aluminum t a r e s , 55. 45 cu c m in size, and w e r e weighed. The s a m p l e s w e r e then placed in the oven and dried a t the specified t e m p e r a t u r e . After 4 h r t h e s a m p l e s w e r e removed f r o m the oven, cooled in a desiccator and weighed. They w e r e then replaced in the oven, heated for 2 m o r e h r , removed and reweighed. This cycle was repeated a t 2-hr i n t e r v a l s until a n e a r constant weight was reached. Samples w e r e then weighed at 1 -hr i n t e r v a l s until

constant weight was attained. To s e r v e a s a standard, samples of peat w e r e a l s o a i r dried t o a constant weight in a constant t e m p e r a t u r e room (temp. z 20°C).

Water content (per cent d r y weight) was calculated f r o m the for mula: water content

W = W w x 1 0 0 W

d s where W

=

weight of water

W

(9)

R e s u l t s and O b s e r v a t i o n s

A s u m m a r y of t h e r e s u l t s obtained for both t h e f i b r o u s and t h e a m o r p h o u s - g r a n u l a r p e a t s i s given in T a b l e s I and 11. It will be noted t h a t t h e r e s u l t s a r e not c o m p l e t e f o r t h e a m o r p h o u s - g r a n u l a r p e a t ; t h i s w a s due t o t i m e limitations. F i g u r e 1 i n d i c a t e s t h e v a r i a t i o n in w a t e r content with drying t e m p e r a t u r e , and F i g u r e 2 shows t h e

v a r i a t i o n in drying t i m e with t e m p e r a t u r e f o r t h e two p e a t types. T a b l e s I and I1 a l s o show t h e c a l c u l a t e d t o t a l w a t e r content, b a s e d on wet weight, and including t h e w a t e r l i b e r a t e d during drying a s w e l l a s w a t e r not l i b e r a t e d during t h e n o r m a l oven-drying p r o c e s s but which is d e t e r m i n e d f r o m t h e d i f f e r e n c e between t h e two m e t h o d s of o r g a n i c content d e t e r m i n a t i o n and c o n f i r m e d b y t h e

distillation p r o c e s s d e s c r i b e d in Appendix B.

T h e d i f f e r e n c e between t h e w a t e r content ( b a s e d on d r y weight) of t h e f i b r o u s p e a t d r i e d a t 20°C and t h a t d r i e d a t high

t e m p e r a t u r e s c a n b e a t t r i b u t e d both t o t h e i n c r e a s i n g oxidation of t h e o r g a n i c m a t e r i a l a s well a s t o t h e i n c r e a s i n g amount of w a t e r t h a t i s l i b e r a t e d . . T h e d r y weight i s , t h e r e f o r e , a function of t h e

t e m p e r a t u r e of d r y i n g ; consequently t h e v a l u e s of w a t e r content, b a s e d on d r y weight, a r e a l s o a function of t h e drying t e m p e r a t u r e . A

t e n t a t i v e p r o c e d u r e f o r m e a s u r i n g t h e m o i s t u r e content of p e a t a s a p e r c e n t a g e of t h e d r y weight is given in Appendix C.

It w a s o b s e r v e d , u s i n g a magnifying g l a s s , t h a t t h e r e was no evidence of c h a r r i n g of t h e f i b r o u s p e a t s a m p l e s a t t e m p e r a t u r e s l e s s than about 85°C. F o r t e m p e r a t u r e s g r e a t e r than t h i s , however, c h a r r i n g b e c a m e i n c r e a s i n g l y evident and above 9 5 ° C t h i s w a s sufficient t o noticeably affect t h e o r g a n i c content r e s u l t s . It w a s a l s o o b s e r v e d that, f o r a l l drying t e m p e r a t u r e s above 75"C, m o r e t h a n

90

p e r c e n t of t h e u l t i m a t e weight l o s s o c c u r r e d within t h e f i r s t 2 4 h r . T h i s is shown in F i g u r e 3 f o r a f i b r o u s peatmsample d r i e d a t 85°C.

Conclusions

(1) It a p p e a r s evident t h a t t h e t e m p e r a t u r e of drying f o r t h e w a t e r content d e t e r m i n a t i o n of p e a t should n e v e r exceed 95" C and t h a t

p r e f e r a b l y t h e t e m p e r a t u r e should not exceed 8 5 ° C . T h e t e s t p r o g r a m t o t h i s s t a g e did not e s t a b l i s h t h e optimum t e m p e r a t u r e of drying, but i t s u g g e s t e d that i t should p e r h a p s b e even a s low a s 6 0 ° C ; however, f u r t h e r t e s t s m u s t b e c a r r i e d out t o c o n f i r m t h i s .

(10)

(2) T h e oven-dried weight of p e a t i s ' a function of t h e drying t e m p e r a t u r e and i s t h e r e f o r e not a constant value. Consequently, t o r e p o r t t h e w a t e r content a s a p e r c e n t a g e of t h e d r y weight i n t r o d u c e s s o m e e r r o r , which i n c r e a s e s a s t h e drying t e m p e r a t u r e i n c r e a s e s . It would doubtless b e m o r e a p p r o p r i a t e t o e x p r e s s w a t e r content of p e a t s a s a p e r c e n t a g e of t h e t o t a l wet weight. However, t h i s would p r o b a b l y i n t r o d u c e c o n s i d e r a b l e confusion b e c a u s e of t h e e s t a b l i s h e d s o i l m e c h a n i c s p r a c t i c e of e x p r e s s i n g w a t e r content a s p e r cent of t h e d r y weight.

F o r low t e m p e r a t u r e s of drying, such a s a t 60°C, t h e e r r o r i n t r o d u c e d by t h e s t a n d a r d p r o c e d u r e would be s u f f i c i e n t l y low t o b e ignored. In a n y c a s e , t h e t e m p e r a t u r e of drying should be r e c o r d e d for all t e s t s . ( 3 ) T h e drying t i m e for p e a t s a m p l e s d r i e d at about 6 0 ° C will b e s u b s t a n t i a l l y g r e a t e r than f o r s t a n d a r d t e s t s on i n o r g a n i c s o i l s and t h i s e x t r a t i m e of drying m u s t b e c o n s i d e r e d in any p r o p o s e d t e s t p r o g r a m . ORGANIC CONTENT -- G e n e r a l

T h e "organic content1' of a s o i l is t h e weight of t h e o r g a n i c m a t e r i a l p r e s e n t in a s a m p l e , e x p r e s s e d a s a p e r c e n t a g e of t h e d r y weight. In peat, t h e o r g a n i c m a t e r i a l i s g e n e r a l l y combustible, c a r b o n a c e o u s m a t t e r , while t h e m i n e r a1 constituent

-

whether p a r t of t h e plant's growth o r e x t r a n e o u s m a t t e r

-

is incombustible and a s h forming. T h e o r g a n i c content of p e a t h a s a c o n s i d e r a b l e effect on i t s p h y s i c a l and m e c h a n i c a l p r o p e r t i e s . In general, t h e g r e a t e r t h e o r g a n i c content t h e g r e a t e r t h e w a t e r content, void r a t i o , and c o m p r e s s i b i l i t y of t h e peat.

" P e r cent ash1' is t h a t p r o p o r t i o n of t h e d r y weight of t h e peat which r e m a i n s a f t e r a s a m p l e h a s been ignited.

