• Aucun résultat trouvé

1 The Standard Model of particle physics 23

N/A
N/A
Protected

Academic year: 2021

Partager "1 The Standard Model of particle physics 23"

Copied!
3
0
0

Texte intégral

(1)

Contents

1 The Standard Model of particle physics 23

1.1 The elementary particles . . . . 23

1.2 The fundamental interactions . . . . 24

1.3 Gauge symmetries: a brief introduction . . . . 27

1.4 The Drell-Yan process . . . . 31

1.5 The photon induced process . . . . 32

1.6 The effective field theory . . . . 34

1.7 Summary . . . . 34

2 The beyond Standard Model of particle physics 37 2.1 Motivation for new physics . . . . 37

2.2 New heavy particles decaying into a lepton pair . . . . 40

2.3 New physics in top quark production . . . . 43

2.4 Summary . . . . 45

3 The CMS experiment at LHC 47 3.1 The Large Hadron Collider (LHC) . . . . 47

3.1.1 Proton proton collision . . . . 48

3.1.2 Pile up . . . . 48

3.1.3 Luminosity . . . . 50

3.2 The Compact Muon Solenoid (CMS) . . . . 50

3.2.1 Coordinate conventions . . . . 52

3.2.2 Tracking system . . . . 53

3.2.3 Electromagnetic calorimeter . . . . 55

3.2.4 Hadronic calorimeter . . . . 59

3.2.5 Magnet . . . . 60

3.2.6 Muon system . . . . 60

3.2.7 Trigger . . . . 61

3.3 Summary . . . . 62

4 Object reconstruction 63 4.1 Electrons and Photons . . . . 63

4.1.1 Electrons . . . . 67

4.1.2 Photons . . . . 68

4.2 Muons . . . . 69

4.3 Jets and Bjets . . . . 70

4.3.1 b-jets . . . . 71

4.4 Missing transverse energy . . . . 71

4.5 Particle-flow algorithm . . . . 71

4.6 Summary . . . . 72

vii

(2)

