• Aucun résultat trouvé

11 2.2.1 The Heidelberg experiment

N/A
N/A
Protected

Academic year: 2021

Partager "11 2.2.1 The Heidelberg experiment"

Copied!
2
0
0

Texte intégral

(1)

C O N T E N T S

i i n t r o d u c t i o n 1

1 t h e c o l d a n d u lt r a c o l d r e g i m e 3

1.1 General consideration . . . 3

1.2 Interest and range of application . . . 5

2 c o o l i n g a n d t r a p p i n g at o m s a n d m o l e c u l e s 7 2.1 Experimental and theoretical achievements . . . 7

2.2 Ion-atom hybrid traps . . . 11

2.2.1 The Heidelberg experiment . . . 14

3 a n i o n s 19 3.1 Anions in the cold and ultracold domain . . . 19

3.2 Definition and properties . . . 20

3.3 Reactivity: detachment processes . . . 24

ii t h e o r e t i c a l b a c k g r o u n d 31 4 e l e c t r o n i c s t r u c t u r e 33 4.1 The molecular Schrödinger equation . . . 33

4.2 The Born Oppenheimer approximation . . . 34

4.3 The independent electron approximation . . . 37

4.4 The Hartree Fock method . . . 38

4.4.1 The mean field approach . . . 38

4.4.2 The Roothan equation . . . 40

4.5 Electron correlation and post-HF methods . . . 41

4.5.1 Configuration interaction (CI) . . . 42

4.5.2 Multi-configuration self consistent field (MCSCF) . 45 4.5.3 Multi-reference configuration interaction (MRCI) . 47 4.5.4 Perturbation methods (MPn) . . . 49

4.5.5 Coupled cluster approach (CC) . . . 50

4.6 The basis set . . . 52

4.6.1 Tempered diffuse functions . . . 54

4.6.2 Basis set superposition error . . . 54

4.7 Spin orbit coupling and relativistic effects . . . 56

4.8 Group theory . . . 59

5 n u c l e a r d y na m i c s 67 5.1 Capture model . . . 68

5.2 The close coupling method . . . 71

5.3 The Landau-Zener and Rosen-Zener-Demkov model . . . 75

ix

(2)

x c o n t e n t s

iii r e s u lt s 77

6 t h e m o h m o l e c u l a r s y s t e m 79

6.1 Molecular structure . . . 79

6.2 Vibrational frequencies . . . 92

6.3 The Rb-OH case . . . 96

6.3.1 Ground state collision: Rb(2S)+OH . . . 98

6.3.2 Excited state collision: Rb(2P)+OH . . . 113

6.3.3 Total loss rate and comparison with experiment . . 133

6.4 Excited states of alkaline earth hydroxide anions . . . 136

6.5 Conclusion and outlook . . . 139

7 h y d r at e d h y d r o x i d e a n i o n c l u s t e r s: o h(h2o)n 143 7.1 Generalities and motivation . . . 143

7.2 The hydrated hydroxide anion . . . 145

7.3 Reactivity . . . 150

7.3.1 Collision with H atoms . . . 150

7.3.2 Collision with Rb atoms . . . 163

7.4 Conclusion and outlook . . . 177

8 t h e r b-c 2 a n d l i-c 2 m o l e c u l a r s y s t e m s 181 8.1 Motivations . . . 181

8.2 Potential energy surfaces . . . 182

8.3 Reactive collisions . . . 186

8.4 Inelastic cross sections . . . 190

8.5 Conclusion and outlook . . . 196

iv g e n e r a l c o n c l u s i o n a n d p e r s p e c t i v e s 199 v a p p e n d i x 207 a a p p e n d i x a 209 a.1 Non adiabatic coupling matrix element for Rb+OH . . . 209

a.2 Spin orbit coupling in the Rb-C2 complex . . . 210

a.3 Harmonic frequencies . . . 212

b a p p e n d i x b 217

b i b l i o g r a p h y 229

Références