Review of Methodoloev

Much of t h e a v a i l a b l e l i t e r a t u r e r e f e r s t o t h e d e t e r m i n a t i o n of t h e o r g a n i c m a t t e r content of p r e d o m i n a n t l y i n o r g a n i c s o i l s . Naturally, t h e s e methods a r e not always e n t i r e l y applicable t o p u r e peat s o i l s ,

with t h e p o s s i b l e exception of t h e l o s s -on-ignition method and t h e dichr o m a t e -oxidation method. Most s o i l m e c h a n i c s i n v e s t i g a t o r s who have wished t o d e t e r m i n e t h e o r g a n i c content of peat have u s e d t h e l o s s -on-ignition method. No s p e c i f i c t e m p e r a t u r e of ignition is u n i v e r s a l l y accepted, however, although it r a n g e s between 600" C and 900°C. T h i s p r o c e d u r e a c t u a l l y d e t e r m i n e s t h e a s h content and t h e

(11)

o r g a n i c content i s t h e n c o n s i d e r e d t o a b e t h e difference between 100 p e r cent of t h e d r y weight and p e r cent ash.

T h e dichromate-oxidation method is u s e d t o d e t e r m i n e t h e p e r cent o r g a n i c c a r b o n in a s o i l and t h i s i s multiplied by a f a c t o r of 1.724 t o c o n v e r t i t t o p e r cent o r g a n i c m a t t e r . T h i s i s b a s e d on t h e a s s u m p t i o n that s o i l o r g a n i c m a t t e r contains 58 p e r cent o r g a n i c

c a r b o n on t h e a v e r a g e . T h e Schollenber g e r -Allis on v o l u m e t r i c method (9) of d e t e r m i n i n g o r g a n i c c a r b o n i s only one of s e v e r a l a v a i l a b l e

chernical m e t h o d s but w a s s e l e c t e d b e c a u s e of i t s a c c u r a c y with high c a r b o n s o i l s and i t s s i m p l i c i t y both in a p p a r a t u s and i n method. The Walkley-Block method i s m o r e rapid, but is not s u i t a b l e f o r high c a r b o n s o i l s s u c h a s peat. With t h e Schollenber g e r -Allison method t h e amount of equipment and c h e m i c a l s r e q u i r e d is s m a l l and e a s i l y obtainable. T h e method involves only weighing, volume m e a s u r e m e n t , heating and t i t r a t i o n . I t s m a i n disadvantage is t h a t i t t a k e s a b e t t e r p a r t of a day t o do two t e s t s on a p a r t i c u l a r sample.

T h e p e r o x i d e oxidation method i s u n s a t i s f a c t o r y for p e a t s a s i t h a s only a l i m i t e d e f f e c t on r o o t s and f i b r e s . T h e sulphur dioxide method was c o n s i d e r e d t o b e t o o e l a b o r a t e i n equipment and method t o be s u i t a b l e f o r m o s t s o i l m e c h a n i c s l a b o r a t o r i e s . T h e d r y combustion method f o r d e t e r m i n i n g t h e p e r cent c a r b o n is p r o b a b l y t h e m o s t a c c u r a t e method but once again t h e equipment r e q u i r e d is quite elaborate. T h i s is equally t r u e f o r d e t e r m i n i n g p e r cent o r g a n i c m a t t e r by c a l o r i m e t r i c a n a l y s i s and by m e a n s of a photo - e l e c t r i c c a l o r i m e t e r . T e s t P r o c e d u r e

F o r t h e l o s s -on-ignition method, about 5 t o 10 gm of p e a t d r i e d a t 7 5 ° C w e r e p l a c e d i n c r u c i b l e s which w e r e then placed i n t o a muffle furnace. Initially, a t e s t s e r i e s w a s c a r r i e d out i n which t h e t e m p e r a t u r e of t h e muffle f u r n a c e w a s v a r i e d f r o m 500°C t o 900°C. The length of t i m e t o complete combustion was noted. Combustion was c o n s i d e r e d t o b e c o m p l e t e when all t h e b l a c k had d i s a p p e a r e d , leaving only a whitish g r e y ash. A f t e r combustion t h e c r u c i b l e s w e r e r e m o v e d f r o m t h e f u r n a c e , c o v e r e d and allowed t o cool. T h e a s h content is t h e n d e t e r m i n e d on t h e b a s i s of t.lie d r y weight of t h e peat. F u r t h e r t e s t s w e r e then c a r r i e d out on f i b r o u s

p e a t s a m p l e s oven d r i e d a t t e m p e r a t u r e s of 8 0 ° C t o 105"C, and a m o r p h o u s - g r a n u l a r p e a t s a m p l e s d r i e d a t t e m p e r a t u r e s of 100" and 105"C, with t h e m u f f l e f u r n a c e s e t a t 800°C.

(12)

In t h e Schollenber g e r -Allis on volurn e t r i c method, about 0. 1 t o 0.2 gm of finely ground peat ( d r i e d at v a r i o u s t e m p e r a t u r e s ) w a s mixed with an e x c c s s of p o t a s s i u m d i c h r o m a t e and h e a t e d with

c o n c e n t r a t e d s u l p h u r i c acid under controlled conditions. The c h r o m i c acid in e x c e s s of that r e q u i r e d t o oxidize organic c a r b o n was t i t r a t e d

a g a i n s t s t a n d a r d f e r r o u s a m m o n i u m sulphate solution, using diphenylamine a s a n indicator. T o t a l o r g a n i c c a r b o n i s g c r ~ e r a l l y c a l c u l a t e d on t h e

a s s u m p t i o n that t h e oxidation was at l e a s t 87 p e r cent complete. F o r high c a r b o n s o i l s , s u c h as peat, howcver, t h e p e r c e n t a g e of oxidation b e c o m e s i n c r e a s i n g l y h i g h e r s o t h a t ail a p p r o p r i a t e c o r r e c t i o n m u s t be m a d e t o t h e g e n e r a l l y a s s u m e d 87 p e r cent value. A c o r r e c t i o n c u r v e i s shown in F i g u r e D-1. T h i s t e s t was c a r r i e d out on t h e f i b r o u s peat s a m p l e s d r i e d a t t e m p e r a t u r e s of 75°C t o 105" C and a m o r p h o u . ~ -granul.ar peat s a m p l e s dried a t 100 and 105°C. T h r e e t e s t s w e r e c a r r i e d out on

e a c h s a m p l e and an a v e r a g e value obtained. R e s u l t s and O b s e r v a t i o n s

( a ) F i b r o u s P e a t

T a b l e I11 shows the organic content t e s t r e s u l t s on f i b r o u s peat s a m p l e s , obtained by t h e S c h o l l e n b e r g e r -Allison and t h e loss-on-ignition methods. It i s o b s e r v e d t h a t t h e r e i s a s u b s t a n t i a l difference between the r e s u l t s of t h e two methods, t h e difference g e n e r a l l y d e c r e a s i n g with i n c r e a s e in drying t e m p e r a t u r e up t o 9 0 ° C a f t e r which i t behaves r a t h e r e r r a t i c a l l y . It was a s s u m e d t h a t a t l e a s t p a r t of t h i s difference was due t o w a t e r i n t h e peat, which had not been driven off during t h e oven drying period. T o c o n f i r m t h i s assumption, a distillation a p p a r a t u s was s e t up, a s d e s c r i b e d in Appendix B, t o d e t e r m i n e t h e p e r cent w a t e r r e m a i n i n g in a n oven-

dried peat sample. T i m e did not p e r m i t a sufficient n u m b e r of t e s t s t o be c a r r i e d out t o conclusively show t h a t t h e difference in t h e r e s u l t s was w a t e r ; however, t h e few t e s t s that w e r e c a r r i e d out showed a r e m a r k a b l e s i m i l a r i t y in t h e amount of w a t e r r e m o v e d f r o m a "dried" p e a t s a m p l e by t h e distillation p r o c e s s , t o t h e difference in o r g a n i c

content r e s u l t s f o r t h e two t e s t methods on t h e s a m e peat s a m p l e . As t h e t e m p e r a t u r e of drying i n c r e a s e s , t h e amount of w a t e r d r i v e n off a l s o i n c r e a s e s , a s does t h e amount of o r g a n i c

m a t e r i a l oxidized. F r o m T a b l e I11 i t c a n be s e e n t h a t t h e p e r cent o r g a n i c m a t t e r by t h e S c h o l l e n b e r g e r -Allison method i n c r e a s e s with t e m p e r a t u r e f o r s a m p l e s d r i e d within t h e r a n g e of 2 0 ° C t o 9 0 ° C .