CONTENTS

5 Searching for High Mass Resonances in Dielectron Final State 73

5.1 Data and MC samples . . . . 73

5.2 Trigger . . . . 76

5.2.1 Method for Measuring Trigger Efficiencies in Data . . . . 76

5.2.2 Primary Signal Trigger: L1 Efficiency . . . . 77

5.2.3 Primary Signal Trigger: HLT Efficiency . . . . 78

5.2.4 Other Trigger Efficiencies . . . . 78

5.3 Object and Event Selection . . . . 81

5.4 Mass Resolution and Scale . . . . 83

5.5 HEEP ID Efficiency and Scale Factor . . . . 90

5.5.1 Tag and probe method . . . . 90

5.5.2 HEEP ID efficiencies and scale factors . . . 102

5.6 Standard Model Backgrounds . . . 110

5.6.1 SM Drell-Yan background . . . 110

5.6.2 t¯t and t¯t -like backgrounds . . . 115

5.6.3 Jet background . . . 117

5.7 Invariant Mass Spectra . . . 122

5.7.1 Complementary plot . . . 128

5.8 Statistical Interpretation . . . 131

5.8.1 Upper limits . . . 135

5.9 Summary . . . 138

6 Search for New Physics via Top Quark Production in Dilepton Final State 139 6.1 Data-sets and MC Samples . . . 140

6.1.1 Data samples . . . 140

6.1.2 MC samples . . . 140

6.2 Triggers . . . 141

6.3 Object Identification . . . 142

6.3.1 Lepton selection . . . 142

6.3.2 Jet selection . . . 143

6.3.3 Missing Transverse Energy . . . 144

6.3.4 Scale factors . . . 144

6.3.5 Top p

T

reweighting . . . 144

6.4 Event Selection . . . 145

6.4.1 Event selection (step 1) . . . 145

6.4.2 Event selection (step 2) . . . 145

6.5 Background Predictions . . . 147

6.5.1 Prompt Background . . . 147

6.5.2 Fake Background . . . 148

6.6 Data/MC Comparison . . . 149

6.7 Signal Extraction Using Neural Networks Tools . . . 157

6.7.1 Data/MC comparison for MVA input variables . . . 158

6.8 Systematic Uncertainties . . . 169

6.9 Results . . . 178

6.9.1 Limit setting procedure . . . 178

6.9.2 Exclusion limits on C

G

effective coupling . . . 179

6.9.3 Exclusion limits on C

tG

, C

(3)φq

and C

tW

effective couplings . . . 181

6.9.4 Exclusion limits on C

uG

and C

cG

effective couplings . . . 184

6.10 Summary . . . 187

viii

(3)

CONTENTS

7 Conclusions and perspectives 189

Appendices 193

A The Appendices for Theory 197

A.1 The Feynman Calculus . . . 197

A.1.1 Lifetimes . . . 197

A.1.2 Cross-section . . . 198

A.1.3 The Golden Rule . . . 198

A.1.4 The Feynman Rules for A Toy Theory . . . 199

A.2 Quantum Electrodynamics . . . 202

A.2.1 Dirac Equation . . . 202

A.2.2 The Photon . . . 203

A.2.3 The Feynman Rules for QED . . . 204

A.3 Quantum Chromodynamics . . . 208

A.3.1 Quark Color . . . 208

A.3.2 Feynman Rules for Chromodynamics . . . 209

A.3.3 Asymptotic Freedom . . . 212

A.4 Groups: a brief introduction . . . 213

A.4.1 SU(2) groups . . . 214

A.4.2 SU(3) groups . . . 215

B The Appendices for Experiment 217 B.1 Mass resolution fit results . . . 217

B.2 For 2016 HEEP ID scale factor . . . 217

B.2.1 N-1 (or N-2, N-3) efficiency for HEEP variables . . . 217

B.2.2 HEEP efficiency versus η for different E

T

bins . . . 232

B.2.3 Cross check with DYJetsToLL amcatnlo sample . . . 234

B.2.4 HEEP efficiecny for mc matched electron for different DY samples . 236 B.3 For 2017 HEEP ID scale factor . . . 236

B.3.1 N-1 (or N-2, N-3) efficiency for HEEP variables . . . 236

B.3.2 Cross check with fit method . . . 249

B.4 Electron Saturation Study . . . 254

B.4.1 Get true energy of saturated electron . . . 254

B.4.2 Check ECAL linearity response . . . 266

B.4.3 Saturation effect to HEEP ID efficiency . . . 269

B.4.4 Conclusions . . . 271

B.4.5 Checking with MLP method . . . 272

B.5 MET disagreement investigation . . . 273

B.6 SM tW cross section measurement . . . 277

ix

Références

Documents relatifs

“superstring inspired models”. Needless to say that nobody has ever been able to find the ground state of any realistic theory and string theories are no exception.

Event selection and cross section measurement Table 5 summarizes the main features of the analysis using the model predicted statistics: for each mass, the table shows the number

A search for flavor changing neutral currents (FCNC) in decays of top quarks based on an integrated luminosity of 4.1 fb −1 been performed by the DØ collaboration [5].. FCNC allow

Individual constraints and the global fit result on the (ρ,η) plane as we could expect them from one nominal year of data taking from the LHCb experiment. Most of the improvement.

Recent results from searches of physics beyond the standard model in p¯ p collisions are reported, in particular, reactions involving high transverse momentum photons or jets in

Certain features of this theory fit-well with the general properties of quark interactions that emerge from the observa- tions, such as the softness of that

It consists in the production of a virtual vector boson splitting into a real boson and a scalar boson. Its cross section is lower than the VBF one. In particular, in the search for

Semi-riemannian noncommutative geometry, gauge theory, and the standard model of particle physics.. Mathematical