(13)

It would a p p e a r that for s a m p l e s d r i e d a t t e m p e r a t u r e s g r e a t e r than 90" C t h e oxidation of t h e organic m a t t e r begins t o have a g r e a t e r effect than t h e i n c r e a s e in t h e w a t e r l i b e r a t e d which p o s s i b l y a c c o u n t s f o r t h e p e c u l i a r r e s u l t s o b s e r v e d between t h e s a m p l e s d r i e d a t 9 5 ° C t o t h o s e d r i e d a t 105°C.

Amorphous - g r a n u l a r P e a t

T e s t s s i m i l a r t o t h o s e c a r r i e d out on f i b r o u s p e a t s a m p l e s w e r e conducted on only two of t h e a m o r p h o u s - g r a n u l a r peat s a m p l e s due t o t i m e limitations. One s a m p l e had been d r i e d a t 1 0 0 ° C &nd t h e other s a m p l e a t 105"C, Thus, r e s u l t s m a y not be too r e l i a b l e , p a r t i c u l a r l y i n d e t e r m i n i n g t h e w a t e r not l i b e r a t e d during drying, b e c a u s e of

c o n s i d e r a b l e oxidation of t h e o r g a n i c m a t e r i a l a t such high t e m p e r a t u r e s . T h e difference between t h e r e s u l t s of t h e two d i f f e r e n t m e t h o d s is,

f o r t h e m o s t p a r t , w a t e r with s o m e e l e m e n t a r y carbon.

T a b l e IV shows t h a t the difference between t h e two methods f o r t h e p e a t s a m p l e d r i e d a t 105" C i s g r e a t e r than t h e difference between t h e two methods f o r t h e s a m p l e d r i e d a t 100°C. T h i s i n d i c a t e s t h a t c o n s i d e r a b l y m o r e o r g a n i c m a t t e r is burned a t 1 0 5 ° C t h a n a t 100°C.

Conclusions

(1) T h e l o s s -on-ignition method of d e t e r m i n i n g t h e p e r cent o r g a n i c m a t t e r of peat i s a t b e s t only a n approximation which c a n be f r o m 5 t o

15 p e r cent i n e r r o r . It can, however, b e u s e d t o find t h e p e r cent a s h with a r e a s o n a b l e d e g r e e of a c c u r a c y .

( 2 ) T h e S c h o l l e n b e r g e r -Allison v o l u m e t r i c method of d e t e r m i n i n g t h e

p e r cent organic m a t t e r is r e a s o n a b l y a c c u r a t e f o r p e a t soils. The a p p a r a t u s involved is e a s i l y obtained and t h e method i s not too difficult. T h e only disadvantage i s that i t t a k e s f r o m 4 t o 5 h r t o c o m p l e t e t h r e e t e s t s on one s a m p l e .

( 3 ) By p e r f o r m i n g both t h e S c h o l l e n b e r g e r -Allison v o l u m e t r i c method f o r d e t e r m i n i n g t h e p e r cent o r g a n i c m a t t e r and t h e l o s s -on-ignition method f o r d e t e r m i n i n g t h e p e r cent a s h , one c a n d e t e r m i n e t h e w a t e r i n t h e d r i e d p e a t s a m p l e which h a s not been l i b e r a t e d during t h e oven- drying period.

(14)

(4) T h e Schollenber g e r -Allison v o l u ~ e t r i c method f o r d e t e r m i n i n g t h e p e r c e n t o r g a n i c m a t t e r m a y not b e v e r y r e l i a b l e f o r p e a t s a m p l e s which h a v e been oven d r i e d at t e m p e r a t u r e s g r e a t e r t h a n 90°C.

(5) With t h e 10s s -on -ignition method f o r d e t e r m i n i n g a s h content, a t e m p e r a t u r e of 700" C t o 8 0 0 ° C should be u s e d and t h e amount of s a m p l e

should be about 5 gm.

S P E C I F I C GRAVITY O F SOIL SOLIDS G e n e r a l

T h e s p e c i f i c g r a v i t y of s o i l s o l i d s is t h e r a t i o of t h e d e n s i t y of t h e s o i l s o l i d s t o t h a t of w a t e r and depends on t h e o r g a n i c and i n o r g a n i c content of t h e s o i l sample. T h e s t a n d a r d p r o c e d u r e f o r m o s t s o i l s i s t h e w a t e r d i s p l a c e m e n t method u s i n g a 500-ml f l a s k o r a 50 - m l d e n s i t y bottle. F o r peat, h o w e v e r , t h e w a t e r d i s p l a c e m e n t method p r e s e n t s difficulties a s s o m e of t h e p a r t i c l e s of d r i e d p e a t w i l l float on t h e w a t e r . A s t r o n g a r g u m e n t a g a i n s t t h e u s e of w a t e r in s p e c i f i c g r a v i t y t e s t s for p e a t is given i n a p a p e r by W i n t e r k o r n (15). He

points out t h a t t h e w a t e r r e p l a c e m e n t method does not give t r u e v a l u e s f o r t h e s p e c i f i c g r a v i t y of s o i l p a r t i c l e s , e s p e c i a l l y i f t h e y a r e of c l a y a n d c o l l o i d a l s i z e . He explains t h a t t h i s i s due t o t h e c o m p r e s s i o n of a d s o r b e d w a t e r f i l m s by t h e a c t i o n of exchangeable c a t i o n s and t h a t by using w a t e r t h e s p e c i f i c g r a v i t i e s a r e found t o b e too high. It is

s u g g e s t e d t h a t i n s t e a d of w a t e r , a good wetting agent which does not f o r m e i t h e r c o m p r e s s e d o r expanded a b s o r p t i o n f i l m s s u c h a s

decahydr onaphthalene (decalin) o r t e t r ahydr onaphthalene ( t e t r a l i n ) should b e used. L i t e r a t u r e Review of Methodology In t h e d e t e r m i n a t i o n of p r o p e r t i e s of s o m e p e a t s in n o r t h e r n Ontario, W. S t a n e k (1 4) u s e d k e r o s e n e for t h e s p e c i f i c g r a v i t y d e t e r m i n a t i o n s . Other i n v e s t i g a t o r s u s e d t h e w a t e r d i s p l a c e m e n t method f o r s p e c i f i c g r a v i t y d e t e r m i n a t i o n s f o r p e a t (6, 7). S t i l l other s , however, s u g g e s t e d finding t h e p r o p o r t i o n of s o i l s o l i d s and woody m a t e r i a l and computing t h e c o m p o s i t e s p e c i f i c g r a v i t y by u s i n g specific g r a v i t y of t h e two components. Cook ( 4 ) s u g g e s t s v a l u e s

of specific g r a v i t y for e a c h component of 2.70 f o r t h e m i n e r a l s o i l and 1. 50 for t h e woody component.

(15)

In h i s s t u d i e s of J a p a n e s e p e a t s , Dr. Miyakawa (10) p r o p o s e s t h e following f o r m u l a : w h e r e N =. i g n i t i o n - l o s s - r a t i o

G

=

a v e r a g e s p e c i f i c g r a v i t y of m i n e r a l constituent s of p e a t ( C o n s i d e r e d t o b e 2.6)

G

=

a v e r a g e s p e c i f i c g r a v i t y of o r g a n i c c o n s t i t u e n t of p e a t ( C o n s i d e r e d t o be 1.2). T h e l i t e r a t u r e r e v i e w i n d i c a t e d t h a t t h e liquid d i s p l a c e m e n t method would p r o v i d e t h e m o s t s a t i s f a c t o r y s p e c i f i c g r a v i t y r e s u l t f o r p e a t ; i t w a s n e c e s s a r y , t h e r e f o r e , t o d e t e r m i n e what liquid t o u s e f o r t h e wetting agent. T e s t P r o c e d u r e s S p e c i f i c g r a v i t y t e s t s w e r e c a r r i e d out on t h e d r i e d p e a t s a m p l e s r e s u l t i n g f r o m t h e w a t e r content t e s t s . P r i o r t o s p e c i f i c g r a v i t y d e t e r m i n a t i o n s , t h e s e d r i e d s a m p l e s w e r e p u l v e r i z e d with a p e s t l e and m o r t a r . On e a c h of t h e s a m p l e s , d r i e d a t 75"C, 8 0 ° , 85", 9 0 ° , 95", 100°, 105", and l l O 0 C , t h r e e d i f f e r e n t s e r i e s of s p e c i f i c g r a v i t y t e s t s w e r e c a r r i e d out. T h e f i r s t s e r i e s of t e s t s w a s t h e w a t e r d i s p l a c e m e n t method, u s i n g d i s t i l l e d w a t e r . Two t e s t s w e r e r u n with 500-ml f l a s k s in t h e u s u a l m a n n e r . T h e second s e r i e s of t e s t s w a s c a r r i e d out u s i n g d e - a i r e d , f i l t e r e d k e r o s e n e a s a wetting agent. T h r e e of t h e s e t e s t s w e r e c a r r i e d out u s i n g t h e 50-ml d e n s i t y b o t t l e s and t h e p r o c e d u r e followed i s a s t a n d a r d k e r o s e n e s p e c i f i c g r a v i t y t e s t a s outlined i n Ackroyd (1). Instead of u s i n g a constant t e m p e r a t u r e bath of 25"C, however, e x p e r i m e n t s w e r e c o n d u c t e d i n a c o n s t a n t

t e m p e r a t u r e r o o m with a t e m p e r a t u r e of 20. 0 ° C

f

0, 5". T h e t h i r d s e r i e s of t e s t s w a s c a r r i e d out u s i n g t e t r a h y d r o n a p h t h a l e n e ( t e t r a l i n ) a s a wetting agent. T h e p r o c e d u r e followed w a s t h e s a m e a s f o r

(16)

R e s u l t s

T a b l e s V and V I show t h e s p e c i f i c g r a v i t y r e s u l t s using t h e t h r e e wetting agents: w a t e r , t e t r a l i n and k e r o s e n e . It is s e e n t h a t the r e s u l t s f o r k e r o s e n e and t e t r a l i n a r e v e r y close, w h e r e a s t h e r e s u l t s f o r t h e w a t e r a r e c o n s i s t e n t l y higher than f o r t h e o t h e r two. T h e t e m p e r a t u r e at which t h e p e a t h a d been oven d r i e d had no d i s c e r n i b l e effect on t h e s p e c i f i c g r a v i t y r e s u l t , e i t h e r f o r t h e f i b r o u s or a m o r p h o u s - g r a n u l a r Feats.

If k e r o s e n e i s a s s u m e d t o give t h e c o r r e c t value of s p e c i f i c gravity, t h e n t h e a v e r a g e e r r o r using w a t e r a s a wetting agent i s 5.8 p e r cent for f i b r o u s p e a t and 10 p e r cent f o r a m o r p h o u s - g r a n u l a r peat, and t h e a v e r a g e e r r o r using t e t r a l i n is 0. 7 p e r cent f o r f i b r o u s peat. T h e r e i s l i t t l e evident d i f f e r e n c e between t h e u s e

of t e t r a l i n and k e r o s e n e , although t h e l a t t e r h a s one advantage i n t h a t it is t h e m o r e e a s i l y available.

It i s i n t e r e s t i n g t o r o m p a r e t h e r e s u l t s of v a r i o u s methods of d e t e r m i n i n g s p e c i f i c g r a v i t y of one p a r t i c u l a r p e a t

sample. A s a m p l e w a s s e l e c t e d , with an ignition l o s s of 96. 8 p e r cent (ignition-loss r a t i o

=

0. 968), t h e t r u e o r g a n i c content w a s 89. 15 p e r cent (i. e. a s s u m e d ignition-loss r a t i o

=

0. 8915). Miyakawa's f o r m u l a was applied f i r s t u s i n g Cook's c o n s t a n t s of 2 . 7 and 1. 5 and t h e n Miyakawa's c o n s t a n t s of 2.6 and 1.2. T h e r e s u l t s w e r e a s follows:

Liquid Displacement Method ( w a t e r ) 1. 46 Liquid Displacement Method ( k e r o s e n e ) 1. 40 F o r m u l a : Cook (10s s -on-ignition t e s t ) 1. 5 2 Cook ( c h e m i c a l t e s t ) 1.575 Miyakawa (10s s -on -ignition t e s t ) 1.22 Miyakawa ( c h e m i c a l t e s t ) 1. 27

T h e value of 1. 40 f o r t h e s p e c i f i c g r a v i t y is c o n s i d e r e d t o be c l o s e s t t o t h e t r u e value.

(17)

Conclusions

(1) T h e liquid d i s p l a c e m e n t method is t h e m o s t a p p r o p r i a t e method of d e t e r m i n i n g s p e c i f i c g r a v i t y of s o i l s o l i d s f o r p e a t s .

2 ) Water should not be u s e d a s a wetting agent f o r p e a t s . Difficulty is e x p e r i e n c e d in getting t h e p e a t t o m i x with t h e w a t e r d u r i n g t h e t e s t , and t h e r e s u l t s m a y b e in e r r o r on t h e high s i d e by a s m u c h a s 10 p e r c ent.

( 3 ) E i t h e r k e r o s e n e o r t e t r a h y d r o n a p h t h a l e n e ( t e t r a l i n ) is s u i t a b l e for u s e a s a wetting agent in t h e liquid d i s p l a c e m e n t method. One advantage of t e t r a l i n is t h a t i t s s p e c i f i c g r a v i t y v a r i e s l e s s with cha.nge in t e m p e r a t u r e than d o e s k e r o s e n e . On the o t h e r hand, one disadvantage of t e t r a l i n is that i t s s p e c i f i c g r a v i t y i s c l o s e t o t h a t of

w a t e r , and s m a l l p e a t p a r t i c l e s h a v e a t e n d e n c y t o float. T h e a d v a n t a g e s of k e r o s e n e a r e i t s low s p e c i f i c g r a v i t y , c o m p a r e d t o w a t e r , and i t s availability. In g e n e r a l , t h e r e f o r e , i t will b e expedient t o u s e k e r o s e n e . (4) T h e t e m p e r a t u r e of d r y i n g had l i t t l e o r no e f f e c t on t h e s p e c i f i c g r a v i t y r e s u l t s of peat.

GENERAL CONCLUSIONS AND RECOMMENDATIONS

(1) T h e w a t e r content of p e a t b a s e d on d r y weight i s a function of t h e t e m p e r a t u r e of drying s i n c e t h e weigllt loss i n c r e a s e s with i n c r e a s e d t e m p e r a t u r e s . Water content, when e x p r e s s e d a s a p e r c e n t a g e of t h e t o t a l weight, i n t r o d u c e s l e s s p e r c e n t a g e of e r r o r for p e a t s d r i e d a t high t e m p e r a t u r e s . Although t h e r e i s s o m e a r g u m e n t , t h e r e f o r e , f o r e x p r e s s i n g m o i s t u r e content of p e a t a s a p e r c e n t a g e of t h e t o t a l weight (wet w t . ) r a t h e r than of d r y weight, for p e a t s d r i e d a t low t e m p e r a t u r e s t h e e r r o r i n t r o d u c e d by t h e s t a n d a r d p r o c e d u r e is not g r e a t .

(2) T h e h i g h e r t h e d r y i n g t e m p e r a t u r e , t h e g r e a t e r t h e amount of w a t e r d r i v e n off, and t h e g r e a t e r t h e amount of o r g a n i c m a t e r i a l oxidized. F o r t h e f i b r o u s p e a t at t e m p e r a t u r e s above 9 0 ° C o r g a n i c t e s t r e s u l t s b e c o m e e r r a t i c and c h a r r i n g b e c o m e s a p p a r e n t . F o r a c c u r a t e r e s u l t s , t h e r e f o r e , t h e d r y i n g t e m p e r a t u r e should be m u c h lower t h a n f o r i n o r g a n i c s o i l s . T h i s t e s t p r o g r a m did not e s t a b l i s h t h e optimum t e m p e r a t u r e of drying, but i t i s s u g g e s t e d t h a t i t should b e no h i g h e r t h a n 85"C, and p o s s i b l y even a s low a s 6 0 ° C (140°F). T h e t e m p e r a t u r e of drying should b e noted f o r a l l w a t e r content t e s t r e s u l t s .

(18)

( 3 ) T h e a s h content of peat i s f a i r l y s i m p l y d e t e r m i n e d by t h e l o a s -on- ignition method. Organic content can be d e t e r m i n e d by t h e d i c h r o m a t e - oxidation method d e s c r i b e d i n Appendix D which, however, i s quite a lengthy p r o c e d u r e (most of a day f o r t h r e e determinations). Differences in o r g a n i c content r e s u l t s obtained by t h e two methods a r e a s c r i b e d t o w a t e r s t i l l r e m a i n i n g in t h e p e a t a f t e r it h a s been oven dried.

(4) T h e liquid d i s p l a c e m e n t method f o r d e t e r m i n i n g t h e s p e c i f i c g r a v i t y of s o i l s o l i d s i s t h e m o s t a p p r o p r i a t e method f o r p e a t s , with t h e u s e of k e r o s e n e recommended. T h e t e m p e r a t u r e of drying had no d i s c e r n i b l e effect on t h e s p e c i f i c g r a v i t y r e s u l t s .

(5) T h e t e s t p r o g r a m should b e continued t o include t e s t s in t h e t e m p e r a t u r e r a n g e of 50" t o 75°C f o r both types of peat. In addition, other peat t y p e s should be t e s t e d t o check t h e g e n e r a l application of t h e drying phenomena.

( 6 ) T h e t e s t p r o g r a m should a l s o be continued t o c o m p l e t e t h e r a n g e of t e s t s for t h e a m o r p h o u s - g r a n u l a r p e a t i n t h e t e m p e r a t u r e r a n g e of 75" t o 110°C.

(19)

R E F E R E N C E S

1. Ackroyd, T. N. W. L a b o r a t o r y T e s t i n g in S o i l E n g i n e e r i n g . S o i l M e c h a n i c s L i m i t e d , London, 1957, 233p.

2. A n d e r s o n , K. 0. Muskeg S t u d i e s i n A l b e r t a . Highway R e s e a r c h B o a r d , B u l l e t i n 316, Washington, D, C.

,

M a r c h 1962, p. 23 -31. 3. Colley, B. E. C o n s t r u c t i o n of Highways o v e r P e a t and Muck

A r e a s . A m e r i c a n Highways, Vol. 29, No. 1, J a n u a r y 1950, p. 3-6.

4. Cook, P. M. C o n s o l i d a t i o n C h a r a c t e r i s t i c s of O r g a n i c S o i l s . P r o c e e d i n g s , Ninth C a n a d i a n S o i l M e c h a n i c s C o n f e r e n c e , National R e s e a r c h Council, A s s o c i a t e C o m m i t t e e on S o i l and Snow M e c h a n i c s , T e c h n i c a l M e m o r a n d u m 41, Ottawa, 1956, p. 82-87.

5. Dalton, J. A i r D r y i n g of P e a t . P r o c e e d i n g s , I n t e r n a t i o n a l P e a t Symposium. P u b l i s h e d b y B o r d n a Mona, Dublin 1954, S e c t i o n C3.

6. F e u s t e l , I. C. and H. G. B y e r s . T h e P h y s i c a l and C h e m i c a l C h a r a c t e r i s t i c s of C e r t a i n A m e r i c a n P e a t P r o f i l e s . U. S. Dept. of A g r i c u l t u r e , Tech. Bull. 214, N o v e m b e r 1930, 26p. 7. Goodman, L. J. and C , N. Lee. L a b o r a t o r y and F i e l d D a t a on

E n g i n e e r i n g C h a r a c t e r i s t i c s of S o m e P e a t Soils. P r o c e e d i n g s , Eighth M u s k e g R e s e a r c h C o n f e r e n c e , N a t i o n a l R e s e a r c h Council, A s s o c i a t e C o m m i t t e e on S o i l and Snow M e c h a n i c s , T e c h n i c a l M e m o r a n d u m 74, Ottawa, 1962, p. 107-129.

8. H a n r a h a n , E , T. T h e M e c h a n i c a l P r o p e r t i e s of P e a t w i t h S p e c i a l R e f e r e n c e t o Road C o n s t r u c t i o n . Bull. Inst. of C i v i l E n g i n e e r s o f I r e l a n d , Vol. 78, No. 5, A p r i l 1 9 5 2 , p. 179-215.

9. Metson, A. J. Methods of C h e m i c a l A n a l y s i s f o r S o i l S u r v e y S a m p l e s . New Zealaud Dept. of S c i e n t i f i c a n d I n d u s t r i a l R e s e a r c h , S o i l B u r e a u , Bull. 12, 1956. 10. Miyakawa, I. S o i l E n g i n e e r i n g R e s e a r c h on P e a t y Alluvia. R e p o r t s 1 t o 3. C i v i l E n g i n e e r i n g R e s e a r c h I n s t i t u t e , I-lokkaido Development B u r e a u , J a p a n , Bull. 20, J a n u a r y 1959, 88p. ( t r a n s l a t i o n a v a i l a b l e a s NRC T e c h n i c a l T r a n s l a t i o n 100 1, Ottawa, 1962).

(20)

11. Radforth, N. W. A Suggested C l a s s i f i c a t i o n of Muskeg f o r t h e Engineer. E n g i n e e r i n g J o u r n a l , Vol. 3 5, No. 1 1, November 1952, p. 1199-1210.

12. R i s i , J. et al. A C h e m i c a l Study of t h e P e a t s of Quebec. Quebec

-

Dept. of Mines, L a b o r a t o r i e s Branch. 10 p a r t s : 5 r e p o r t s : P R 234 (1950), P R 281 (1953) P R 282 (1953).

13. Smith, D. G . et al. C h e m i c a l Composition of t h e P e a t Bogs of t h e M a r i t i m e P r o v i n c e s . Canadian J o u r n a l of Soil Science, Vol. 38, August 1958, p. 120-127.

14. Stanek, W. The P r o p e r t i e s of C e r t a i n P e a t s in N o r t h e r n Ontario. Unpublished T h e s i s , U n i v e r s i t y of Toronto, Dept. of F o r e s t r y , A p r i l 1961.

15. Winterkorn, H. F. D i s c u s s i o n of F a c t o r s Affecting Specific G r a v i t y Values i n t h e P r o p o s e d Method of T e s t for Soils. A. S. T. M. Bulletin No. 126, J a n u a r y 1944.

(21)

T A B L E I

FIBROUS

P E A T

I Y

=

7'0

w a t e r content, b a s e d on d r y weight.

157

=

Yo w a t e r c o n t e n t , b a s e d on t o t a l weight (i. e. w e t weight).

W D r y i n g T e m p . T. ( " C ) 20" 75" 8 0 " 8 5 " 9 0 " 95" 100" 105" 1 1 0 " 115" 12OC -

ifT

=

% w a t e r not l i b e r a t e d d u r i n g drying. C a l c u l a t e d f r o m o r g a n i c and a s h c o n t e n t t e s t r e s u l t s ,

x

D i f f e r e n c e

(70)

f r o m WD a t 2 0 ° C 0 6. 30 11.02 11.40 14. 50 14.75 20.10 22. 30 25.80 28.20 29.20 -

i

'

'I:

=

5

t o t a l w z t e r content, b a s e d on w e t weight, a n d i n c l u d i n g w a t e r l i b e r a t e d d u r i n g d r y i n g and w a t e r not l i b e r a t e d d u r i n g drying.

I T i m e t o Const. Weight ( h r ) 1170 5 6 5 0 45 4 2 3 9 3 7 3 3 2 6 25 2 2 W a t e r Cont. W~

(%

Wet Wt. ) 91.39 91.83 9 2 . 1 5 92.29 92.37 92. 39 9 2 . 7 0 9 2 . 8 2 93.01 9 3 . 1 3 93.19 -- - W a t e r Cont. W~

(%

D r y Wt. ) 1057.72 1124. 45 1174, 20 1197.89 1210.67 1213.68 1270. 2 4 1293.10 1330.89 1355.93 1367. 59 D i f f e r e n c e (To) f r o m Ww at 2 0 ° C 0 0. 48 0. 8 3 0.98 1. 07 1 . 0 9 1. 43 1.57 1.77 1.90 1. 97 - W a t e r Not ~ i b ~ ~ ~ ~ ~ d W~

(%

D r y Wt. ) 11.91 10. 68 9 . 1 1 8. 17 7. 19 9.00 7. 66 8. 29

-

-

-

- C a l c u l a t e d T o t a l W a t e r C o n t e n t ( W T ) = W

+

W~ W W~

+ m

(%

Wet Wt. ) 92. 42 9 2 . 7 0 92.86 9 2 . 9 2 9 2 . 9 2 93.08 93.26 93. 41

-

-

-

(22)

T A B L E I1 AMORPHOUS -GRANULAR P E A T

-

D r y i n g T e m p , T. ( " C ) 100" 1 0 5 " 1 1 0 " 115" 1 2 0 " T i m e t o C o n s t . W e i g h t ( H r ) 3 1 2

6

2

6

2 4 22 W a t e r C o n t . W d

(7%

D r y Wt. ) 665.81 675.44 679.76 682.62 677.57 M o i s t , C o n t . W (70 W% Wt. ) 8 6 . 9 4 87.10 87.18 87.22 8 7 . 1 4 W a t e r N o t L i b e r a t e d W ( % ~ r " v t . ) 7. 0 5 8. 20

-

-

-

C a l c u l a t e d T o t a l W a t e r ( W ) T W N = + W W~ +loo

(7%

W e t Wt. ) 87.87 8 8 - 1 6

-

-

-

(23)

T A B L E I11

ORGANIC CONTENT T E S T RESULTS ON FIBROUS P E A T S A M P L E S

T A B L E I V

ORGANIC CONTENT T E S T RESULTS ON AMORPHOUS-GRANULAR P E A T S A M P L E S + D i f f e r e n c e i n T w o Methods,

70

11.91 1 0 . 6 8 9 . 1 1 8. 17 7. 1 9 9 . 0 0 7. 66 8 . 2 9 4 Oven D r y i n g T e m p e r a t u r e , " C # 2 0 7 5 8 0 8 5 90 9 5 1 0 0 1 0 5 O/o O r g a n i c M a t t e r Oven-Dr ying T e m p e r a t u r e , " C 1 0 0 1 0 5 L o s s -on -Ignition Method 9 6 . 9 1 9 6 . 4 4 96.59 9 6 . 5 9 96.59 9 6 . 5 9 9 6 . 8 1 9 6 . 7 5 S c h o l l e n b e r g e r

-

A l l i s on Method 85.00 8 5 . 7 6 87. 48 88. 42 8 9 . 4 0 87. 59 8 8 . 1 5 88. 46 D i f f e r e n c e i n Two Methods,

70

7 . 0 5 l o . 09

%

O r g a n i c M a t t e r L o s s -on -Ignition Method 75.06 73.70 S c h o l l e n b e r g e r

-

A l l i s o n Method 68.01 6 3 . 6 1

(24)

T A B L E V FIBROUS P E A T S T A B L E V I AMORPHOUS -GRANULAR P E A T T e m p . of D r y i n g , " C 7 5 8 0 8 5 9 0 9 5 1 0 0 w A v e r a g e S p e c i f i c G r a v i t y T e m p . of Drying, " C 1 0 0 1 0 5 1 1 0 A v e r a g e : K e r o s e n e (G ) K 1.39 1. 38 1.37 1.35 1.39 1. 40 1. 38 S p e c i f i c G r a v i t y W a t e r ( G W ) 1.45 1. 49 1. 46 1. 48 1. 46 1. 46 1. 47 T e t r a l i n (GT) 1. 38 1. 38 1.37 1. 40 1.43 1. 40 1.39 GW-G K 0. 17 0. 1 8 0. 1 3 0. 1 6 K e r o s e n e (G ) K 1. 59 1. 60 1. 6 1 1. 6 0 GW-G T 0.07 0 . 1 1 0.09 0 . 0 8 0. 07 0. 0 6 0. 0 8 W a t e r (GW) 1.76 1.78 1 . 7 4 1.76 GW-G K 0. 0 6 0.11 0.09 0. 1 3 0. 07 0.06 0. 09 G ~ - G ~ -0.01 0 0 0. 0 5 0. 0 4 0 0 . 0 1

(25)

20

40

60

80

100

120

D r y i n g Temperature, "C

-

-

Fibrous, per cent d r y weight

-

-

-

-

-

-

Amorphous-Granular, per cent wet weight

\,,./m-m- a\

-

-

,,10-0-0,

/-04

Amorphous-Granular, per cent d r y weight

-

-

FIGURE

1

VAR

I

AT1 ON OF WATER CONTENT WITH DRY

I

NG

TEMPERATURE

8 4 ' 3 0 9 9 - 1

(26)

Temperature,

"C

FIGURE 2

(27)

0

10

20

30

40

5 0

Time of Drying,

hr

FIGURE

3

LOSS OF WEIGHT W I T H DRY l N G FOR F I BROUS PEAT SAMPLE AT 85

"C

(28)

APPENDIX A

CALIBRATION OF OVEN

T h e oven used in t h i s t e s t s e r i e s was a F i s h e r F o r c e d Draft oven, Model No. 2733, with 3 shelves. A t h e r m o m e t e r was i n s e r t e d through a s m a l l hole in t h e top of t h e oven and r e c o r d e d the nominal oven t e m p e r a t u r e . Calibration of t h e oven was n e c e s s a r y t o d e t e r m i n e the a c t u a l t e m p e r a t u r e on each shelf at a given t e m p e r a t u r e r e a d i n g on t h e t h e r m o m e t e r .

F o u r thermocouples w e r e m a d e up f r o m copper and constantan w i r e s . One thermocouple was suspended f r o m t h e ceiling of t h e oven, about one-half in. f r o m t h e t h e r m o m e t e r bulb and at about the s a m e elevation. The other t h r e e t h e r m o c o u p l e s w e r e suspended f r o m t h e bottom of t h e top, middle and bottom shelves, such t h a t they would r e c o r d the t e m p e r a t u r e s half way between each shelf and between t h e bottom shelf and t h e floor of t h e oven. T h e w i r e s w e r e led through the hole in the top of t h e oven and t o a potentiometer and i c e bath.

T h e oven was s e t at approximately 85°C and t h e t e m p e r a t u r e s between t h e shelves calculated f r o m t h e thermocouple readings. T h e oven t e m p e r a t u r e was then r a i s e d in 5°C i n c r e m e n t s t o 125°C; the thermocouple readings w e r e taken in each c a s e .

F i g u r e A-1 i s a graph of t h e t e m p e r a t u r e r e a d i n g s on t h e t h e r m o m e t e r plotted against the t e m p e r a t u r e r e a d i n g s f r o m t h e

thermocouples. F r o m t h i s family of c u r v e s , it i s p o s s i b l e t o find t h e p r e c i s e oven t e m p e r a t u r e on each shelf for a given t h e r m o m e t e r reading, up t o 1 3O0C, when the oven i s empty. With s a m p l e s in t h e oven, a f u r t h e r variation between t e m p e r a t u r e s a s r e c o r d e d by t h e t h e r m o m e t e r and a c t u a l t e m p e r a t u r e s was noted. Consequently, t h e thermocouples w e r e u s e d throughout t h e water content t e s t s e r i e s .

(29)

aJ

-

!?

loo

0 E L

-

-

-

-

-

-

-

-

-

-

-

o

Above Top Shelf

-

Below Top Shelf

0

Below Middle Shelf

-

a

Below Bottom Shelf

-

80

90

100

110

120

130

Thermometer Reading, " C

FIGURE A-1

(30)

APPENDIX B

DETERMINATION O F WATER IN P E A T NOT LIBERATED DURING OVEN DRYING

T h e a p p a r a t u s i s s e t up a s i l l u s t r a t e d in F i g u r e B-1. B e f o r e t h e p e a t s a m p l e i s t e s t e d , a blank d e t e r m i n a t i o n m u s t b e made. Nitrogen g a s i s p e r m i t t e d t o p a s s through t h e s y s t e m in such a m a n n e r t h a t a f a i r l y even s t r e a m of n i t r o g e n bubbles p a s s e s through t h e

s u l p h u r i c acid. The n i t r o g e n i s t h u s "dried" by being p a s s e d through t h e s u l p h u r i c acid and t h e c a l c i u m c h l o r i d e i n t h e drying tube. T h e v a r i a c i s s e t t o about 30 volts. T h e g a s e s p a s s t h r o u g h t h e a b s o r p t i o n bulb which h a s been p r e v i o u s l y weighed. After s e v e r a l h o u r s t h e a b s o r p t i o n bulb i s a g a i n weighed and t h e weight i n c r e a s e i s t h e c o r r e c t i o n f a c t o r .

About 1 gm of t h e p e a t i s p l a c e d i n t h e f l a s k and t h e above p r o c e d u r e i s r e p e a t e d . T h e i n c r e a s e in weight of t h e a b s o r p t i o n tube, l e s s t h e c o r r e c t i o n f a c t o r , i s t h e weight of t h e w a t e r given off. T h e n i t r o g e n a c t s a s a c a r r i e r f o r t h e g a s e s a s w e l l a s p r e v e n t i n g t h e peat s a m p l e s f r o m oxidizing. R e s u l t of t e s t on f i b r o u s n e a t s a m ~ l e d r i e d at 9 0 ° C and ground t o p a s s through a K 100 s i e v e : Blank d e t e r m i n a t i o n : c o r r e c t i o n f a c t o r

=

0.007 Water d e t e r m i n a t i o n : weight of s o i l u s e d

=

1. 136 gm weight of w a t e r f r o m g a s i f i c a t i o n = 0. 0 8 4 g m

70

w a t e r = 7. 470

Ash

-

3. 40Jo ( l o s s -on-ignition)

O r g a n i c m a t t e r

=

89. 4% (Schollenber g e r -Allison)

Water

=:

7. 4%

(31)
(32)

APPENDIX C

SUGGESTED TENTATIVE PROCEDURE

FOR WATER CONTENT TESTS FOR P E A T Scope

T h i s p r o c e d u r e d e s c r i b e s a method of m e a s u r i n g t h e m o i s t u r e content of peat, a s a percentage of t h e d r y weight.

(i) Drying oven with a thermostatically-controlled t e m p e r a t u r e of 80 t o 85°C.

(ii) T a r e s with tight fitting lids. (iii) Balance, a c c u r a t e t o 0. 01 gm.

(iv) Desiccator. Sample

The s a m p l e should be t r u l y r e p r e s e n t a t i v e of field conditions, and should be s t o r e d i n a humid r o o m until r e a d y for use. P r o c e d u r e

1. P l a c e a sample of t h e peat in a clean d r y t a r e and r e p l a c e t h e lid. 2. Determine t h e weight of t h e peat s a m p l e t o the n e a r e s t 0. 01 gm. 3. Remove the lid and place the t a r e and contents in t h e oven, heated

t o a t e m p e r a t u r e of 80 t o 85°C.

4. D r y t h e peat to constant weight, which will be of.the o r d e r of 45 h r for a sample weighing 125 gm.

5. After drying, r e m o v e t h e t a r e and s a m p l e f r o m t h e oven and p l a c e in a desiccator t o cool t o r o o m t e m p e r a t u r e . Replace lid on t h e t a r e .

(33)

Calculations

The moisture content of the peat (per cent dry weight) i s calculated from the formula:

where W

=

weight of water driven off

W

(34)

APPENDIX D

SUGGESTED TENTATIVE PROCEDURE FOR ORGANIC AND ASH CONTENT TESTS FOR PEAT

A. ORGANIC CONTENT

-

DICHROMATE-OXIDATION METHOD

The dichromate-oxidation method of determining the organic content involves treatment of t h e peat sample with chromic acid in hot sulphuric acid, then quantitatively determining, by t i t r ating against a standard £ e r r ous ammonium sulphate solution, t h e excess chromic acid that r e m a i n s after oxidation of the carbon. Total organic carbon i s generally calculated on t h e assumption that the oxidation i s 87 p e r cent complete; f o r carbon values above 10 per cent, a s in peat, the oxidation i n c r e a s e s with an i n c r e a s e in

organic carbon and an appropriate correction must be made. A correction curve i s shown in F i g u r e D-1.

Apparatus and Reagents

(i) Drying oven with thermostatically-contr olled t e m p e r a t u r e of 80" t o 85°C.

(ii) Balance, a c c u r a t e t o 0.001 gm. (iii) Graduated measuring cylinders.

(iv) Five 500-ml. volumetric flasks. (v) 2 b u r e t t e s .

(vi) Thermometer, range 80 t o 200°C. (vii) Glass s t i r r i n g rod.

(viii) 5 p y r e x glass t e s t tubes. (ix) 3 s m a l l beakers.

(x) Rubber -covered pestle and m o r t a r . (xi) Bunsen burner.

(xii) Potassium dichromate (A. R. Grade, finely powdered, dried at 105°C and bottled)

(35)

(xiii) 0. 4 N (normal) p o t a s s i u m d i c h r o m a t e solution, m a d e by dissolving 19. 61 6 gm p o t a s s i u m dichr omate s a l t in distilled w a t e r and m a d e up t o 1 litre.

(xiv) 0. 4 N ( n o r m a l ) f e r r o u s ammonium sulphate solution, m a d e by dissolving 15.70 gm of f e r r o u s ammonium sulphate (A. R. Grade) i n 80 m l of distilled w a t e r containing 2 m l concentrated sulphuric acid and diluting t o 100 ml.

(xv) Concentrated sulphuric acid.

(xvi) D i ~ h e n y l a m i n e indicator. 0. 5 gm of diphenylamine dissolved i n 100 m l concentrated sulphuric acid and t h e solution c a r e f u l l y poured into 20 m l cold distilled water.

(xvii) Sodium fluoride.

N. B. Quantity of r e a g e n t s used a p p l i e s only t o p e a t s w h e r e organic carbon i s

> 46

p e r cent.

A r e p r e s e n t a t i v e s a m p l e of t h e soil, oven dried, is broken up with a p e s t l e and m o r t a r . By p a s s i n g through a

#

100 sieve, and by quartering, the s a m p l e i s reduced t o about 0.1 gm.

P r o c e d u r e

1. Accurately weigh 1.177 gm of p o t a s s i u m d i c h r o m a t e and t r a n s f e r t o a p y r e x t e s t tube.

2. Carefully weigh t o n e a r e s t 0. 001 gm the finely-ground peat s a m p l e i n a s m a l l beaker and t r a n s f e r t o t h e t e s t tube. Add a few drops of w a t e r t o slightly dampen the peat.

3. Add 20 m l concentrated sulphuric acid. T h i s m a y f i r s t b e put in t h e beaker and u s e d t o wash out a n y s t r a y peat p a r t i c l e s into t h e t e s t tube.

4. P l a c e t h e t e s t tube i n a c l a m p and incline t o a 45" angle.

5. Heat the solution over a f l a m e until a t e m p e r a t u r e of 150

" G

is attained in 90 t o 120 sec. S t i r throughout the heating p e r i o d with

a t h e r m o m e t e r . Heating too r a p i d l y and over 155°C m u s t b e avoided.

(36)

6.

After r e a c h i n g 15O0C, r e m o v e thedflame and allow t h e t h e r m o m e t e r t o cool i n t h e solution f o r 20 t o 30 see. R i n s e t h e t h e r m o m e t e r in t h e t u b e with a few m l of c o n c e n t r a t e d s u l p h u r i c acid.

7. Allow t h e t u b e and contents t o cool f o r 5 m i n i n a i r and t h e n plunge t h e t u b e into running t a p w a t e r u n t i l thoroughly cooled.

8. P o u r and thoroughly r i n s e t h e contents of t h e tube into 100 t o 200 m l of distilled w a t e r in a 500-ml v o l u m e t r i c f l a s k .

N. B. When t h e contents of t h e t e s t tube a r e p o u r e d into t h e f l a s k of w a t e r , i f a b l u i s h - g r e y solution i s obtained i n s t e a d of a g r e e n one, t h i s i s a n indication that insufficient d i c h r o m a t e h a s been used. (See R e f e r e n c e 9 f o r a p p r o p r i a t e quantities).

9.

B r i n g t h e t o t a l volume i n t h e f l a s k up t o 300 t o 350 m l and add 0. 5 m l

of t h e diphenylamine indicator.

10. Repeat s t e p s 1 t o 9 two additional t i m e s .

11. A c c u r a t e l y weigh 0.3922 gm of p o t a s s i u m d i c h r o m a t e and t r a n s f e r t o a t e s t tube.

12. Add 10 m l c o n c e n t r a t e d s u l p h u r i c a c i d t o t h e t e s t tube.

13. Heat and c o o l t h e t e s t t u b e and contents a s d e s c r i b e d i n s t e p s 4 t o 7 above.

N. B. F o r c o n s i s t e n t r e s u l t s , s t a n d a r d i z a t i o n of t h e heating and cooling p r o c e s s i s a b s o l u t e l y e s sential.

14. P o u r t h e contents of t h e t e s t tube into 100 t o 200 m l d i s t i l l e d w a t e r in a 500-ml v o l u m e t r i c flask.

15. B r i n g t h e t o t a l volume up t o 300 t o 350 m l with d i s t i l l e d w a t e r and add 0. 5 m l diphenylamine indicator.

16. R e p e a t s t e p s 11 t o 15 a s i t i s n e c e s s a r y t o r u n two blank d e t e r m i n a t i o n s in o r d e r t o s t a n d a r d i z e t h e f e r r o u s a m m o n i u m s u l p h a t e solution.

T h e r e a r e now five 500-ml v o l u m e t r i c f l a s k s e a c h containing 300 t o 350 m l of solution. T h e 0. 4 N equivalent of p o t a s s i u m d i c h r o m a t e taken f o r t h e two solutions u s e d f o r t h e blank d e t e r m i n a t i o n s i s 20 ml. T h e 0. 4 N equivalent of p o t a s s i u m d i c h r o m a t e t a k e n for t h e solution containing t h e p e a t s a m p l e is 60 m l b e f o r e oxidation t a k e s place.

Références

Documents relatifs

Conseils critiques Notation Suivi de projet Redirection vers expertises Gestion de crise Remontée de problèmes vers SFR. SFR :

Thus semantic connection should replace semantic value as the principal object of semantic enquiry; and just as the semantic evaluation of a complex expression is naturally taken

Quelles sont les coordon- nées de son extremum?. Est-ce un minimum ou un

La parabole représentative de f et la droite re- présentative de g se coupent aux points d’abs- cisses -2 et

[r]

ABC est un triangle rectangle

Il y a quatre choix possibles pour la première ville, trois pour la deuxième, deux pour la troisième et un pour

FOREWORD.. Water and food, food and water, this seemingly uneven couple cannot be separated. There are regions in the world with abundant water resources but without food